Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous)
 Paper Code:MT-04
 Differential Geometry \& Tensors
 Section - C
 (Long Answers Questions)

1. Prove that if the circle $l x+m y+n=0, x^{2}+y^{2}+z^{2}=2 c z$ has three point contact at the origin with the paraboloid $a x^{2}+b y^{2}=2 z$ then $\mathrm{C}=$ $\left(l^{2}+m^{2}\right)\left(b l^{2}+a m^{2}\right)$
A M.T. -04, Pg. 10
2. Find the inflexional tangents at (x, y, z) on the surface $y^{2} z=4 a x$

A M.T. -04, Pg. 12
3. Find the osculating plane at a point of a space curve given by the intersection of two surfaces.

A M.T. -04, Pg. 17
4. Find the osculating plane at the point ' t ' on the helix $x=a \cos t, y=$ $a \sin f, z=c t$

A M.T. -04, Pg. 19
5. Prove that the osculating plane at $\left(x_{1}, y_{1}, z_{1}\right)$ on the curve of intersection of the cylinders in $x^{2}+y^{2}+z^{2}=a^{2}, y^{2}+z^{2}=b^{2}$ is given by:
$\frac{x x_{1}^{3}-z z_{1}^{3}-a^{4}}{a^{2}}=\frac{y y_{1}^{3}-z z_{1}^{3}-b^{4}}{b^{2}}$
A M.T. -04, Pg. 19
6. State and prove serrect-frenet formulae.

A M.T. -04, Pg. 32
7. Prove that:
(i) $\quad k=\frac{\left|\overrightarrow{r^{\prime}} \times \overrightarrow{r^{\prime}}\right|}{|\vec{r}|^{3}}$
(ii) $\tau=\frac{\left|\overrightarrow{r^{\prime}} \overline{r^{\prime \prime}} \overline{r^{\prime \prime \prime}}\right|}{\left|\overrightarrow{r^{\prime}} \times \overline{r^{\prime \prime}}\right|^{2}}$

A M.T. -04, Pg. 37
8. For the curve $x=3 u, y=3 u^{2}, z=2 u^{2}$ then prove that:

$$
\delta=-\sigma=\frac{3}{2}\left(1+2 u^{2}\right)^{2}
$$

A M.T. -04, Pg. 38
9. For the curve $x=a\left(3 u-u^{3}\right), y=3 a u^{2}, z=a\left(3 u+u^{3}\right)$. Show that the curvature and torsion are equal.

A M.T. -04, Pg. 39
10. Find the radii of curvature and torsion of the halix $x=a \cos \theta, y=$ $a \sin v, z=a z \tan \alpha$

A M.T. -04, Pg. 41
11. Find the radii of curvature and torsion at a point of the curve $x^{2}+y^{2}=$ $a^{2}, x^{2}-y^{2}=a z$
A M.T. -04, Pg. 42
12. If the curvature K if a curve C is constant, then the curvature k_{1} of c_{1} is also constant and If torsion τ_{1} varies inversely as τ of the curve c .
A M.T. -04, Pg. 47
13. Prove that $\widehat{t_{1}}, \widehat{n_{1}}, \widehat{b_{1}}$ of c_{1} are parallel respectively to $\hat{b}, \hat{n}, \hat{t}$ of c .

A M.T. -04, Pg. 50
14. If a curve lies on a sphere show that δ and σ are related by $\frac{d}{d s}\left(\sigma \delta^{1}\right)+$ $\frac{\delta}{\sigma}=0$ Show that a necessary and sufficient condition that a cirve lies ona sphere is that $\frac{\delta}{\sigma}+\frac{d}{d s}\left(\frac{\delta^{1}}{\tau}\right)=0$
A M.T. -04, Pg. 52
15. State and prove uniquennces theorem for space curves.

A M.T. -04, Pg. 59
16. Find the followings:
(i) Curvature of the involutes.
(ii) Torsion of the involutes

A M.T. -04, Pg. 64
17. Find the formulae for curvature of the evolute.

A M.T. -04, Pg. 67
18. State and prove Existence theorem for space curves.

A M.T. -04, Pg. 57
19. Prove that Each characteristic touch the edge of regression.

A M.T. -04, Pg. 83
20. Suppose that a tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meetsthe coordinate axes in points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$. Prove that the envelope of the sphere OPQR is $(a x)^{2 / 3}+(b y)^{2 / 3}+(C Z)^{2 / 3}=\left(x^{2}+y^{2}+z^{2}\right)^{2 / 3}$ Where 0 is the origin.
A M.T. -04, Pg. 85
21. Find the equation of the developable surface whose generating line posses through the curve $y^{2}=4 a x, z=0, x^{2}=4 a y, z=c$ and show that ots edge of regression is given by $\left(x^{2}-2 a y^{2}=0, c y^{2}-3 a x(c-z)\right.$
A M.T. -04, Pg. 87
22. Find the developable surface which passes through the curves $x^{2}=$ $4 a x, z=0$ and $y^{2}=4 b z, x=0$
A M.T. -04, Pg. 90
23. Show that the edge of regression of the developable that passes through the parabolas $x=0, z^{2}=4 a y, y^{2}=4 a z, x=a$ is given by :

$$
\frac{3 x}{y}=\frac{y}{z}=\frac{z}{3(a-x)}
$$

A M.T. -04, Pg. 42
24. Find the necessary and sufficient condition that a surface $\zeta=\mathrm{F}(\xi, \eta)$ should represent a developable surface.

A M.T. -04, Pg. 104
25. Prove that the metric of a surface is invariant under parametric transformation.

A M.T. -04, Pg. 112
26. State and prove second fundamental theorem.

A M.T. -04, Pg. 115
27. Find the fundamental magnitude for - Anchor ring (B) conodial surface.

A M.T. -04, Pg. 119
28. Find the angle between two tangential direction on the surface in the terms of direction ratio.

A M.T. -04, Pg. 124
29. Derive the formulae for curvature of normal section.

A M.T. -04, Pg. 135
30. Find the curvature of a normal section of the right helicoids $x=$ $4 \cos \phi, y=u \sin \phi, z=c \phi$
A M.T. -04, Pg. 144
31. Find the equation giving principal directions at a point of surface and to derive the differential equation of the principal section.
A M.T. -04, Pg. 148
32. Find the equations of principal curvature at a point $\mathrm{A}(\mathrm{u}, \mathrm{v})$ of the surface $\vec{r}=\vec{r}(u, v)$

A M.T. -04, Pg. 152
33. Prove that for an umbilic :

$$
\frac{1+P^{2}}{r}=\frac{P q}{S}=\frac{1+q^{2}}{t}=\frac{P}{H}
$$

A M.T. -04, Pg. 155
34. Find the principal section and principal curvature of the surface $x=$ $a(u+v), y=b(u-v), z=u v$
A M.T. -04, Pg. 156
35. For the huperboloid $2 z=7 x^{2}+6 x y-y^{2}$ prove that the principal radii at the origin are $\frac{1}{3}$ and $-\frac{1}{2}$ and that the principal section are $x=3 y, 3 x=-y$
A M.T. -04, Pg. 159
36. Show that the point of intersection of the surface $x^{m}+y^{m}+z^{m}=a^{m}$ line $\mathrm{x}=\mathrm{y}=\mathrm{z}$ are umbilici and that the radius of curvature at an umbilic is given by $\delta=\frac{a}{m-1} \cdot \delta^{(m-1) / 2 m}$
A M.T. -04, Pg. 160
37. Prove that the cone kny $=z\left\{\left(x^{2}+z^{2}\right)^{1 / 2}\left(y^{2}+z^{2}\right)^{1 / 2}\right\}$ passes through a line of curvature of the paraboloid $x y=a z$
A M.T. -04, Pg. 169
38. To show that to a given direction there is one and only one conjugate direction. Also derive the condition for the two directions (du, dv) and (Du, $\mathrm{Dv})$ to be conjugate.
A M.T. -04, Pg. 178
39. Derive the principal radii through a point of surface $z=f(x, y)$

A M.T. -04, Pg. 175
40. To show that conjugate direction at a appoint P on a surface are parallel to conjugate diameters of the indicalrix at P .
A M.T. -04, Pg. 182
41. State and prove beltran's-Enneper theorem.

A M.T. -04, Pg. 192
42. Define the general differential equations of geodesics on a surface $\vec{r}=$ $\vec{r}(u, v)$

A M.T. -04, Pg. 200
43. Derive the canonical equations of a geodesics on the surface $\vec{r}=\vec{r}(u, v)$

A M.T. -04, Pg. 202
44. Prove that on a general surface, a necessary and sufficient condition that the curve $v=c$ (Const.) be a geodesic is $E F_{2}+F E_{1}=2 E F_{1}=0$, when $\mathrm{v}=\mathrm{c}$ for all values of u.
A M.T. -04, Pg. 206
45. Derive the differential equation of a geodesics on the surface $F(x, y, z)=$ 0
A M.T. -04, Pg. 210
46. State and prove Claprut's theorem.

A M.T. -04, Pg. 213
47. If parameters S are lengths, then show that geodesic curvature $\mathrm{Kg}=$ [$\widehat{N} \cdot \vec{r} \bar{r}^{\prime \prime}$] and if we replace parameter s by t then show that:

$$
K g=\frac{1}{H S^{3}}\left\{\frac{\partial T}{\partial u} V(t)-\frac{\partial T}{\partial u} U(t)\right\}
$$

A M.T. -04, Pg. 219
48. Express the Torsion of a geodesic in the terms of fundamental magnitude and also in the terms of principal curvature.
A M.T. -04, Pg. 226
49. State and prove Gauss bonnet theorem.

A M.T. -04, Pg. 228
50. A geodesic on the ellipsoid of revolution $\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=\perp$, crosses a meridian at an angle θ at a distance u from the axis prove that at the point of crossing it makes an angle $\cos ^{-1}\left(\frac{c u \cos \theta}{\sqrt{\left(a^{4}-u^{2}\left(a^{2}-c^{2}\right\}\right)}}\right)$ with the axis.
A M.T. -04, Pg. 231
51. Prove that at the origin the geodesic curvature of the sections of the surface $2 z=a a^{2}+b y^{2}$ by the plane $\ln +m y+n z=0$ is $n\left(b e^{2}+a m^{2}\right) /\left(l^{2}+\right.$ $\left.m^{2}\right)^{3 / 2}$
A M.T. -04, Pg. 235
52. State and prove Mapnari - Codazzi equation.

A M.T. -04, Pg. 244
53. For a surface given by $d s^{2}=\phi\left(d u^{2}+d v^{2}\right)$ prove that:

$$
l=\frac{\phi_{1}}{2 \phi}, m=\frac{\phi_{2}}{2 \phi}, n=\frac{\phi_{1}}{2 \phi}, \lambda=\frac{\phi_{2}}{2 \phi}, \mu=\frac{\phi_{1}}{2 \phi}, v=\frac{\phi_{2}}{2 \phi}
$$

And further show that mainradii-codazzi relation become:

$$
L_{2}-M_{1}=\frac{1}{2} \frac{\phi_{2}}{\phi}(L+N), N_{1}-M_{2}=\frac{1}{2} \frac{\phi_{1}}{\phi}(L+N)
$$

A M.T. -04, Pg. 248
54. State and prove fundamental existence theorem for surfaces.

A M.T. -04, Pg. 249
55. Prove that a entity whose inner product with an arbitrary tension is a tensor is itself a tensor.
A M.T. -04, Pg. 269
56. The fundamental Tensor $g_{i j}$ is a covariant symmetric tensor of the order two.
A M.T. -04, Pg. 277
57. Show that the metric of a Euclidian space referred to cylindrical coordinates is given by :

$$
d s^{2}=(d r)^{2}+(r d Q)^{2}+(d z)^{2}
$$

Determine its metric tensor and conjugate metric tensor.
A M.T. -04, Pg. 280
58. Show that the metric of a Euclidean space, reffered to spherical coordinates is given by $d s^{2}=(d r)^{2}+(r d v)^{2}+(v \sin v d \phi)^{2}$
Determine its metric tensor and conjugate metric tensor.
A M.T. -04, Pg. 281
59. The entities defined by (permutation tensor) :

$$
\epsilon_{i j k}=\sqrt{g} e_{i j k} ; \epsilon^{i j k}=\frac{1}{\sqrt{g}} e_{i j k}
$$

Are respectively covariant and contra variant tensor where $e_{i j k}$ is a permutation symbol and g is the determinant of the metric tensor $g_{i j}$
A M.T. -04, Pg. 284
60. Prove the following :
(i) $[i j, m]=g_{e m}\left[\begin{array}{c}i \\ i j\end{array}\right]$
(ii) $\frac{\partial g_{i k}}{\partial x^{j}}=[i j, k]+[k h, i]$
(iii) $\frac{\partial g^{m k}}{\partial x^{l}}=-g^{m i}\left\{\begin{array}{l}k \\ i l\end{array}\right\}-g^{k i}\left\{\begin{array}{l}m \\ i l\end{array}\right\}$

A M.T. -04, Pg. 286
61. Surface of sphere is a two dimensional Riemannian space. Complete the christoffel symbols.
A M.T. -04, Pg. 290
62. Prove that the christoffal symbols are not tensor quantities.

A M.T. -04, Pg. 293
63. State and prove Ricci's theorem

A M.T. -04, Pg. 300
64. If $A_{i j}$ is the curl of a covariant vector, prove that $A_{i j, k}+A_{j k, i}+A_{k i, j}=0$

Show further that this expression is equivalent to L

$$
\frac{\partial A_{i j}}{\partial x^{k}}+\frac{\partial A_{i k}}{\partial x^{i}}+\frac{\partial A_{k i}}{\partial x^{j}}=0 \text { if } A_{i j}=B_{i, j}=B_{j, i}
$$

Prove that: $A_{i j, k}+A_{j k, i}+A_{k i, j}=0$
A M.T. -04, Pg. 308
65. Evaluate $\operatorname{div} A^{j}$ in (i) cylindrical polar coordination (ii) Spherical polar coordinates.
A M.T. -04, Pg. 309
66. State and prove Eulers condition of calculus of variation.

A M.T. -04, Pg. 315
67. Assume that we live in a space for which the live element is : $d s^{2}=$ $\left(d x^{\prime}\right)^{2}+\left[\left(x^{\prime}\right)^{2}+C^{2}\right]\left(d x^{2}\right)^{2}$ which is the surface of a right heloid immeried in a Euclidian three dimensional space determine the diferential equation of a geodesic.
A M.T. -04, Pg. 319
68. Show that on the surface of a sphere, all great circles are geodesic while no other circle is a geodesic.
A M.T. -04, Pg. 322
69. Prove that it is always possible to chose a coordinate system so that all the christofffel symbols vanish at a particular point P_{0}.
A M.T. -04, Pg. 323
70. Prove the following theorems :
(i) The magnitude of all vectors of a field of parallel vectors is constant.
(ii) Prove that the geodesic is an auto parallel curve.

A M.T. -04, Pg. 328,329
71. The necessary and sufficient condition for a vector B^{i} of variable magnitude to suffer a parallel displacement along a curve C that :

$$
B_{j}^{i} \frac{d x^{j}}{d s}=B^{i} f(s)
$$

A M.T. -04, Pg. 329
72. The necessary and sufficient condition for a space V_{N} to be flat is that the Riemann-Christoffel tensor be Identically Zero i.e. $R_{i j k}^{\alpha}=0$
A M.T. -04, Pg. 343

