Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Final) Paper Code:MT-06 Analysis and Advanced Calculus Section – C (Long Answers Questions)

1. Let p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. If $a, b \ge 0$, then prove $a^{1/p} b^{1/q} \le \frac{a}{p} + \frac{b}{q}$

Where the sign of inequality holds iff $a^p = b^q$

- A P.N. 6 (Lemma-6)
- 2. State and prove Holder's inequality.
- A P.N. 8 (Theorem-7)
- 3. State and prove Minkowski's inequality. $[||x|| - ||y||] \le ||x - y||$
- A P.N.9 (Th.8)
- 4. Show that the linear spaces Rⁿ(Euclidean) and Cⁿ(Unitary) of n-tuples x = (x₁, x₂,..., x_n) of real and complex numbers are Banach space under the norm
 ||x|| = {∑_{i=1}ⁿ |x_i|²}^{1/2}
- A P.N. 16 (Exq.2)
- 5. Let p be a real number s.t. $1 \le p \le \infty$. Show that the space l_p^n of all n-tuples of scalars with the norm defined by

$$\|x\|_p = \{\sum_{i=1}^n |x_i|^p\}^{1/p}$$

is a Banach space.

- A P.N.18 (Exam.3)
- 6. Consider the linear space of all n-tuples $x = (x_1, x_2, \dots, x_n)$ of scalars and define the norm by $||x||_{\infty} = max\{|x_1|, |x_2|, \dots, |x_n|\} = l_{\infty}^n$ show that $(l_{\infty}^n, \|.\|_{\infty})$ is a Banach space.
- A P.N.20 (Exa.4)

7. Let (X) be a linear space of all bounded continuous scalar valued function defined on a topological space X. Then show that c(X) is a Banach space under the norm

$$||f|| = \sup\{|f(x)|: x \in X\}, f \in C(X)$$

- A P.N.21 (Exa.5)
- 8. If T be a linear transformation from a normed linear space N into the normed space N^1 , then prove that the following statement are equivalent:
 - (i) T is continuous
 - (ii) T is continuous at the origin i.e. $x_n \to 0 \Longrightarrow T(x_n) \to 0$.
 - (iii) T is bounded i.e., $\exists real \ k \ge 0 \ s. t. ||T(x)|| \le ||x||$ for all $x \in N$
 - (iv) If $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N, then its image T() is bounded set in N^1 .
- A P.N.26 (Th-1)
- 9. If T be a bounded linear transformation of normed space N into normed space N^1 then prove that the following statements are equivalent:
 - (i) $||T|| = \sup \left\{ \frac{||T(x)||}{||x||} : x \neq 0, x \in N \right\}$
 - (ii) $||T|| = inf. \{k : k \ge 0, ||T(x)|| \le ||x||, \forall x \in N\}$
 - (iii) $||T|| = \sup \{ ||T(x)|| : ||x|| \le 1, x \in N \}$
 - (iv) $||T|| = \sup \{||T(x)||: ||x|| = 1, x \in N\}$
- A P.N.28(Th.2)
- 10. If N, N^1 be normed linear spaces and B (N, N^1) is the set of all bounded (or continuous) linear transformation from N into N^1 , then B (N, N^1) is also normed linear space under the norm

 $||T|| = \sup \{||T(x)|| : ||x|| \le 1, \forall x \in N\}$

w.r.t. pointwise linear operations

 $(T + SO(x) = T(x) + S(x) and (XT)(x) = \alpha T(x)$ for real α . also

 $B(N, N^1)$ is complete if N^1 is complete i.e. $B(N, N^1)$ is a Banach space if N^1 is a Banach space.

- A P.N.30 (Th.3)
- 11. Let N and N^1 be normed linear spaces over the same scalar field and let T be a linear transformation of N into N^1 , then prove that T is bounded if it is continuous.
- A. P.N. 36 (Th.8)
- 12. If N be a normed linear space, then show that the two norms $\| \|_1 \| \|_2$ defined in N are equivalent iff \exists positive real numbers and b s.t.

 $a \|x\|_{1} \le \|x\|_{2} \le b \|x\|_{1}, \forall x \in N$

- A. P.N. 38 (Th.10)
- 13. State and prove Reisz Lemma.
- A. P.N. 41 (Th.14)
- 14. Let X_1, X_2, \dots, X_n, Y be normed linear spaces over the same field of scalars and let $f : X_1 \times \dots \times X_n \to Y$ be a multilinear mapping, then show that f is continuous iff there exists a number m > 0 s.t.

 $||f(x_1, x_2, \dots, x_n)| \le m ||x_1|| ||x_2|| \dots ||x_n||$

- A. P.N. 46 (Th.1)
- 15. If B and B^1 be Banach spaces an T a continuous linear transformation of B onto B^1 , then show that the image of every open centre at origin in B contains an open sphere centered at origin in B^1 .
- A. P.N. 48 (Lemma)
- 16. Let N and N^1 be normed linear spaces and D be a subspace of N, then show that a linear transformation $T: D \rightarrow N^1$ is closed iff its graph T_G is closed
- A. P.N. 54 (Th.3)
- 17. State and prove the closed graph theorem.
- A. P.N. 55 (Th.4)
- 18. State and prove the uniform boundedness theorem
- A. P.N. 57(Th.5)
- 19. If f be a functional defined on a linear subspace M of a real normed linear space N, $x_0 \in M$ and

 $M_0 = [M \cup \{x_0\}] = \{x + \alpha x_0 : x \in M \text{ and } \alpha \text{ is real}\}$

is the linear subspace spanned by M and x_0 , then show that f can be extended to a functional & defined on M_0 .t. $||f_0|| = ||f||$

- A. P.N. 62(Lemma)
- 20. If f be a functional defined on a linear subspace M of a complex normed linear space $N, x_0 \in M$ and

 $M_0 = [M \cup \{x_0\}] = \{x + \alpha \, x_0 : x \in M \text{ and } \alpha \text{ is real}\}$

is the linear subspace spanned by M and x_0 , then f can be extended to a functional f_0 defined on $M_0 s.t. ||f_0|| = ||f||$

A. P.N. 62. 65-66

21. If N be a normed linear space and x_0 is a non-zero vector in N, then \exists a continuous linear functional F defined on the conjugate space $N^* s. t$.

 $f(x_0) = ||x_0||$ and ||F|| = 1 Prove it

- A. P.N. 67(Th.2)
- 22. If M be a closed linear subspace of a normed linear space N and x_0 be a vector in N, but not in M with the property that the distance from x_0 to M i.e. $d(x_0, m) = d > 0$, then prove that \exists a bounded linear functional $F \in N^* s. t. ||F|| = 1, F(x_0) = d$ and $F(x) = 0 \quad \forall x \in M i. e. F(M) = \{0\}$
- A. P.N. 69(Th.5)
- 23. Let N be an arbitrary normed linear space, then show that for each vector x in N induces a functional F_x on N^{**} defined by $F_x(f) = f(x) \forall f \in N^* s.t.$

 $||F_x|| = ||x||$. Further the mapping $J : N \to N^{**}$ defined as $J(x) = F_x \forall x \in N$ is an isometric isomorphism of N into N^{**} .

- A. P.N. 71 (Th.6)
- 24. Let X be a complex inner product space, then show the following results :

(i)
$$(\alpha x - \beta y, z) = \alpha(x, z) - \beta(y, z)$$

(ii) $(x, \beta y + \gamma z) = \overline{\beta}(x, y) + \overline{\gamma}(x, z)$

(iii)
$$(x, \beta y - \gamma z) = \overline{\beta}(x, y) - \overline{\gamma}(x, z)$$

- (v) (x, 0) = 0 and (0, x) = 0 $\forall x \in X$
- A. P.N. 77 (Th.1)
- 25. State and prove the Schwarz inequality
- A. P.N. 78 (Th.2)
- 26. If X is an inner product space, then prove that

 $||x|| = (x, x)^{1/2}$ is a norm on X

- A. P.N. 78 (Th.3)
- 27. If B is a complex Banach space whose norm obeys the parallelogram law, and if an inner product is defined on B by

 $4(x, y) = ||x + y||^{2} - ||x - y||^{2} + i||x + iy||^{2} - i||x - iy||^{2}$

Then B is a Hilbert space. Prove it.

- A. P.N. 82 (Th.5)
- 28. A closed convex subset k of a Hilbert space H contains a unique vectors of smallest norm. Prove it.