Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Final)
 Paper Code:MT-06 Analysis and Advanced Calculus
 Section - A
 (Very Short Answers Questions)

1. Define Vector spaces.

A P.N. 1, Point 1.2.
2. Write the condition on which the function $\|$.$\| a semi-norm.$

A P.N. 2, Article 1.3.1
3. Give an example of normal linear space.

A P.N.2, Above the Article 1.3.2
4. Define convergence of normal linear space ($\mathrm{N},\|$.$\|)$

A P.N. 2, Article 1.3.2
5. Define continuity of a function in terms of normal linear space.

A P.N.3, Article 1.3.4
6. Define Banach space.

A P.N.3, Article 1.3.4
7. Define function space.

A P.N.3, Article 1.3.4
8. Define n-Dimensional Euclidean space.

A P.N.3, Article 1.3.4
9. Define Euclidean norm.

A P.N.4, above Article 1.4
10.Define n-Dimensional unitary space.

A P.N.4, Article 1.4
11.Define linear operator or transformation.

A P.N.24, Article 2.2
12.Define bounded linear operator.

A P.N.25, Article 2.2
13.Define continuity of transformation.

A P.N.25, Article 2.2
14.Define functional and conjugate space.

A P.N.25, Article 2.2
15.Define weak convergence of a sequence.

A P.N.37, Article 2.4
16.Define sequentially compact normed linear space.

A P.N.40, Article 2.6.1
17.Define Multilinear mappings.

A P.N.45, Article 3.2
18. Define product space of normal linear space.

A P.N.45,46, Article 3.2
19.Define open mapping theorem.

A P.N.47, Article 3.3
20.Define closed graph theorem.

A P.N.53, Article 3.4
21.Define closed linear transformation.

A P.N.54, Article 3.4
22.Define first dual space of N .

A P.N.61, Article 4.2
23.Define Hahn-Banach Theorem.

A P.N.62, Article 4.3
24.Define the second dual space of N .

A P.N.71, Article 4.4
25.Define natural embedding.

A P.N.71, Article 4.4
26.Define the induced functional.

A P.N.71, Article 4.4
27.Define the inner product spaces.

A P.N.75, Article 5.3
28.Define a complex inner product space and real inner product space.

A P.N.75, Article 5.3
29.Define Hilbert space.

A P.N.79, Article 5.4
30. Write the parallelogram law for the Hilbert space H.

A P.N.81, (Th.4)
31. Write the polarization identity for the Hilbert space H.

A P.N.81, (Th.5)
32.Define orthogonality for the Hilbert space H.

A P.N.92, Article 6.3
33.Define orthogonal complement for the Hilbert space H.

A P.N.92, Article 6.3
34.Define unit vector for Hilbert space H.

A P.N.98, Article 6.5
35. Write the conditions for which a non empty subset $\left\{e_{i}\right\}$ of the Hilbert space becomes orthonormal.
A P.N.98, Article 6.5
36. Write Bessel's inequality for finite orthonormal sets.

A P.N.100, Top of the page
37.Define complete orthonormal sets for Hilbert space H.

A P.N.104, Article 6.7 Def. 1
38.Define Fourier expansion of x .

A P.N.104, Article 6.7 Def. 3
39.Define Fourier coefficient sets for Hilbert space H.

A P.N.104, Article 6.7 Def. 3
40.Write the Parseval's identity.

A P.N.104, Article 6.7 Def. 4
41.Define continuous linear functional for Hilbert space H.

A P.N.116, Article 7.3
42. Define adjoint operator on H .

A P.N.116, Article 7.3
43. Define self-adjoint operator on H .

A P.N.121, Article 7.4
44.Define positive operators.

A P.N.124, Article 7.5
45.Define Normal operators on H .

A P.N.125, Article 7.6
46.Define unitary operators on H

A P.N.129, Article 7.7, Def. 1
47. Write the condition on which an operator T on H becomes Isometric.

A P.N.129, Article 7.7 Def. 2
48.Define the Perpendicular projection on H .

A P.N.135, Article 8.3.1
49. Define invariance and reducibility for linear operator T in H .

A P.N.138, Article 8.4.1
50.Define the orthogonal projection for H .

A P.N.140, Article 8.5
51.Define the Eigenvalue and Eigenvectors for Hilbert space H.

A P.N.141, Article 8.6
52.Define the existence of Eigenvalues.

A P.N.143, Article 8.7
53. Define the spectral resolution for normal operator T on H .

A P.N.148, Eq. 14, 15
54.Define when two functions F_{1} and F_{2} are tangential to each other at a point.

A P.N.151, Article 9.2

55. Write the equivalence relation if F_{1}, F_{2} are tangential at V and F_{2}, F_{3} are the also tangential at V .
A P.N.152, Top of the page.
56.Define the derivative of a map.

A P.N.152,
57.Define when the derivative of the constant function $f: V \rightarrow Y$ is zero linear map.
A P.N.153, Example 1
58.Define homeomorphism for Banach space X and Y .

A P.N.156, Top of the page.
59.Define Directional derivative.

A P.N.157, Article 9.3
60. Write any two properties of Higher derivatives.

A P.N. 168
61.Define C'-Maps.

A P.N.164, Article 10.2
62.Define integral of a given function f.

A P.N.183, Article 11.1
63.Define the subdivision of the real line.

A P.N.183, Article 11.2
64.Define integral of a step function.

A P.N.184, Article 11.3
65.Define integral of a step function.

A P.N.184, Article 11.4
66.Define Regulated function in [a, b] into X.

A P.N.186, Article 11.5
67.Write any two properties of two regulated functions f and g on $[a, b]$ in X and any scolar $\alpha \in K$.
A P.N.188, Top of the page.
68.Define the differential equation for a continuous map of $\mathrm{I} \times \mathrm{U}$ into X .

A P.N. 197
69.Define integral solution of the differential equation $\frac{d x}{d t}=g\left(t_{1} x\right)$

A P.N. 197
70.Define the local flow for a continuous map gat $\left(t_{0}, x_{0}\right)$

A P.N. 197
71.Define Lipschitz's property.

A P.N.198, Article 12.4
72.Define Locally Lipschitz.

A P.N.202, Article 12.5

