Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final)
 Paper Code:MT-06
 Analysis and Advanced Calculus Section - B
 (Short Answers Questions)

1. Define Norm and write the set of axions of Normal linear space.

A P.N. 2
2. Write the Summability for a series $\sum f_{n}$ of functions in a Normal linear space.

A P.N. 3
3. If N be a Normed linear space and $\mathrm{x}, \mathrm{y}, \in \mathrm{N}$ then Prove
$\lceil\|x\|-\|y\|] \leq\|x-y\|$
A P.N. 4
4. Show that every normed linear space is a metric space.

A P.N. 4
5. If N be a normed linear space with the norm $\|$.$\| , then prove that mapping$ $f: N \rightarrow R$ s.t. $f(x)=\|x\|$ is continuous.
A P.N. 5
6. Show that every convergent sequence in a normal linear space is a Cauchy sequence.

A P.N. 5
7. Show that the limit of a convergent sequence is unique.

A P.N. 6
8. Write the Reflexive, Symmetric and Transitive relations for factor (quotient) spaces.
A P.N. 11
9. Show that the linear spaces R (real) and (Complex) are normed linear spaces under the norm $\|x\|=|x|, x \in R$ or C as the case may be.

Also show that these spaces are complete and hence Banach spaces.

A P.N. 15

10.If T be a linear transformation of a normed linear space N into normed linear space N^{1}. then prove that its inverse of T i.e. T^{-1} exists and is continuous on its domain of definition iff $\exists a$ constant $K \geq 0$ s.t. $K\|x\| \leq$ $\|T(x)\| V x \in N$.

A P.N. 33
11.If T be a linear transformation from a normed linear space into normed space N^{1}, then show that T is continuous either at every point or at no point of N .

A P.N. 34
12.If M be a closed linear subspace of a normed linear space N and T be a natural mapping (homomorphism) of N onto $\frac{N}{M}$ s.t. $T(x)=x+M$, then show that T is continuous linear transformation with $\|T\| \leq 1$.
A P.N. 34
13. Show that the weak limit of a sequence is unique.

A P.N. 37
14.Show that on a finite dimensional linear space X, all norms are equivalent.

A P.N.39-40
15.Prove that every compact subset of a normal linear space is complete.

A P.N. 40
16.Prove that every compact subset of a normal space is bounded but the converse is not true.

A P.N. 41
17.Let n be a normed linear space and suppose the set $S=\{x \in N:\|x\|=1\}$ is compact then prove that N is finite dimensional.

A P.N. 42
18. Let B and B^{1} be Banach spaces. If T is a continuous linear transformation of B and B^{1}, then prove that T is an open mapping.
A P.N. 52
19. Let N be a real normed linear space and suppose $f(x)=0 \forall f \in N^{*}$. Show that $\mathrm{x}=0$.

A P.N. 68
20.If M be a closed linear subspace of a normed linear space N and x_{0} is a vector not in M , then prove that \exists a functional F in conjugate space N^{*} s.t. $f(M)=\{0\}$ and $f\left(x_{0}\right) \neq 0$.

A P.N. 69
21. Show that the space $l_{2}{ }^{n}$ consisting of all n types $x=\left(x_{1}, \ldots \ldots x_{n}\right)$ of complex numbers and the inner product on l_{2}^{n} is defined as $(x, y)=$ $\sum_{i=1}^{n} x_{i} \bar{y}_{i}$, where $y=\left(y_{1}, \ldots \ldots \ldots y_{n}\right)$ is an inner product space.

A P.N. 75
22. Show that the linear space l_{2} consisting of all complex sequences $x=$ $\left(x_{n}\right)$ s.t. $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}$ is convergent.

A P.N. 76
23. Show that the inner product in a Hilbert space is jointly continuous i.e. if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ as $n \rightarrow \infty$

A P.N. 80
24.If x and y are any two vectors in a Hilbert space H, then prove

$$
\|(x+y)\|^{2}+\|(x-y)\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

A P.N. 81
25.If x, y are any two vectors in a Hilbert space H , then prove that

$$
4(x, y)=\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}
$$

A P.N. 81
26. Write the Pythagorean theorem statement and proof also.

A P.N. 92
27.If S is a non empty subset of a Hilbert space H , then prove that S^{1} is a closed linear subspace of H and hence a Hilbert space.
A P.N. 94
28.Let M be a linear subspace of Hilbert space H . then prove that M is closed if and only if $M=M^{11}$
A P.N. 96
29.If M is a closed linear subspace of a Hilbert space H. then show that $H=M+M^{1}$
A P.N. 97
30.If $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space H and if x is any vector in H , then show that the set $S=\left\{e_{i}:\left(x, e_{i}\right) \neq 0\right\}$ is either empty or countable.
A P.N. 100
31. Show that an orthonormal set S in a Hilbert space H is complete iff $x \perp S \Rightarrow x=0 \forall x \in H$.

A P.N. 104
32.Show that in the Hilbert space $l_{2}{ }^{n}$, the set $\left\{e_{1}, e_{2}, \ldots . e_{n}, \ldots \ldots\right\}$, where e_{n} is a sequence with 1 in the $n^{\text {th }}$ place and 0 's elsewhere is a complete orthonormal set.

A P.N. 104
33.If an operator T on H is self-adjoint, then show that $\left(T_{x}, y\right)=\left(y, T_{y}\right) \forall \mathrm{x}, \mathrm{y} \in \mathrm{H}$ and conversely.

A P.N. 121
34.If T be a self-adjoint operator, then show that $T+T^{*}$ and $T^{*} T$ are selfadjoint.
A P.N. 122
35.If T is an arbitrary operator on Hilbert space H , then prove that $\mathrm{T}=0$ iff $\left(T_{x}, y\right)=0 \forall x, y \in H$.
A P.N. 122
36. Show that an operator T on a complex Hilbert space H is self=adjoint iff $\left(T_{x}, x\right)$ is real for all x .

A P.N. 123
37.Let A be the set of all self-adjoint operators in $\beta(H)$, then show that A is a closed linear subspace of $\beta(H)$ and therefore A is a real Banach space containing the identity transformation.

A P.N. 124
38.Write the conditions so that :
(a) The identity operator I and the zero operator 0 are positive operators.
(b) For any arbitrary operators T on $\mathrm{H}, T T^{*}$ and $T^{*} T$ are positive operators.
A P.N. 125
39. Prove that an operator T on a Hilbert space H is normal iff $\left\|T^{*} x\right\|=\left\|T_{x}\right\| \quad \forall x \in H$

A P.N. 126
40. If T is a Normal Operator on H , then prove that $\left\|T^{2}\right\|=\|T\|^{2}$

A126
41. If T is an operator on a Hilbert space H , then show that T is normal iff its real and imaginary parts commute.

A P.N. 128
42. If P is a projection on a Hilbert space H , then prove that :
(a) $\left\|P_{x}\right\| \leq\|x\| \quad \forall x \in H$
(b) $\|P\| \leq I$

A P.N. 138
43. If P is a projection on a Hilbert space H , then prove that:
(a) P is a positive operator.
(b) $0 \leq P \leq I$

A P.N. 138
44. Show that a closd linear subspace M of a Hilbert space H is invariant under an operator $T \Leftrightarrow M^{\perp}$ is invariant under T^{*}

A P.N. 139
45. Show that a closed linear subspace M of a Hilbert space H reduces an operator $T \Leftrightarrow M$ is invariant under both T and T^{*}

A P.N. 139
46. If P and Q are projections on closed linear subspace M and N of a Hilbert space H , the prove that $M \perp N \Leftrightarrow P Q=0 \Leftrightarrow Q P=0$

A P.N. 140
47. If x is an eigenvector of T corresponding to eigenvalue λ, and α is a nonzero scalar, then prove that α is also an eigenvector of T corresponding to same eigenvalue.
A P.N. 141
48. If x is an eigenvector of T , then show that x cannot corresponding more than one eigenvalue of T.

A P.N. 141
49. If T is a normal operator on a Hilbert space H, then prove that x is an eigenvector of T with eigenvalue λ iff x is an eigenvector of T^{*} with $\bar{\lambda}$ as eigenvalue.

A P.N. 142
50. If T is a normal operator on a Hilbert space H then prove that each eigenspace of T reduces T .

A P.N. 143
51. If T is normal operator on a Hilbert space H , then prove that eigenspaces of T are pairwise orthogonal.

A P.N. 143
52. Prove that an operator T on a finite-dimensional Hilbert space H is singular \Leftrightarrow there exists a non-zero vector x in H s.t. $T_{x}=0$

A P.N. 144
53. If T is an arbitrary operator on a finite dimentional Hilbert space H , then prove that the eigenvalues of T constitute a non empty finite subset of the complex plane. Furthermore, the number of points in this does not exceed the dimension n of the space H.

A P.N. 144
54. Let X and y be any two Banach spaces over the same field K, then show the set of all functions tangential to a function f at $\mathrm{v} \in V$, there is at most one function $\phi(x)=f(v)+g(x-v)$, where $g: x \rightarrow y$ is linear, where V is an non-empty open subset of X .
A P.N. 152
55. Let X and Y be Banach spaces and V be the non-empty open subset of X. If $f: V \rightarrow Y$ and $\mathrm{g}: V \rightarrow Y$ be differentiable in V and be any scalar in K , then show that the function $(f+g): V \rightarrow Y$ and $\alpha f: V \rightarrow Y$ defined by $a f(x)=a f(x),(f+g)(x)=f(x 0+g(x)$ are differentiable in V and for all $v \rightarrow V, D(a f)(v)=a D F(v), D(f+g)(v)=D f(v)+D g(v)$

A P.N. 153
56. If X and Y be Banach spaces over the same field K of scalars and V be an open subset of X. Let $f: V \rightarrow Y$ is differentiable at $x \in V$, then show that all the directional derivatives of f exists at x and $D_{v} f(x)=D f(x) \cdot v$, where $v \in V$ is a unit vector.

A P.N. 157
57. Let X be banach space over the field K of scalars and V be an open subset of X . If $f: V \rightarrow R$ be a function. Let u and v be any two distinct points in V s.t. $[u, v] \subset V$ and f is differentiable at all points of $[\mathrm{u}, \mathrm{v}$], then show that

$$
f(v)-f(u)=D f(u+t(v-u)) \cdot(v-u) \quad \text { where } t \in(0,1)
$$

A P.N. 161
58. Let X and Y be any two Banach spaces over the same field K of scalars and V be an open subset of X . Let $f: V \rightarrow Y$ be a continuous function and let u and v be any two distinct points in V s.t. $[u, v] \subset V$ and f is differentiable in [u,v]. If $g: X \rightarrow Y$ be any continuous linear function, then show that $\|f(v)-f(u)-g(v-u)\| \leq C\|v-u\|$

A P.N. 162
59. How that C^{n} map is continuous

A P.N. 168
60.Let X and Y be Banach spaces over the same field k of scalars and V be an open subset of X. If $f: V \rightarrow Y$ be an n-times differentiable function on V , then prove for each permutation p of n and each point $\left(x_{1}, x_{2}, \ldots x_{n}\right) \in x^{n}$ and each $v \in V$,
$D^{n} f(v)\left(x_{p(1)}, x_{p(2)}, \ldots x_{p(n)}\right)=D^{n} f(v)\left(x_{1}, x_{2}, \ldots x_{n}\right)$
A P.N. 171
61. Let X be a Banach space over the field k of scalars, and let I be an open interval in R containing [0,1]. If $\Psi: I \rightarrow X$ is ($\mathrm{n}+1$) times continuously differentiable function of a single variable $t \in I$ then show that

$$
\Psi(1)=\Psi(0)+\Psi^{1}(0)+\frac{\Psi^{n}(0)}{2!} \ldots .+\frac{\Psi^{n}(0)}{n!}+\int_{0}^{1} \frac{(1-t)^{n}}{n!} \Psi_{(t)}^{n+1} d t .
$$

A P.N. 173
62. Let $[\mathrm{a}, \mathrm{b}]$ be a compact interval of R and let X be a Banach space over k, then prove that the set $S([a, b], X)$ of all step functions on $[\mathrm{a}, \mathrm{b}]$ into X is a vector subspace of the bnach space $B([a, b], X)$ into X.

A P.N. 185
63. Let f be a regulated function on a compact interval $[\mathrm{a}, \mathrm{b}]$ of R into a Banach space X over k , and c be any point of $[\mathrm{a}, \mathrm{b}]$, then show that the restriction of f to $[\mathrm{a}, \mathrm{c}]$ \{respectively $[\mathrm{c}, \mathrm{b}]$) is a regulated function on $[\mathrm{a}, \mathrm{c}]$ (respectively [c, b]) into X and $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$ is.

A P.N. 188
64. Let f be a regulated function on a compact interval $[\mathrm{a}, \mathrm{b}]$ of R into a Banach space X , then show that each $t \in(a, b)$, the function $F:[a, b] \rightarrow X, F(t)=$ $\int_{a}^{t} f, t \in[a, b]$ is continuous.

A P.N. 189
65. Let f be a continuous function on a compact interval $[\mathrm{a}, \mathrm{b}]$ of R into a Banach space X over K. Let F be he function $t \rightarrow \int_{a}^{t} f$ on $[a, b]$ into X .

Let g be any differentiable function on $[\mathrm{a}, \mathrm{b}]$ into X s.y. $\mathrm{Dg}=\mathrm{f}$, then prove that F is differentiable, $\mathrm{DF}=\mathrm{f}$ and

$$
\int_{a}^{b} f+F(b)-F(a)=g(b)-g(a)
$$

A P.N. 190
66. Let f be a C^{1} map on a compact interval [a, b] into a compact interval $[\mathrm{c}, \mathrm{d}]$ of R and let g be a continuous function on [$\mathrm{c}, \mathrm{d}]$ into a Banach space x over k , then prove that $\int_{a}^{b}\left(D f(s) g(f(s)) d s=\int_{f(a)}^{f(b)} g(t) d t\right.$
A P.N. 190
67. Let f be a regulated function on a compact interval $[\mathrm{a}, \mathrm{b}]$ of R into R s.t. $\mathrm{a}<$ b and for all t in $[\mathrm{a}, \mathrm{b}], f(t) \geq 0$, then show $\int_{a}^{b} f(t) d t \geq 0$. If f is continuous at a point c of $[\mathrm{a}, \mathrm{b}]$ and $f(c)>0$ then also show $\int_{a}^{b} f(t) d t>$ 0

A P.N. 192
68. Let f be a continuous function on a compact interval $[\mathrm{a}, \mathrm{b}]$ of R nto the topogical dual X^{*} of a Banach space X over R s.t. $\mathrm{a}<\mathrm{b}$ and for each C^{1} map g on $[\mathrm{a}, \mathrm{b}]$ into X with $g(a)=g(b)=0$ for each $t \in[a, b]$

A P.N. 193
69. Let I be an open integral of R, let W be an open subset of a Banach space X over K let $\left(t_{0}, x_{0}\right)$ be point of $I \times W$ and Let g be a continuous map of $I \times W$ into X , then prove that a continuous map $h: I \rightarrow W$ is an integral solution for g at $\left(t_{0}, x_{0}\right)$ iff for each $t \in I$.
$h(t)=x_{0}+\int_{t_{0}}^{t} g(s, h(s)) d s$
A P.N. 197
70. Let u be a non-negative continuous function on an interval $\{0, \mathrm{c}\},(\mathrm{C}>0)$ satisfying the inequality $u(t) \leq a t+k \int_{u}^{t} u(s) d s$ for all $t \in[o, c]$. Then show that $u(t) \leq \frac{a}{k}\left(e^{k k}-1\right)$ for $t \in[0, c]$

A P.N. 198
71. Write the statement and proof of the Global uniqueness theorem.

A P.N. 202
72. Write maximal integral solution for g at $\left(t_{0}, x_{0}\right)$

A P.N. 205

