Program : M.A./M.Sc. (Mathematics)

M.A./M.Sc. (Previous)

Paper Code:MT-04

Differential Geometry & Tensors

Section - C

(Long Answers Questions)

- 1. Prove that if the circle lx + my + n = 0, $x^2 + y^2 + z^2 = 2cz$ has three point contact at the origin with the paraboloid $ax^2 + by^2 = 2z$ then $C = (l^2 + m^2)(bl^2 + am^2)$
- A M.T. -04, Pg. 10
- 2. Find the inflexional tangents at (x, y, z) on the surface $y^2z = 4\alpha x$
- A M.T. -04, Pg. 12
- 3. Find the osculating plane at a point of a space curve given by the intersection of two surfaces.
- A M.T. -04, Pg. 17
- 4. Find the osculating plane at the point 't' on the helix $x = a \cos t$, $y = a \sin f$, z = ct
- A M.T. -04, Pg. 19
- 5. Prove that the osculating plane at (x_1, y_1, z_1) on the curve of intersection of the cylinders in $x^2 + y^2 + z^2 = a^2$, $y^2 + z^2 = b^2$ is given by : $\frac{xx_1^3 zz_1^3 a^4}{a^2} = \frac{yy_1^3 zz_1^3 b^4}{b^2}$
- A M.T. -04, Pg. 19
- 6. State and prove serrect-frenet formulae.
- A M.T. -04, Pg. 32
- 7. Prove that:

(i)
$$k = \frac{\left| \overrightarrow{r} \times \overrightarrow{r} \right|}{|\overrightarrow{r}|^3}$$

(ii)
$$\tau = \frac{\left| \overrightarrow{r'} \ \overrightarrow{r''} \ \overrightarrow{r'''} \right|^2}{\left| \overrightarrow{r'} \times \overrightarrow{r'''} \right|^2}$$

- A M.T. -04, Pg. 37
- 8. For the curve x = 3u, $y = 3u^2$, $z = 2u^2$ then prove that :

$$\delta = -\sigma = \frac{3}{2} (1 + 2u^2)^2$$

- A M.T. -04, Pg. 38
- 9. For the curve $x = a(3u u^3)$, $y = 3au^2$, $z = a(3u + u^3)$. Show that the curvature and torsion are equal.
- A M.T. -04, Pg. 39
- 10. Find the radii of curvature and torsion of the halix $x = a \cos \theta$, $y = a \sin \nu$, $z = a\nu \tan \alpha$
- A M.T. -04, Pg. 41
- 11. Find the radii of curvature and torsion at a point of the curve $x^2 + y^2 = a^2$, $x^2 y^2 = az$
- A M.T. -04, Pg. 42
- 12. If the curvature K if a curve C is constant, then the curvature k_1 of c_1 is also constant and If torsion τ_1 varies inversely as τ of the curve c.
- A M.T. -04, Pg. 47
- 13. Prove that $\widehat{t_1}$, $\widehat{n_1}$, $\widehat{b_1}$ of c_1 are parallel respectively to \widehat{b} , \widehat{n} , \widehat{t} of c.
- A M.T. -04, Pg. 50
- 14. If a curve lies on a sphere show that δ and σ are related by $\frac{d}{ds} (\sigma \delta^1) + \frac{\delta}{\sigma} = 0$ Show that a necessary and sufficient condition that a cirve lies on a sphere is that $\frac{\delta}{\sigma} + \frac{d}{ds} \left(\frac{\delta^1}{\tau} \right) = 0$
- A M.T. -04, Pg. 52
- 15. State and prove uniquennces theorem for space curves.
- A M.T. -04, Pg. 59
- 16. Find the followings:
 - (i) Curvature of the involutes.
 - (ii) Torsion of the involutes
- A M.T. -04, Pg. 64
- 17. Find the formulae for curvature of the evolute.
- A M.T. -04, Pg. 67
- 18. State and prove Existence theorem for space curves.
- A M.T. -04, Pg. 57
- 19. Prove that Each characteristic touch the edge of regression.
- A M.T. -04, Pg. 83

- 20. Suppose that a tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ meetsthe coordinate axes in points P, Q, R. Prove that the envelope of the sphere OPQR is $(ax)^{2/3} + (by)^{2/3} + (CZ)^{2/3} = (x^2 + y^2 + z^2)^{2/3}$ Where 0 is the origin.
- A M.T. -04, Pg. 85
- 21. Find the equation of the developable surface whose generating line posses through the curve $y^2 = 4ax$, z = 0, $x^2 = 4ay$, z = c and show that ots edge of regression is given by $(x^2 2ay^2 = 0, cy^2 3ax (c z))$
- A M.T. -04, Pg. 87
- 22. Find the developable surface which passes through the curves $x^2 = 4ax$, z = 0 and $y^2 = 4bz$, x = 0
- A M.T. -04, Pg. 90
- 23. Show that the edge of regression of the developable that passes through the parabolas x = 0, $z^2 = 4ay$, $y^2 = 4az$, x = a is given by:

$$\frac{3x}{y} = \frac{y}{z} = \frac{z}{3(a-x)}$$

- A M.T. -04, Pg. 42
- 24. Find the necessary and sufficient condition that a surface $\zeta = F(\xi, \eta)$ should represent a developable surface.
- A M.T. -04, Pg. 104
- 25. Prove that the metric of a surface is invariant under parametric transformation.
- A M.T. -04, Pg. 112
- 26. State and prove second fundamental theorem.
- A M.T. -04, Pg. 115
- 27. Find the fundamental magnitude for Anchor ring (B) conodial surface.
- A M.T. -04, Pg. 119
- 28. Find the angle between two tangential direction on the surface in the terms of direction ratio.
- A M.T. -04, Pg. 124
- 29. Derive the formulae for curvature of normal section.
- A M.T. -04, Pg. 135
- 30. Find the curvature of a normal section of the right helicoids $x = 4\cos\phi$, $y = u\sin\phi$, $z = c\phi$
- A M.T. -04, Pg. 144

- 31. Find the equation giving principal directions at a point of surface and to derive the differential equation of the principal section.
- A M.T. -04, Pg. 148
- 32. Find the equations of principal curvature at a point A(u,v) of the surface $\vec{r} = \vec{r} (u, v)$
- A M.T. -04, Pg. 152
- 33. Prove that for an umbilic:

$$\frac{1+P^2}{r} = \frac{Pq}{S} = \frac{1+q^2}{t} = \frac{P}{H}$$

- A M.T. -04, Pg. 155
- 34. Find the principal section and principal curvature of the surface x = a(u + v), y = b(u v), z = uv
- A M.T. -04, Pg. 156
- 35. For the huperboloid $2z = 7x^2 + 6xy y^2$ prove that the principal radii at the origin are $\frac{1}{3}$ and $-\frac{1}{2}$ and that the principal section are x = 3y, 3x = -y
- A M.T. -04, Pg. 159
- 36. Show that the point of intersection of the surface $x^m + y^m + z^m = a^m$ line x = y = z are umbilici and that the radius of curvature at an umbilic is given by $\delta = \frac{a}{m-1} \cdot \delta^{(m-1)/2m}$
- A M.T. -04, Pg. 160
- 37. Prove that the cone $kny = z \{(x^2 + z^2)^{1/2}(y^2 + z^2)^{1/2}\}$ passes through a line of curvature of the paraboloid xy = az
- A M.T. -04, Pg. 169
- 38. To show that to a given direction there is one and only one conjugate direction. Also derive the condition for the two directions (du, dv) and (Du, Dv) to be conjugate.
- A M.T. -04, Pg. 178
- 39. Derive the principal radii through a point of surface z = f(x, y)
- A M.T. -04, Pg. 175
- 40. To show that conjugate direction at a appoint P on a surface are parallel to conjugate diameters of the indicalrix at P.
- A M.T. -04, Pg. 182
- 41. State and prove beltran's-Enneper theorem.
- A M.T. -04, Pg. 192

- 42. Define the general differential equations of geodesics on a surface $\vec{r} = \vec{r} (u, v)$
- A M.T. -04, Pg. 200
- 43. Derive the canonical equations of a geodesics on the surface $\vec{r} = \vec{r} (u, v)$
- A M.T. -04, Pg. 202
- 44. Prove that on a general surface, a necessary and sufficient condition that the curve v = c (*Const.*) be a geodesic is $EF_2 + FE_1 = 2EF_1 = 0$, when v = c for all values of u.
- A M.T. -04, Pg. 206
- 45. Derive the differential equation of a geodesics on the surface F(x, y, z) = 0
- A M.T. -04, Pg. 210
- 46. State and prove Claprut's theorem.
- A M.T. -04, Pg. 213
- 47. If parameters S are lengths, then show that geodesic curvature $Kg = [\widehat{N} \cdot \overrightarrow{r} \overrightarrow{r}]$ and if we replace parameter s by t then show that:

$$Kg = \frac{1}{HS^3} \left\{ \frac{\partial T}{\partial u} V(t) - \frac{\partial T}{\partial u} U(t) \right\}$$

- A M.T. -04, Pg. 219
- 48. Express the Torsion of a geodesic in the terms of fundamental magnitude and also in the terms of principal curvature.
- A M.T. -04, Pg. 226
- 49. State and prove Gauss bonnet theorem.
- A M.T. -04, Pg. 228
- 50. A geodesic on the ellipsoid of revolution $\frac{x^2+y^2}{a^2} + \frac{z^2}{c^2} = \bot$, crosses a meridian at an angle θ at a distance u from the axis prove that at the point of crossing it makes an angle $\cos^{-1}\left(\frac{cu\cos\theta}{\sqrt{(a^4-u^2(a^2-c^2))}}\right)$ with the axis.
- A M.T. -04, Pg. 231
- 51. Prove that at the origin the geodesic curvature of the sections of the surface $2z = aa^2 + by^2$ by the plane $\ln + my + nz = 0$ is $n(be^2 + am^2)/(l^2 + m^2)^{3/2}$
- A M.T. -04, Pg. 235
- 52. State and prove Mapnari Codazzi equation.
- A M.T. -04, Pg. 244

53. For a surface given by $ds^2 = \phi (du^2 + dv^2)$ prove that:

$$l=rac{\phi_1}{2\phi}$$
, $m=rac{\phi_2}{2\phi}$, $n=rac{\phi_1}{2\phi}$, $\lambda=rac{\phi_2}{2\phi}$, $\mu=rac{\phi_1}{2\phi}$, $\nu=rac{\phi_2}{2\phi}$

And further show that mainradii-codazzi relation become:

$$L_2 - M_1 = \frac{1}{2} \frac{\phi_2}{\phi} (L + N), N_1 - M_2 = \frac{1}{2} \frac{\phi_1}{\phi} (L + N)$$

- A M.T. -04, Pg. 248
- 54. State and prove fundamental existence theorem for surfaces.
- A M.T. -04, Pg. 249
- 55. Prove that a entity whose inner product with an arbitrary tension is a tensor is itself a tensor.
- A M.T. -04, Pg. 269
- 56. The fundamental Tensor g_{ij} is a covariant symmetric tensor of the order
- A M.T. -04, Pg. 277
- 57. Show that the metric of a Euclidian space referred to cylindrical coordinates is given by: $ds^2 = (dr)^2 + (rdQ)^2 + (dz)^2$

$$ds^2 = (dr)^2 + (rdQ)^2 + (dz)^2$$

Determine its metric tensor and conjugate metric tensor.

- A M.T. -04, Pg. 280
- 58. Show that the metric of a Euclidean space, reffered to spherical coordinates is given by $ds^2 = (dr)^2 + (rdv)^2 + (v \sin v \, d\phi)^2$

Determine its metric tensor and conjugate metric tensor.

- A M.T. -04, Pg. 281
- 59. The entities defined by (permutation tensor):

$$\epsilon_{ijk} = \sqrt{g} e_{ijk} \; ; \; \epsilon^{ijk} = \frac{1}{\sqrt{g}} e_{ijk}$$

Are respectively covariant and contra variant tensor where e_{ijk} is a permutation symbol and g is the determinant of the metric tensor g_{ij}

- A M.T. -04, Pg. 284
- 60. Prove the following:

(i)
$$[ij,m] = g_{em} \begin{bmatrix} i \\ ij \end{bmatrix}$$

(ii)
$$\frac{\partial g_{ik}}{\partial x^j} = [ij, k] + [kh, i]$$

(iii)
$$\frac{\partial g^{mk}}{\partial x^{l}} = -g^{mi} \begin{Bmatrix} k \\ il \end{Bmatrix} - g^{ki} \begin{Bmatrix} m \\ il \end{Bmatrix}$$

- A M.T. -04, Pg. 286
- 61. Surface of sphere is a two dimensional Riemannian space. Complete the christoffel symbols.
- A M.T. -04, Pg. 290
- 62. Prove that the christoffal symbols are not tensor quantities.
- A M.T. -04, Pg. 293
- 63. State and prove Ricci's theorem
- A M.T. -04, Pg. 300
- 64. If A_{ij} is the curl of a covariant vector, prove that $A_{ij,k} + A_{jk,i} + A_{ki,j} = 0$ Show further that this expression is equivalent to L

$$\frac{\partial A_{ij}}{\partial x^k} + \frac{\partial A_{ik}}{\partial x^i} + \frac{\partial A_{ki}}{\partial x^j} = 0 \text{ if } A_{ij} = B_{i,j} = B_{j,i}$$

- Prove that : $A_{ij,k} + A_{jk,i} + A_{ki,j} = 0$
- A M.T. -04, Pg. 308
- 65. Evaluate $div A^j$ in (i) cylindrical polar coordination (ii) Spherical polar coordinates.
- A M.T. -04, Pg. 309
- 66. State and prove Eulers condition of calculus of variation.
- A M.T. -04, Pg. 315
- 67. Assume that we live in a space for which the live element is : $ds^2 = (dx')^2 + [(x')^2 + C^2](dx^2)^2$ which is the surface of a right heloid immeried in a Euclidian three dimensional space determine the differential equation of a geodesic.
- A M.T. -04, Pg. 319
- 68. Show that on the surface of a sphere, all great circles are geodesic while no other circle is a geodesic.
- A M.T. -04, Pg. 322
- 69. Prove that it is always possible to chose a coordinate system so that all the christofffel symbols vanish at a particular point P_0 .
- A M.T. -04, Pg. 323
- 70. Prove the following theorems:
 - (i) The magnitude of all vectors of a field of parallel vectors is constant.

- (ii) Prove that the geodesic is an auto parallel curve.
- A M.T. -04, Pg. 328,329
- 71. The necessary and sufficient condition for a vector B^i of variable magnitude to suffer a parallel displacement along a curve C that :

$$B_j^i \frac{dx^j}{ds} = B^i f(s)$$

- A M.T. -04, Pg. 329
- 72. The necessary and sufficient condition for a space V_N to be flat is that the Riemann-Christoffel tensor be Identically Zero i.e. $R_{.ijk}^{\alpha}=0$
- A M.T. -04, Pg. 343