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(1) A particle moves with a central acceleration ) is projected with velocity V at a distance R. Show that the
T

path is a rectangular hyperbola if the angle of projection is :
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(Ans. MT-09, p.254)

(i1) The product of Inertia of semi circular wire about its diameter and tangent at its extremity.
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(Ans. MT-09, p. 285)

(1) To find central orbit when central force if given as a function of r, if the central force varies inversely as the

square of the distance from a fixed point, to find the orbit.
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(Ans. MT-09, p. 234)

(i) A perfectly rough plane is in clined at an angle & to the horizon. Show that the least

eccentricity of the ellipse which can rest on the plane is :
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(i) A particle of unit mass is projected vertically upwards with velocity /] in a medium whose resistance is KV.

(Ans. MT-09, p. 44)

Prove that the particle will return to the point of projection with velocity U; Where :
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(Ans. MT-09, p. 181)
(i) If in a SHM U, V, W be the velocities at distances a, b, ¢ from fixed point on the straight line which is not the
centre of force, show that the period T is given by the equation:
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(1) One end of an elastic string is fixed and to the other end if fastened a particle heavy enough to stretch the
string to double. Its natural length a. The string is drawn vertically down till it is four times its natural length and
then let go prove that the particle will return to this point in time :
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(Ans. MT-09, P. 160)

(i) A particle moves under gravity in a vertical circle, sliding down the convex side of a smooth circular are. If

its initial velocity is that due to a fall to the starting point form a height h above the center, show that it will fly

2
off the circle when at a height (g)h above the centre.
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(Ans. MT-09., P. 223)
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A body is placed on a rough plane inclined to the horizon at an angle greater than the
angle of friction, and is supported by a force acting in a vertical plane through the line
of greatest slope, find the limits between which the force must lie.

[MT-09, P.No. 41]
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A uniform chain of length 2I is suspendedby its ends which are on the same horizontal
level. The distance apart 2a of the ends is such that the lowest point of the chain is at a
distance a vertically below the ends. If ¢ is the distance of the lowest point from the
directrix of the catenary, then prove that
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A particle projected upwards with a velocity U , in a medium whose resistance varies
as the square of the velocity, will return to the point of projection with velocity

v:L after a time - tan’lg+tan ht Y], where v is the terminal velocity.
JU? +V? g v v

[MT-09, P.No. 186]
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A particle moves with a central acceleration which varies inversely as the cube of the
distance. If it be projected from an apse at a distance a from the origin with a velocity

which is /2 times the velocity for a circle of radius a, show that the equation to its

\/ 2 .

(a) A particle moves in a curve with constant velocity v. If when S=0 and y =0 any
2
. . v :
point its acceleration is STict ; then prove that the curve is a catenary.
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Ans. [MT-09, P.No. 121]

(b) A point moves in a straight line with SHM has velocitieis v, and v, when its
distance from the centre be x, and X,. Show that the period of motion is:
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Ans. [MT-09, P.No. 134]

If in a S.H.M. u,v,w be the velocities at distances a,b,c from fixed point on the

straight line which is not the centre of force. Show that the period T is given by the
equation
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[MT-09, P.No. 140]

One end of a light elastic string of natural length a and modulus 2mg is attached to a

fixed point O and the other end held at rest at O, is allowed to fall. Find the greatest
extension of the string and show that the particle will reach again after a time
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() Find the law of force towards the pole under which a particle describes the curve
r=asinn@
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(b) A uniform string of Mass M and length is 2l placed symmetrically over a smooth
Pey and has particles of mass m, and m, attached to its ends. Show that when the
string runs of the Pey, its velocity is
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(Find the moment of inertia of an arc of a circle about a line through mid point of arc to
its plane.)
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(A complete rough plane is inclined at an angle a from horizontal. Show that the
minimum eccentricity of ellipse such that it can remain at rest, is
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(Derive the insintric equation and Cartesian equation of catenory.)
P.No. 80-81
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(Let Ar?and w@ are radial and transversal velocities of a particle, then prove that the
path equation of path of particle is
A = i?_ +C
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Also, components of acceleration are
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A rhombus is formed of rods each of weight W and length 1 with smooth joints. It rects symmetrically with its

two upper sides in contact with two smooth pegs at the same level and at a distance 2a apart. A weight w’ is hung

at the lowest point. If the sides of the shombus make an angle 8 with the vertical, prove that sind =

a(daw+w")
1(aW+2w'y

(MT-09, page-69)
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One end of an elastic string is fixed and to the other end is fastened a particle heavy enough to stretch the string

to double its natural length a. The string is drawn vertically down till it is four times its natural length and then let

a , 2 4m
go. Show that the particle will return to this point in time / ; (\/§ + ?)

(Ans. MT-09, page-160)
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A uniform string of mass M and length 21, is placed symmetrically over a smooth peg and has particles of masses
m, and m, attached to its ends. Show that when the string runs off the peg, its velocity is. (MT-09, page-207)
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The velocity at any point of a central orbit is - th of what it would be for a circular orbit at the same distance. Show that

20?41 = gn?~1 cog(n? — 1)6.

central force varies as and that the equation of the orbit is 7

r2n?+1
(Ans. MT-09, page-238.
Drive the formula for kinetic energy. Also state the principle of energy.
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Obtain Moment of Inertia of Elliptic disc about its major axis.
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Two bodies M and M’ are attached to the lower end of an elastic string whose upper end is fixed and arc hung at
rest. M’ falls off. Show that distance of M from the upper end of the string at time tis @ + b +

C cos [,/ (g/b t] , where a is the unstretched length of the string, b and ¢ the distances by which it would be
extended when supporting M and M resp.
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A particle is projected with velocity u along a smooth horizontal plane in a medium whose resistance per unit
mass is k x velocity. Show that the velocity v after a time t and the distance x in that time are given by

v=ue  andx = %[1 —e7H]
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A cyclist and his machine together are of mass M 1bs. If he rides without pedaling down an incline of angle &;

with a uniform speed v ft./sec. Show that to go up an incline of angle ﬁ at the same rate he must work at

1 1\ v 1 1
M (— —) — HP. wherea = sin 1 —,8 =sin" 1=
m + n/ 550 where m 'ﬁ n

rSfohed G 3T GTSfohet ohT FIEHTTd SoTH M T13UE 2] Ife G &St o 919 ¢ 107 ek 3
Foae T o St wrerd = it 31 v e I Ferve % u o § Tt @ af fag il B g

STer ST Tl T YT T T I W =T e 3@ M (% + %) Y yegaiieh @ 1

550
. 11 a1

9N SEf @ = sin 1Z,ﬁ=sm 17_1

(Ans. MT-09, p.200)

Derive pedal form of equation of central orbit.
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Obtain moment of Inertia of any Elliptic disk of Mass M and having semi axes a & b around a diameter of length 2r.
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(Ans. MT-09, p. 295)

A heavy particle is projected in a resistance medium, the resistance varies as the velocity. If U1 and V5 are its
velocities at any point in its upward and downward paths and t the interval between its passage through this
point. Prove that :

vi+v,=at, V-V,)= e 9" (V+V)

Vi +V, =gt

Where V is terminal velocity
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(Ans. MT-09, P. 178)



