Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final) Question Bank-2015

 Paper Code:MT-07

 Paper Code:MT-07
 Section - A

1. Name the types of forces under which the fluid tetrahedron will be in equilibrium? [Pg N. 452, Art 9.1(Fluid dynamics, Shanti swarup)
2. Give the eq. of continuity in vector form.
[Pg no. 21 art 23.2 (MA/MSc. MT-07)
3. Name four fundamental units in fluid dynamics in which the dimensions of all the physical quantities can be expressed?
[Pg no. 35 art 3.4 (MA/MSc. MT-07)
4. What do you mean by incompressible fluid motion?
[Pg no. 43 art 4.2 (MA/MSc. MT-07)
5. Define Himenz Flow.
[Pg no. 64 art 5.3 (MA/MSc. MT-07)
6. Define unsteady motion?
[Pg no. 71 art 6.2 (MA/MSc. MT-07)
7. Give the expression for the Velowty distribution for the flow in plane coquette flow with porous boundaries?
[Pg no. 79 art 7.42 (MA/MSc. MT-07)
8. What do you mean by adiabatic exponent of gases?
(Ref: Page 14, Art 1.17, MA/M.Sc. MT-07)
9. Define density with respect to fluid dynamics.
[Pg no. 2 art 1.3 (MA/MSc. MT-07)
10. Define circulation with respect to fluid dynamics.
[Pg no. 27 art 2.8 (MA/MSc. MT-07)
11. State the Reynold's law?
[Pg no. 34 art 3.2 (MA/MSc. MT-07)
12. What do you mean by Startup flow?
[Pg no. 71 art 6.2 (MA/MSc. MT-07)
13. What do you mean by 'Suction'?
[Pg no. 76 Art 7.21 (MA/MSc. MT-07)
14. Write the stoke's eq. for slow motion?
[Pg no. 96 Art 9.2 (MA/MSc. MT-07)
15. Define the momentum thickness?
[Pg no. 109 Art 10.4 (iii) (MA/MSc. MT-07)
16. Give the equation from which we can calculate the temperature distribution for different situations between parallel plates.
(Ref: Page 81, Art 8.2, MA/M.Sc. MT-07)

Section - B

1. Prove that the two principal directions corresponding to any 2 distinct principal stresses are orthogonal?
[Pg no. 462 art 9.7 (Fluid dynamics, Shanti swarup)
2. Prove that the vector Ω of an incompressible viscous fluid moving under no external fore satisfies the differential eq.

$$
\frac{d \vec{\Omega}}{d t}=(\vec{\Omega} \cdot \nabla) \vec{q}+\mu \nabla^{2} \vec{\Omega}
$$

Where μ is the coefficient of viscosity?
[Pg no. 503 Ex. 18 (Fluid dynamics, Shanti swarup)
3. The loss of pressure $\nabla \rho$ for laminar flow in a pipe is a funetion of pipe length 1 , its diameter D , mean velocity, U and the dynamic viscosity μ. Determine an expression for the pressure lost?
[Pg no. 517 Ex. 14 (Fluid dynamics, Shanti swarup)
4. Prove that in slow steady motion of a viscous liquid in two dimensions.
$\nu \nabla^{2} \psi=\frac{\partial x}{\partial x}-\frac{\partial y}{\partial y}$
Where (X, Y) is the impressed force per unit area.
(Pg no. 579 Ex. 11 (Fluid dynamics, Shanti swarup)
5. A viscous liquid flows steadily parallel to the axis in the annular space between 2 co-axial cylinder of radii a na ($\mathrm{n}>1$). Determine the rate of discharge?
[Pg no. 579 Ex. 19 (Fluid dynamics, Shanti swarup)
6. Air flow over a Hati plat 60 cm long and 1 m . wide at wide at a velocity $8 \mathrm{~m} / \mathrm{s}$. Find the boundary layer thickness at the end of plate, share stress at 30 m from the leading edge and the total drag force on both sides of plates. Assuming $\mathrm{p}=1.20$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{V}=1.44 \times 10^{-1}$ stokes.
[Pg no. 646 Ex. 4 (Fluid dynamics, Shanti swarup)
7. Explain -
(i) Boundary layer Thickness (ii) Displacement Thickness
[Pg no. 108 art 10.4 (MA/MSc. MT-07)
8. Discuss the thermal boundary layer simple solution for $\operatorname{Pr}=1$?
[Pg no. 119 art 12.3 (MA/MSc. MT-07)
9. What is vorticity. Prove that vorticity diffuses through a liquid in almost the same way as heat dais.
[Pg no. 26 Art 2.7 (MA/MSc. MT-07)
10. Explain - (i) Mach number, (ii) Brinkman Number
[Pg no. 38 Art 3.8.3, Pg. N. 39 (Art 3.8.3) (MA/MSc. MT-07)
11. The velocity components are given by
$\mu(y)=y \frac{U}{h}+\frac{h^{2}}{2 \mu}\left(-\frac{d p}{d x}\right) \frac{y}{h}\left(1-\frac{y}{h}\right), v=0=\omega$
Prove that the velocity components satisfy the eq. if motion. The body force s neglected, $\mathrm{h}, \mathrm{U}, \mathrm{dp} / \mathrm{dx}$ are constants, and $\mathrm{p}=\mathrm{p}(\alpha)$?
[Pg no. 500 Ex. 15 (Fluid dynamics, Shanti swarup)
12. The losser $\Delta h / l$ per unit length of pipe in a fluid flo through a smooth pipe depend upon velocity V , diameter D , gravity g , dynamic viscosity μ, and density P . with dimensional analysis determine the general form of eq.?
[Pg no. 522 Ex. 5 (Fluid dynamics, Shanti swarup)
13. Oil is filled between 2 concentric rotating cylinders with radii 5 in and $5 \frac{1}{2}$ in. Assuming $\mu=0.005 \mathrm{lbf}-\mathrm{sef} / \mathrm{ft}^{3}$. The inner cylinder rotates at a speed of 5 rpm , while the outer cylinder is at rest. Calculate the stress at the wall of the inner cylinder?
[Pg no. 566 Ex. 9 (Fluid dynamics, Shanti swarup)
14. Viscous in compressible fluid is in steady two dimensional radial motion-between 2 non-parallel plane walls, r and Q are polar coordinates. R being the distance from the line of intersection of the planes of the walls, which are $\theta= \pm \alpha$, prove that the velocity is given by $\mu=f(0) / r$, where

$$
(d f / d \theta)^{2}=(2 / 3 v)\left(h-3 v k f-6 v f^{2}-j^{3}\right)
$$

$\mathrm{h} \& \mathrm{k}$. being constants.
[Pg no. 589 Ex. 20 (Fluid dynamics, Shanti swarup)
15. Determine the displacement thickness arid momentum thickness for the laminar boundary on a flat plate for which the velocity distribution is given by the relation?
$\mu / U=2(y / \delta)-2(y / \delta)^{3}+(y / \delta)^{4}$
[Pg no. 645 Ex. 3 (Fluid dynamics, Shanti swarup)
16. A liquid occupying the space between two co-axial circular cylinders is acted upon by a force e / r per unit moss, where r is the distance from the axis, the lines of force being airless sound the axis. Prove that in the steady mention the velocity at any point is given by $\frac{c}{2 v}\left[\frac{b^{2}}{r} \frac{r^{2}-a^{2}}{b^{2}-a^{2}} \log \left(\frac{r}{a}\right)\right]$, where v is the coefficient of kinematic viscosity.
[Pg no. 580 Ex. 13 (Fluid dynamics, Shanti swarup)

Section - C

1. A fluid flow situation depends upon the velocity V . the density p , several linear dimensions $l ; l_{1} ; l_{2} ; \mathrm{d}$, pressure drop Δp, gravity g , viscosity μ, surface tension σ, and
bulk modules of elasticity k. Apply dimensional analysis to these variables to find a set of Π parameters.
[Pg no. 524 Ex. 8 (Fluid dynamics, Shanti swarup)
2. Discuss the unsteady motion of a flate plate?
[Pg no. 570 Ans. 11.7 (Fluid dynamics, Shanti swarup)
3. Discuss the flow due to an oscillating flat plate?
[Pg no. 572 Ans. 11.8 (Fluid dynamics, Shanti swarup)
4. Two-dimensional potential flow of an in viscid and incompressible fluid near the stagnation point at the origin at a fixed point taken as $y=0$ is given by u-bx. Show that the corresponding problem for a viscous liquid has a solution.
$\mu=b x \frac{\partial \phi}{\partial n}, v=\sqrt{b v} \phi(n), n=y \sqrt{b v}$,
Where $d^{3} \phi / d n^{3}+d^{2} \phi / d n^{2}-(d \phi / d n)^{2}+1=0$ with bounding conditions.
Whee $\mathrm{n}=0, \phi=0$ and $n=\omega, d \phi / d n=1$
[Pg no. 590 Ans. 11.7 (Fluid dynamics, Shanti swarup)
5. Prove that there are only 5 independent dimension less groups in the viscous compressible fluid motion?
[Pg no. 518 Ex. 1 (Fluid dynamics, Shanti swarup)
6. Discuss the steady motion of a viscous fluid due to a slowly rotating sphere?
[Pg no. 56 Art. 11.5 (Fluid dynamics, Shanti swarup)
7. Discuss the unsteady flow of viscous in compressible between 2 parallel plate?
[Pg no. 575 Art 11.10 (Fluid dynamics, Shanti swarup)
8. Obtain the solution of the Navies Stokes eq. at low. Reynolds no.?
[Pg no. 594 Art 11.13 (Fluid dynamics, Shanti swarup)
