Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final)
 Paper Code:MT-09
 Integral Transforms and Integral Equations Section-B
 (Short Answers Questions)

1. Find Laplace Transform of $t^{2} \cdot u(t-3)$, where $u(t-3)$ is a unit step function.
2. Evaluate Laplace transform of the function :
$f(t)=\sin a t-a t \cos a t+\frac{\sin t}{t}$
3. Find Laplace transform of the function $\sin \sqrt{t}$ and hence obtain the Laplace transform of $\frac{w s \sqrt{t}}{\sqrt{t}}$
4. If $f(t)$ continuous for all $t>0$ and is of exponential order as $t \rightarrow \infty$ and if $f(t)$ is of class A, then show that:
$\lim _{t \rightarrow \infty} f(t)=\lim _{p \rightarrow 0} P L[f(t) ; p]$
5. Prove that $L[U(t-a) ; p]=\frac{e^{-a p}}{p}$, where $U(t-a)$ is the Heaviside's unit step function.
6. Find $L\left[S_{\in}(t) ; p\right]$ where $S_{\epsilon}(t)$ is dirac delta function and hence show that $\lim _{\epsilon \rightarrow 0} L\left[S_{\epsilon}(t) ; p\right]=1$.
7. Prove that $L^{-1}\left[\frac{e^{-1 / p}}{\sqrt{p}} ; t\right]=\frac{\cos 2 \sqrt{t}}{\sqrt{\pi t}}$
8. Find $L^{-1}\left\{\frac{1}{\left(p^{2}+a^{2}\right)^{3 / 2}} ; t\right\}$, hence obtain the unverse Laplace transform of $\frac{1}{\left(p^{2}+2 p+5\right)^{3 / 2}}$.
9. Find inverse Laplace transform of : $\log \left(1+\frac{1}{p^{2}}\right)$ or $\log \left(\frac{p^{2}+1}{p^{2}}\right)$
10. Find $L^{-1}\left[e^{-a \sqrt{p}}\right]$.
11. Obtain inverse Laplace transform of $\frac{1}{(p+1)\left(p^{2}+1\right)}$ using convolution theorem.
12. Evaluate : $L^{-1}\left[\log \left(\frac{p+\sqrt{p^{2}+1}}{2 p}\right) ; t\right]$.
13. Solve $\frac{d^{4} y}{d x^{4}}-y=1$, subject to conditions $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=$ $y^{\prime \prime \prime}(0)=0$.
14. Solve :
$\left(2 D^{2}+3 D-2\right) y=0, y(0)=1, y(t) \rightarrow 0$ as $t \rightarrow \infty$.
15. Find the solution of $\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}$, given that $u_{x}(0, t)=0, u\left(\frac{\pi}{2}, t\right)=$ 0 and $u(x, 0)=30 \cos 5 x$.
16. Solve the boundary value problem:
$\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}},(x>0, t>0)$ with the boundary conditions:
$u(x, 0)=0, u_{t}(x, 0)=0 \quad ; x>0$
$u(0, t)=f(t), \lim _{x \rightarrow \infty} u(x, t)=0 \quad ; t \geq 0$
17. Solve :
$t y^{\prime \prime}+y^{\prime}+4 t y=0$ if $y(0)=3, y^{\prime}(0)=0$
18. Solve :
$\left(D^{2}+9\right) y=\cos 2 t$, if $y(0)=1, y\left(\frac{\pi}{2}\right)=1$.
19. If $\phi(p)$ is the fourier sine transform of $f(t)$ for $p>0$ then for $p<0, \quad F_{3}\{f(t) ; p\}=-\phi(-p)$, show it
20. Find the fourier transform of $f(t)= \begin{cases}1, & |t| \leq 1 \\ 0, & |t|>1\end{cases}$
21. Find the fourier cosine transform of $e^{-t^{2}}$.
22. Prove that:
$P^{n} f^{(m)}(p)=i^{m+n} \sum_{r=0}^{q} \frac{m!n!}{r!(n-r)!(m-r)!} \bar{F}\left\{t^{m-r} . f^{(n-r)}(t) ; P\right\}$
23. Solve the integral equation for $f(t)$:
$\int_{0}^{\infty} f(t) c p s p t d t=\left\{\begin{aligned} 1-p, & 0 \leq p \leq 1 \\ 0, & p>1\end{aligned}\right.$
Hence deduce that $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2}$.
24. Find $f(t)$ if its sine transform is $\frac{e^{-a p}}{p}$. Hence deduce $F_{s}^{-1}\left(\frac{1}{p}\right)$.
25. Prove that:

$$
M\left\{\left(1+x^{a}\right)^{-b} ; p\right\}=\frac{\Gamma\left(\frac{p}{a}\right) \Gamma\left(b-\frac{p}{a}\right)}{a \Gamma(b)} ; 0<\operatorname{Re}(p)<\operatorname{Re}(a b)
$$

26. Prove that if n is a positive integer :

$$
M\left\{\left(x \frac{d}{d x}\right)^{n} f(x) ; p\right\}=(-1)^{m} P^{n} F(p) \text { where } M\{f(x)\}=F(p)
$$

27. If m is a positive integer and $\alpha \neq 0$ then prove that :

$$
M\left\{\left(\frac{d}{d x} x\right)^{m} f(x) ; p\right\}=(-1)^{m} F(p) \text { where } M\{f(x)\}=F(p)
$$

28. Derive the Mellin Inversion theorem.
29. Derive convolution theorem for Mellin transform.
30. If $M\{f(x)\}=F(p)$, then prove that :
$M\left\{x^{2} \frac{d^{2} f}{d x^{2}}+x \frac{d f}{d x} ; p\right\}=P^{2} F(p)$
31. Find the Hankel transform of $f(x)=\left\{\begin{array}{cc}1, & 0<x<a, v>0 \\ 0, & x>a, v=0\end{array}\right.$
32. Find the Hankel transform of the function:
$f(x)=\left\{\begin{array}{c}a^{2}-x^{2}, \quad 0<x<a \\ 0, \quad x>a\end{array}\right.$
taking $x J_{0}(p x)$ as the kernel.
33. Find the Hankel transform of:

$$
\begin{equation*}
\frac{\cos a x}{x} \tag{i}
\end{equation*}
$$

(ii) $\frac{\sin a x}{x}$
taking $x J_{0}(p x)$ as the kernel.
34. Find the Hankel transform of the function:
$f(x)=\left\{\begin{array}{c}x^{n}, \quad 0<x<a \\ 0, \quad x>a\end{array} \quad(\mathrm{n}>-1)\right.$
taking $x J_{n}(p x)$ as the kernel.
35. Find the Hankel transform of $e^{v} e^{-a x}$, taking $x J_{v}(p x)$ as the kernel.
36. If $H_{v}\{f(x) ; p\}=\int_{0}^{\infty} f(x) J_{v}(p x)(x p)^{\frac{1}{2}} d x, p>0$, then show that:
$H_{v}\left\{x^{v-\frac{1}{2}} e^{-a x} ; p\right\}=\frac{2^{v} \Gamma\left(v+\frac{1}{2}\right) P^{v+\frac{1}{2}}}{\sqrt{\pi}\left(a^{2}+p^{2}\right)^{v+\frac{1}{2}}}$
Where $\operatorname{Re}(a)>0$ and $\operatorname{Re}(v)>\frac{1}{2}$
37. Solve $\frac{\partial U}{\partial t}=\frac{\partial^{2} U}{\partial x^{2}}, x>0, t>0$ subject to conditions:
(i) $U(o, t)=0$
(ii) $\quad U=\left\{\begin{array}{c}1,0<x<1 \\ 0, \quad x \geq 1\end{array}\right.$ when $\mathrm{t}=0$
(iii) $\quad U(x, t)$ is bounded
38. The temperature $U(x, t)$ in the semi-infinite $\operatorname{rod} 0 \leq x \leq \infty$ is determined by the D.E.
$\frac{\partial U}{\partial t}=k \frac{\partial^{2} U}{\partial x^{2}}$
Subject to conditions :
(i) $U=0$ when $t=0, \quad x \geq 0$
(ii) $\frac{\partial U}{\partial x}=-\mu$ (a constant) when $x=0, t \geq 0$

Making use of cosine transform, show that
$U(x, t)=\frac{2 \mu}{\pi} \int_{0}^{\infty} \frac{\cos p u}{p^{2}}\left(1-e^{-k p^{2} t}\right) d p$
39. Solve $\frac{\partial^{4} U}{\partial x^{4}}+\frac{\partial^{2} U}{\partial x^{2}}=0,-\infty<x<\infty, y \geq 0$, satisfying the conditions :
(i) $\quad U$ and its partial derivatives tend to zero as $x \rightarrow \pm \infty$
(ii) $\quad U=f(x), \frac{\partial U}{\partial y}=0$ for $y=0$
40. Find the solution of the linear diffusion equation : $\frac{\partial^{2} U}{\partial x^{2}}=\frac{1}{k} \frac{\partial U}{\partial t}$ in a semi-infinite $\operatorname{rod} x \geq 0$, satisfying the boundary conditions
(i) $U(0, t)=f(t), t \geq 0$
(ii) $U(x, t) \rightarrow 0$ as $x \rightarrow \infty$
and he initial conditions $U(x, 0)=0$
41. Apply Hankel transform (of zero order) to solve the differential equation:
$\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}+\frac{\partial^{2} U}{\partial z^{2}}=0, \quad 0 \leq r \leq \infty, z \geq 0$
satisfying the following conditions :
(i) $U \rightarrow 0$ as $z \rightarrow \infty$ and $r \rightarrow \infty$
(ii) $U=f(r)$ on $z=0, r \geq 0$. It is given that $U(r, z)$ is bounded.
42. The magnetic potential U for a circular disc of radius a and strength w, magnetized parallel to its axis. Satisfying Laplace's equation is equal to $2 \pi w$ on the disc itself and vanishes at exterior point in the plane of the disc. Show that at the point $(r, z), z>0$
$U=2 \pi w \int_{0}^{\infty} e^{-p z} J_{0}(p r) J_{1}(a p) d p$
43. Show that the function $g(x)=\left(1+x^{2}\right)^{-\frac{3}{2}}$ is a solution of the volterra integral equation:
$g(x)=\frac{1}{1+\mathrm{x}^{2}}-\int_{0}^{x} \frac{1}{\left(1+x^{2}\right)} g(t) d t$
44. Show that the function $g(x)=1$ is a solution of the Fredholm integral equation.
$g(x)+\int_{0}^{1} x\left(e^{x t}-1\right) g(t) d t=e^{x}-x$
45. Form a integral equation corresponding to the differential equation :
$\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
With initial conditions : $y(0)=1=y^{\prime}(0)=0$
46. Convert the following differential equation into an integrall equation :
$\frac{d^{2} y}{d x^{2}}+\lambda x y=f(x) ; y(0)=1, y^{\prime}(0)=0$
47. Transform $\frac{d^{2} y}{d x^{2}}+x y=1 ; y(0)=0, y(1)=1$ into an integral equation.
48. Solve the homogeneous fredholm integral equation:
$\phi(x)=\lambda \int_{0}^{1} e^{x+t} \phi(t) d t$
49. Solve the homogeneous fredholm integral equation of the second kind.
$g(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) g(t) d t$
50. Find eigen values and eigen functions of the homogeneous integral equation.
$g(x)=\lambda \int_{0}^{1} k(x, t) g(t) d t$
51. Solve :
$g(x)=e^{x}+\lambda \int_{0}^{1} 2 e^{x} e^{t} g(t) d t$
52. Solve the integral :
$g(x)=f(x)+\lambda \int_{-1}^{1}\left(\mathrm{xt}+\mathrm{x}^{2} \mathrm{t}^{2} g(t) d t\right.$
Also find its resolvent kernel.
53. Solve the following equation and find its eienvalues :
$g(x)=++\lambda \int_{0}^{\pi / 2} \cos (\mathrm{x}-\mathrm{t}) g(t) d t$
54. Solve the integral equation :
$g(x)=1 \int_{0}^{x} \sin (\mathrm{x}-\mathrm{t}) g(t) d t$ and verify your answer.
55. Solve for $f(x)$ the integral equation "
$\int_{0}^{\infty} f(x) \sin p x d x=\left\{\begin{array}{cc}1, & 0 \leq p \leq 1 \\ 2, & 1 \leq p \leq 2 \\ 0, & p>2\end{array}\right.$
56. Solve :
$\int_{0}^{\infty} f(x) \cos p x d x=e^{-p}$
57. Solve the following integral equation by the method of successive approximation :-
$g(x)=\left(e^{x}-\frac{1}{2} e+\frac{1}{2}\right)+\frac{1}{2} \int_{0}^{1} g(t) d t$
58. Using iterative method, solve :
$g(x)=f(x)+\lambda \int_{0}^{1} e^{x-t} g(t) d t$
59. By means of resolvent kernel find the solution of:
$g(x)=e^{x} \sin x+\int_{0}^{x} \frac{2+\cos x}{2+\cos t} g(t) d t$
60. By means of resolvent kernel, find the solution of:

$$
g(x)=1+x^{2} \int_{0}^{\pi} \frac{1+\mathrm{x}^{2}}{1+\mathrm{t}^{2}} g(t) d t
$$

61. Using the method of successive approximation solve the integral equation : $g(x)=1+\int_{0}^{x}(x-t) g(t) d t$ taking $g_{0}(x)=0$
62. Solve :
$g(x)=x .2^{x}-\int_{0}^{x} 2^{x-t} g(t) d t, \quad g_{0}(x)=x .2^{x}$
By using the method if successive approximation.
63. Prove that the eigen values of a symmetric kernel are real.
64. Show that the eigen functions of a symmetric kernel corresponding to distinct eigen values are orthogonal.
65. Show that if the sequence $\left\{g_{k}(x)\right\}$ be all the eigen functions of a symmetric $L_{2}-$ kernel with $\left\{\lambda_{k}\right\}$ as the corresponding eigen values. Then the series: $\sum_{n=1}^{\infty} \frac{\left|g_{n}(x)\right|^{2}}{\lambda^{2} n}$ converges and its sum is bounded by C_{1}^{2} which is an upper bound of the integral:
$\int_{a}^{b}\left|k^{2}(x, t)\right| d t$
66. Show that if the sequence $\left\{g_{n}(x)\right\}$ be all the eigen functions of a symmetric kernel $\mathrm{k}(\mathrm{x}, \mathrm{t})$ with $\left\{\lambda_{n}\right\}$ as the corresponding eigen values then the truncated kernel $K^{(n+1)}(, t)=k(x, t)-\sum_{m=1}^{n} \frac{g_{m}(x) \bar{g}_{m}(t)}{\lambda_{m}}$ has the eigen values $\lambda_{n+1}, \lambda_{n+2}, \ldots \ldots$ which corresponds the eigen functions $g_{n+1}(x), g_{n+2}(x) \ldots \ldots$. The Kernel $K^{n+1}(x, t)$ has no other eigenvalues or eigen functions.
67. Using Hilbert Schmidt theorem, find the solution of the symmetric integral equation
$g(x)=x^{2}+1+\frac{3}{2} \int_{-1}^{1}\left(x t+x^{2} t^{2}\right) g(t) d t$
68. Determine the eigenvalues and the corresponding eigen functions of the equation:
$g(x)=f(x)+\lambda \int_{0}^{2 \pi} \sin (x+t) g(t) d t$
Where $f(x)=x$ obtain the solution of this equation when λ is not an eigenvalue.
69. Using the recurrence relation find the resolvent kernel of the following kernel :
$k(x, t)=\sin x, \quad 0 \leq x \leq \pi$
70. Show by using fredholm's theory that the resolvent kernel for the integral equation with kernel $k(x, t)=1-3 x t$ in interval $(0,1)$ is :
$R(x, t ; \lambda)=\left[\frac{4}{4-\lambda^{2}}\right]\left[1+\lambda-\frac{(x-t)}{2}-3(1-\lambda) x t\right], \lambda \neq 2$
71. Using fredholm theory solve,
$g(x)=e^{x}+\lambda \int_{0}^{1} x t g(t) d t$
72. Solve the following integral equation :
$g(x)=x+\lambda \int_{0}^{1}\left[4 x t+x^{2}\right] g(t) d t$
73. Using fredholm theory, solve :
$g(x)=\cos 2 x \int_{0}^{2 \pi} \sin x \cos t g(t) d t$
74. For the integral equation :
$g(x)=f(x)+\lambda \int_{a}^{b} k(x, t) g(t) d t$
Find $D(\lambda)$ and $D(x, t ; \lambda)$ for the kernel:
$k(x, t)=\sin x ; a=0, b=\pi$
