Program: M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Question Bank-2015 Paper Code:MT-04

Section-A

1) De	fina cnaca curvas	MT-04 (p.2)
 Define space curves. Give the definition of hinormal 		MT-04 (p.25)
2) Give the definition of binormal.3) Define singular points		`I /
3) Define singular points.		MT-04 (p.74)
4) Define envelope.		MT-04 (p.81)
5) What is the condition for parametric transformation $u^* = u(u, v)$, $v^* = v(u, v)$ to be		
proper?		MT-04 (p.107)
6) Define plane section of a surface?		MT-04 (p.134)
7) Define principal sections of a surface?		MT-
04	(p.148)	
8) Define conjugate directions at a given point (u,v) on a surface $\vec{r} = \vec{r}(u,v)$.		
		MT-04 (p.178)
9) Write unit tangent vector of a curve.		(p.3)
10) Define normal plane.		(p.27)
11) Define conoids.		(p.71)
12) Define edge of regression.		(p.81)
13) Define metric of a surface.		(p.106)
14) Define direction coefficients.		(p.122)
15) Define principal directions.		(p.148)
16)	Define kronecker delta.	(p.257)
17)	17) What do you understand by covariant derivative of contravariant vector?	
,		(P.298)
18)	Define metric tensor and Riemannian space.	(p.277)
19)	What is invariant?	(p.261)
20)	Write Gauss's characteristic equations.	u ,
,	(p.242)	
21)	State clairut's theorem.	
,	(p.213)	
22)	Define asymptotic lines.	(p.183)
23)	Define principal radius of curvature.	(P.105)
2 3)	(p.148)	
	(p.1 10)	

(p.122)

What are orthogonal trajectories?

SECTION-B

- Find the lines that have four point contact at (0,0,1) with the surface $x^4+3xyz+x^2-y^2-z^2+2yz-3xy-2y+2z=1$ MT- 04 (p.11)
- 25) Prove that the tangent to the locus of the centre of curvature lies in the normal plane of the original curve and is inclined to \hat{n} at an angle $\tan^{-1}(\frac{\rho\tau}{\rho_1})$.

(p.46)

- 26) Find the equation to the right conoid generated by lines which meet 0Z, are parallel to the plane X0Y and intersect the circle x=a, $y^2+z^2=r^2$. (p.72)
- 27) Show that a ruled surface generated by $x=az+\alpha$, $y=bz+\beta$ is developable or skew if $\alpha'b'-\beta'\alpha'=0$ or $\neq 0$ respectively. (p.97)
- 28) Prove that for the curve x=rcos θ , $y = rsin \theta$, z = 0 , $ds^2 = dr^2 + r^2 d\theta^2$. (p.111)
- 29) If a sphere is described with ρ_n as diameter then all centres of curvature lie on this sphere, provided unit tangent vector \hat{t} is the same.
- 30) If $\emptyset = a_{ij}A^iA^j$, then prove that we can always write $\emptyset = b_{ij}A^iA^j$ where b_{ij} is symmetric. (p.268)
- 31) Prove the following:
 - i. R_{rijk} is symmetric in two pairs (first and last) of indices i.e. $R_{rijk} = R_{jkri}$
 - ii. R_{rijk} has cyclic property in last three indices i.e. $R_{rijk} + R_{riki} + R_{rkij} = 0$
 - 32) Find the equation to the tangent at the point θ on the circular helix $x=a\cos\theta$, $y=a\sin\theta$, $z=c\theta$. (p.7)
 - 33)Principal normal to c is normal to c_1 at the points where curvature is stationary. (p.48)
 - 34) Find and classify the singular points of the surface : $xyz-a^2(x+y+z)+2a^3=0$ (p.74)
 - 35)Prove that the generators of a developable surface are tangents to the curve. (p.101)
 - 36)Prove that the equation $Edu^2 Gdv^2 = 0$ denote the curves bisecting the angles between the parametric curves u=constant, v=constant on a surface $\vec{r} = \vec{r}(u, v)$. (p.126)
 - 37)Prove that in general three lines of curvature pass through an umbilic. (p.170)
 - 38) If a_{ij} is a symmetric covariant tensor and b_i a covariant vector which satisfy the relation a_{ij} $b_k + a_{jk}$ $b_i + a_{ki}$ $b_j = 0$, prove that either $a_{ij} = 0$ or $b_i = 0$. (p.268)

39)Prove that

(i)
$$\operatorname{div} \operatorname{grad} I = \nabla^2 I = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^r} \left\{ \sqrt{g} g^{rk} I_{,k} \right\}$$

(ii).
$$\operatorname{div} \operatorname{grad} I = \nabla^2 I = g^{jk} \left[\frac{\partial^2 I}{\partial x^j \partial x^k} - \frac{\partial I}{\partial x^r} \begin{Bmatrix} r \\ jk \end{Bmatrix} \right]$$

Section-C

- 40) Show that when the curve is analytic, there exists a definite osculating plane at a point of inflexion, provided the curve is not a straight line. (p.16)
- 41) Find the inflexional tangent at (x_1,y_1, z_1) on the surface $y^2 z = 4ax$. (p.73)
- 42) Derive a formula for metric of a surface. (p.110)
- 43) Determine the radius of curvature of a given section through any point of a surface, z=f(x, y). (p.165)
 - For the curve x=3t, $y=3t^2$, $z=2t^3$, show that any plane meets it in three points and deduce the equation to the osculating plane at t=ti. (p.18)
 - Prove that the product of the torsion of c_1 at corresponding points is equal to the product of curvatures at these points. (p.51)
 - Prove that the z-axis is a nodal line with unodes at the points (0,0,-2) and (0,0,2) for the surface $2xy+x^3-3x^2y-3xy^2+y^3+z(x^2-xy+y^2)=0$

(P.75)

- Examine whether the surface $z=y \sin x$ is developable. (p.105)
- Examine whether the parametric curves x=b sin u cos v, y=b sin u sin v, z=b cos u on a sphere of radius b constitute an orthogonal system.
- 49) Find the asymptotic lines on the surface $z=y \sin x$. (p.187)
- 50) If $u_{ij} \neq 0$ are the components of a tensor of the type (0,2) and if the equation $f u_{ij} + g u_{ji} = 0$ holds, then prove that either f = g and u_{ij} is skew symmetric or f = -g and u_{ij} is symmetric. (p.269)
- Show that the covariant differentiation of invariants is commutative i.e. $(I_{,i})_{,j} = (I_{,j})_{,i}$
- Show that the necessary and sufficient condition that a given curve be a plane curve is that $\tau = 0$ at all the points of the curve or in other words $[\overrightarrow{r'}\overrightarrow{r''}\overrightarrow{r'''}] = 0$. (p.35)
- Find the envelope of the family of planes $F(x, y, z, \theta, \emptyset) = \frac{x}{a} \cos\theta \sin\theta + \frac{y}{b} \sin\theta \sin\theta + \frac{z}{c} \cos\theta 1 = 0.$ (p.86)

- Show that the curves du^2 - $(u^2+c^2) dv^2=0$ form an orthogonal system on the right helicoids $\vec{r}=(u\cos v, u\sin v, cv)$. (p.133)
- 55) "The geodesic curvature vector of any curve is orthogonal to the curve." prove it. (p.218)
- Show that the curvature and torsion of either associate Bertrand curves are connected by a linear relation. (p.61)
- 57) Prove that the indicatrix at a point of the surface z=f(x,y) is a rectangular hyperbola if $(1+p^2)t+(1+q^2)r-2pqs=0$ (p.76)
- 58) Determine fundamental magnitude of Monge's form surface. (p.121)
 - 59) Prove the necessary and sufficient condition for the parametric curves through a point to have conjugate directions is M=0.

(Section-C)

- 60)Show that the curvature and torsion of either associate Bertrand curves are connected by a linear relation. (p.61
 - Prove that the indicatrix at a point of the surface z=f(x,y) is a rectangular hyperbola if $(1+p^2)t+(1+q^2)r-2pqs=0$ (p.76)
- 62) Determine fundamental magnitude of Monge's form surface. (p.121)
- 63)Prove the necessary and sufficient condition for the parametric curves through a point to have conjugate directions is M=0. (p.181)
 - Show that the necessary and sufficient condition that a given curve be a plane curve is that $\tau = 0$ at all the points of the curve or in other words $[\overrightarrow{r'}\overrightarrow{r''}\overrightarrow{r'''}] = 0.$ (p.35)
 - Find the envelope of the family of planes $F(x, y, z, \theta, \emptyset) = \frac{x}{a} \cos\theta \sin\emptyset + \frac{y}{b} \sin\theta \sin\theta + \frac{z}{c} \cos\theta 1 = 0.$ (p.86)
 - Show that the curves du^2 - $(u^2+c^2) dv^2=0$ form an orthogonal system on the right helicoids \vec{r} = $(u \cos v, u \sin v, c v)$. (p.133)
 - 67) "The geodesic curvature vector of any curve is orthogonal to the curve." prove it. (p.218)