Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final)
 Paper Code:MT-10
 Mathematical Programming
 Section -B
 (Short Answers Questions)

1. To show that A hyperplane is a closed set.

A (P.No. 4, The. 1.1)
2. A hyperplane is given by the equation:

$$
3 x_{1}+2 x_{2}+4 x_{3}+7 x_{4}=8
$$

Find in which half spaces do the points $(-6,1,7,2)$ and $(1,2,4,1)$ lie.
A (P.No. 9, Example 1.1)
3. Show that $f(x)=x^{2}$ is a convex function.

A (P.No. 11, Example 1.2)
4. Toshow that the hyperplane is a convex set.

A (P.No. 5, The. 1.2)
5. To prove that the closed half spaces $H_{1}=\{X: X X \geq Z\}$ and $H_{2}=\{X$: $X \leq Z\}$ are convex sets.
A (P.No. 5, The. 1.3)
6. To find the nature of quadratic form $Q(X)=X^{\prime} A X$ where

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

A (P.No. 15, Example 1.6)
7. Explain the algorithm of revised simplex method (Standard fom-I)

A (P.No. 25, Example 2.3)
8. Solve the L.P.P. using standard form-I or II of revised simplex method.

Max $z=x_{1}+x_{2}$
S.t. $\quad 3 x_{1}+2 x_{2} \leq 6$
$x_{1}+4 x_{2} \leq 4$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 49, Que. 7)
9. Explain the basis and its inverse in standard form-II?

A (P.No.37)
10. Solve the following linear programming problem by revised simplex method.
$\operatorname{Max} \mathrm{z}=2 x_{1}+x_{2}$
S.t. $3 x_{1}+4 x_{2} \leq 6$
$6 x_{1}+x_{2} \leq 3$
and $\quad x_{1}, x_{2} \geq 0$
A (P.No. 26, Example 2.1)
11. Explain the mathematical form revised simplex method (Standard-II)?

A (P.No. 37)
12. Explain the bounded variable simplex algorithm?

A (P.No. 50)
13. Explain All I.P.P. algorithm or cutting plane algorithm?

A (P.No. 67)
14. Explain the geometrical interpretation of Gomory's cutting plane method?

A (P.No. 83)
15. Explain Gomory's mixed I.P.P. method (Fractional cut method)?

A (P.No. 90)
16. Solve the integer programming problem :

Max $z=7 x_{1}+9 x_{2}$
S.t. $\quad-x_{1}+3 x_{2} \leq 6$ $7 x_{1}+x_{2} \leq 3$
$x_{1} \geq 0, x_{2} \geq 0$
and x_{1}, x_{2} are integers
A (P.No. 84, Example 5)
17. Solve the following mixed I.P.P. problem?

Maximize

$$
\begin{aligned}
& \mathrm{Z}=-3 x_{1}+x_{2}+3 x_{3} \\
& -x_{1}+2 x_{2}+3 \leq 4 \\
& 4 x_{2}-3 x_{2} \leq 2 \\
& x_{1}-3 x_{2}+2 x_{3} \leq 3 \\
& x_{1} \text { and } x_{2} \text { are integers and } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

A (P.No. 94, Que. 5)
18. Explain the fractional cut?

A (P.No. 90)
19. Explain the algorithm of branch and bound?

A (P. No. 96)

20. Solve the following I.P.P. by branch and bound technique?
$\operatorname{Max} \quad Z=x_{1}+x_{2}$
s.t. $\quad 3 x_{1}+2 x_{2} \leq 12$

$$
\begin{aligned}
& x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 \text { and integers }
\end{aligned}
$$

A (P. No. 97)
21. Explain the Geometrical Interpretation of branch and bound method with example?

A (P.No. 108, Example 5)
22. Distinguish between pure and mixed programming?

A (P.No. 111)
23. Use Branch and bound method to solve the following integer linear programming problems.

$$
\begin{array}{ll}
\text { Max } & Z=x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+10 x_{2} \leq 20 \\
& x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 \text { and integers }
\end{array}
$$

A (P.No. 112, Que. 8)
24. Difference between continuous and integer programming?

A (P.No. 111)
25. Write the quadratic form :
$Q_{(x)}=x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-5 x_{2} x_{3}$ in matrix form.

A (P.No. 114, Exa. 2)
26. In each of the following cases write the objective function in the form:

$$
Z=X^{T} A X+q^{T} X
$$

(i) $\quad z=x_{1}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}+5 x_{2}^{2}-10 x_{2} x_{3}+8 x_{3}^{2}$
(ii) $\quad z=5 x_{1}^{2}-12 x_{1} x_{2}-16 x_{1} x_{3}+10 x_{2}^{2}-26 x_{2} x_{3}+$ $17 x_{3}^{2}-2 x_{1}-4 x_{2-} 6 x_{3}$
A (P.No. 115, Exa. 4)
27. Determine the sign of definiteness for each of the following matrices :
(a) $\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 0 & -5\end{array}\right]$

A (P.No. 117, Exa.5)
28. Test the definiteness of the quadratic form:

$$
X^{T} A X=\left(x_{1} x_{2} x_{3}\right)\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

A (P.No. 117, Exa. 6)
29. Explain the positive and negative definiteness of quadratic froms?

A (P.No. 116)
30. Determine whether or not the quadratic forms $A^{T} A X$ are positive definite, where:
(i) $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right]$
(ii) $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$
(iii) $A=\left[\begin{array}{ll}1 & 1 \\ 3 & 5\end{array}\right]$

A (P.No. 118, Exa. 7)
31. Obtain a set of necessary condition for the non-linear programming problem :
Maximize $\quad \mathrm{Z}=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}$
S.t. $\quad 5 x_{1}+2 x_{2}+x_{3}=5$
\&

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

A (P.No. 128, Exa.12)
32. If $f(X, \lambda)$ has a saddle point $\left(X_{0}, \lambda_{0}\right)$ for each $\lambda \geq 0$ then to prove that

$$
G\left(X_{0}\right) \leq 0 \text { and } \lambda_{0}^{T} G\left(X_{0}\right)=0
$$

A (P.No 140, The. 1)
33. Obtain the necessary conditions for the following nonlinear programming problem:
Minimize $f(X)=3 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+6 x_{1}+2 x_{2}$
Subject to $2 x_{1}-x_{2}=4$

$$
x_{1}, x_{2} \geq 0
$$

A (P.No. 149, Exa.3)
34. Use Lagrangian function to find the optimal solution of the following non linear programming problem:
Minimize $f(X)=-3 x_{1}^{2}-4 x_{2}^{2}-5 x_{3}^{2}$
Subject to $x_{1}+x_{2}+x_{3}=10$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

A (P.No. 152, Exa. 5)
35. Solve the following nonlinear programming problem graphically:

$$
\begin{array}{ll}
\text { Maximize } & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { Subject to } & x_{1}^{2}+x_{2}^{2} \leq 1 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

A (P.No. 157, Exa. 9)
36. Write the Kuhn-Tucker necessary and sufficient conditions for the following non linear programming problem to have on optimal solution.
Min

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}
$$

Subject to
$2 x_{1}+3 x_{2} \leq 6$
$2 x_{1}+x_{2} \leq 4$
\&

$$
x_{1}, x_{2} \geq 0
$$

A (P.No. 170, Exa. 1)
37. What are the Kuhn-Tucker conditions and how are they of fundamental importance in the theory of nonlinear programming.
A (P.No. 163)
38. Formulate the Kuhn-Tucker necessary conditions for the following prolem:

Maximize $f(X)$
Subject to $g_{i}(X) \geq 0 ; \quad i=1,2, \ldots \ldots m$ $g_{i}(X) \leq 0 ; \quad i=m+1, m+2, \ldots . p$ $h_{i}(X)=0 ; j=1,2, \ldots . q$
\&

A (P.No. 182)
39. Use Kuhn-Tucker conditions to determine x_{1}, x_{2}, x_{3} so as to minimize

Min. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4 x_{1}-6 x_{2}$
S.t. $\quad x_{1}+3 x_{2} \leq 2$
$2 x_{1}+3 x_{2} \geq 12$
$x_{1}, x_{2} \geq 0$
A (P.No. 174, Exa.5)
40. Explain the general non-linera programming problem (NLPP)?

A (P.No. 162)
41. Determine the optimal solution of the following non linear programming problem using the Kuhn-Tucker conditions:
Min. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$
S.t. $\quad x_{1}+x_{2} \leq 8$
$x_{1}, x_{2} \geq 0$
A (P.No. 173, Exa. 4)
42. Explain the algorithm of Beale's method?

A (P. No. 207)
43. Solve the following quadratic programming problem by Beale's method:

Max. $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2}$
S.t. $\quad 2 x_{1}+x_{2} \leq 1$ $x_{1}, x_{2} \geq 0$

A (P.No. 216, Exa. 9)
44. Solve the following quadratic programming problem of Wolfe's method :

Min. $f\left(x_{1}, x_{2}\right)=4 x_{1}+x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}$
S.t. $\quad 2 x_{1}+x_{2} \leq 6$
$x_{1}-4 x_{2} \leq 0$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 201, Exa. 5)
45. Use Wilfe's method to solve the following quadratic programming problem:
Min. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1}-4 x_{2}$
S.t. $\quad x_{1}+4 x_{2} \leq 5$

$$
\begin{aligned}
& \\
& \& \quad \\
& 2 x_{1}+3 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

A (P.No. 204, Exa. 6)
46. Explain the Interstice procedure by Wolfe's method?

A (P.No. 188)
47. Explain the quadratic programming problems?

A (P.No. 184)
48. Drive the dual of the quadratic programming problem:

Min $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
Subject to $\quad A X \geq b$
Where A is an $m \times n$ real matrix and G is $n \times n$ real positive semidefinite a symmetric matrix.

A (P.No. 233, Exa. 1)
49. Set G be a positive semi definite symmetric matrix then write the dual of the following quadratic programming problem:
Min $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
Subject to $\quad A X \geq b$
\&
$X \geq 0$

A (P.No. 234)
50. Explain the quadratic programming and duality?

A (P.No. 224)
51. Explain the convex programming problem with suitable example?

A (P.No. 236)
52. To Prove that every local maximum of the general convex programming problem is its global maximum.
A (P.No. 237, The.1)
53. To show that the set of all optimum solutions (global maximum) of the general convex programming problem is a convex set.
A (P.No. 238, The. 2)
54. Explain the piecewise linear approximation of a non linear continuous function.

A (P.No. 239)
55. Explain the algorithm of separable programming?

A (P.No. 240)
56. Solve the following convex separable programming problem:

Max. $\quad z=2 x_{1}-x_{1}^{2}+x_{2}$
S.t. $\quad 2 x_{1}+3 x_{2} \leq 6$
$2 x_{1}+x_{2} \leq 4$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 247, Que. 2)
57. Explain the basic features of a dynamic programming problem?

A (P.No. 249)
58. Explain the solution procedure of dynamic programming?

A (P.No. 250)
59. Solve the following convex separable programming problem:

Max

$$
z=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}
$$

Such that

$$
x_{1}+2 x_{2} \leq 4
$$

\&

$$
x_{1}, x_{2} \geq 0
$$

A (P.No. 248, Que. 5)
60. Solve the following problems by suing dynamic programming:

Min

$$
\begin{aligned}
& z=\sum_{i=1}^{n} x_{i} \\
& \prod_{i=1}^{n} x_{1}=b \\
& x_{i} \geq 0, \quad i=1,2, \ldots \ldots n
\end{aligned}
$$

A (P.No. 257, Que. 2)
61. Explain the solution of Linear programming problem using dynamic programming?

A (P.No. 258)
62. Solve the following problems by using dynamic programming :
Minimize $\quad z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}, \quad c_{1}<c_{2}<\cdots . .<c_{n}$

Subject to $\quad x_{1}+x_{2}+\cdots . .+x_{n}=b$
and

$$
x_{1}, x_{2}, \ldots . x_{n} \geq 0
$$

A (P.No. 257, Que.4)
63. Solve the following problems by using dynamic programming :

$$
-\sum_{i=1}^{n} P_{i} \log P_{1}
$$

Subject to $\quad \sum_{i=1}^{n} P_{i}=1$ is
Maximum when $P_{1}=P_{2}=\cdots \ldots . .=P_{n}=1 / n$
A. (P.No. 257, Que. 3)
64. Use dynamic programming to solve the following L.P.P.

Max $\quad z=2 x_{1}+5 x_{2}$
Such that $\quad 2 x_{1}+x_{2} \leq 43$

$$
2 x_{2} \leq 46
$$

\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 259, Exa. 1)
65. Solve by dynamic programming :

Max. $\quad z=3 x_{1}+7 x_{2}$
S.T. $2 x_{1}+x_{2} \leq 8$

$$
\begin{array}{ll}
& 2 x_{1}+2 x_{2} \leq 15 \\
\& & x_{1}, x_{2} \geq 0
\end{array}
$$

A (P.No. 262, Exa. 3)
66. Solve by dynamic programming:

Max. $z=x_{1}+9 x_{2}$
S.T. $\quad 2 x_{1}+x_{2} \leq 25$
$x_{2} \leq 11$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 263, Exa. 4)
67. Solve by dynamic programming.

Max $\quad z=3 x_{1}+x_{2}$
Subject to $\quad 2 x_{1}+x_{2} \leq 6$

$$
x_{1} \leq 2
$$

$$
x_{2} \leq 4
$$

and $\quad x_{1} \geq 0, x_{2} \leq 0$
A (P.No. 264, Que. 5)
68. Write the quadratic form in matrix vector notation.

$$
f(X)=x_{1}^{2}-2 x_{1} x_{2}+4 x_{2}^{2}
$$

A (P.No. 119, Que. 3)
69. Determine whether of the following quadratic form:

$$
x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
$$

A (P.No. 120, Que. 9)
70. Write down the quadratic form whose associated matrices are :
(i) $\left[\begin{array}{lrr}2 & -3 & 1 \\ -3 & 4 & 2 \\ 1 & 2 & -6\end{array}\right]$
(ii) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 6 & -2 \\ 4 & -2 & 14\end{array}\right]$

A (P.No. 119, Que.4)
71. Solve the following L.P.P. using dynamic programming:

Max $\quad z=3 x_{1}+7 x_{2}$
Subject to $\quad x_{1}+4 x_{2} \leq 8$

$$
x_{2} \leq 8
$$

and $\quad x_{1} \geq 0, x_{2} \leq 0$
A (P.No. 264, Que. 1)

