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1.0 Objectives 
This chapter of Plasma Physics is not simply aimed at people specializing in 
industrial plasmas or fusion plasmas but also provide a useful background for 
making understanding or for a broad range of topics in physics. This chapter 
includes simple understanding about the definition of plasma with fundamental 
parametrization. Further, the properties of Plasma have been explained followed by 
the Saha’s ionization equation. As the varieties of plasma available in nature as 
well as generated artificially, thus production of plasma is then become necessary 
to understand for completeness. 

1.1 Introduction 

1.1.1 Preliminary 

By the end of twentieth century, significance of plasma has been recognized and it 
is estimated that more than 99% of the matter in the universe exists in a plasma 
state. Plasma, known as the fourth state of matter, most of the known matter in the 
universe is in the ionized state. The states of solid, liquid, gas, and plasma 
represent correspondingly increasing freedom of particle motion. In a solid, the 
atoms are arranged in a periodic crystal lattice; they are not free to move, and the 
solid maintains its size and shape. In a liquid the atoms are free to move, but 
because of strong inter-atomic forces the volume of the liquid (but not its shape) 
remains unchanged. In a gas the atoms move freely, experiencing occasional 
collisions with one another. In plasma, the atoms are ionized and there are free 
electrons moving about – a plasma is an ionized gas of free particles. Here are 
some familiar examples of plasmas:  

1. Lightning, Aurora Borealis, and electrical sparks. All these examples show that 
when an electric current is passed through plasma, the plasma emits light 
(electromagnetic radiation). 

2. Neon and fluorescent lights, etc. Electric discharge in plasma provides a rather 
efficient means of converting electrical energy into light. 

1.0 Objectives 

1.1 Introduction 
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3. Flame. The burning gas is weakly ionized. The characteristic yellow color of a 
wood flame is produced by 579nm transitions (D lines) of sodium ions. 

4. Nebulae, interstellar gases, the solar wind, the earth’s ionosphere, the Van Allen 
belts. These provide examples of a diffuse, low temperature, ionized gas. 

5. In Sun, the temperature of the core is about 17 million degrees. Its surface, the 
photosphere radiates at a temperature of 5700 K and the Corona has a temperature 
of more than one million degrees. Earth's atmosphere consists of plasma like the 
ionosphere, the plasmosphere and magnetosphere Terresric plasmas are formed in 
gas discharges as in lightinings, in sparks, in arcs, fluorescent lamps, arc lamps, 
plasma displays and plasma torches. 

1.1.2 What is Plasma ? 

Plasma is an ionized gas, consisting of free electrons, ions and atoms. We 
understand this with an example that when a solid is heated sufficiently that the 
thermal motion of the atoms break the crystal lattice structure and liquid is formed. 
When a liquid is heated enough that atoms vaporize, a gas is formed. When a gas is 
heated enough that the atoms collide with each other and electrons, ions produced 
in the process, a plasma is formed, i.e., fourth state of matter. The constituents of 
these states (solid, liquid, gas) are atoms and molecules. The transformation from 
one state to another is done by supplying energy, e.g. heat. Further transformation 
to fourth state (plasma) take place when the gas is further energized by very high 
temperature or subjected to energetic radiations (Fig. 1.1) results to electrons and 
ions and neutral atoms. Therefore, this fluid consisting of charged particles and 
neutral atoms or molecules is called Plasma. An ionized gas has unique properties. 
In plasma, charge separation between ions and electrons gives rise to electric fields 
and charged particle flows give rise to current and magnetic fields. 

 
Figure 1.1 
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Plasma plays an essential role in many applications ranging from advanced 
lighting device and surface treatments for semiconductor applications or surface 
layer generation. Other applications are controlled fusion research, solar physics, 
astrophysics, plasma population, ionosphere physics and magnetospheric physics. 

Some applications of plasma are followings:  

1. Plasma may be kept in confinement and heated by magnetic and electric fields. 
These basic features of plasmas could be used to build “plasma guns” that eject 
ions at velocities up to 100 km/sec. Plasma guns could be used in ion rocket 
engines, as an example. 

2. “Plasma motors”- It differs from ordinary motors by having plasma (not metals!) 
as the basic conductor of electricity. These motors could, in principle, be lighter 
and more efficient than ordinary motors. Similarly, one could develop “plasma 
generators” to convert mechanical energy into electrical energy. The whole subject 
of direct magnetohydrodynamic production of electrical energy is ripe for 
development. The current “thermodynamic energy converters” (steam plants, 
turbines, etc.) are notoriously inefficient in generating electricity. 

3. Plasma could be used as a resonator or a waveguide, much like hollow metallic 
cavities, for electromagnetic radiation. Plasma experiences a whole range of 
electrostatic and electromagnetic oscillations, which one would be able to put to 
good use. 

4. Communication through and with plasma. The earth’s ionosphere reflects low 
frequency electromagnetic waves (below 1 MHz) and freely transmits high 
frequency (above 100MHz) waves. Plasma disturbances (such as solar flares or 
communication blackouts during re-entry of satellites) are notorious for producing 
interruptions in communications. Plasma devices have essentially the same uses in 
communications, in principle, as semi-conductor devices. In fact, the electrons and 
holes in a semi-conductor constitute a plasma, in a very real sense. 

 1.1.3 Definition of Plasma 

In Greek (   ) plasma means ‘moldable substance’ to denote 

the clear fluid, which remains after the removal of all corpuscular material in 
blood. American scientist, Irving Langmuir proposed in 1922 that the electrons, 
ions and neutrals in an ionized gas could similarly be considered some kind of 
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fluid medium and this medium is called plasma. Any ionized gas can not be called 
plasma, definition is as follows: 

“Plasma is a quasineutral gas of charged and neutral particles which 
exhibits collective behavior where the meaning of quasineutral is the plasma is 
neutral enough, i.e. no density of electrons and ions are equal, called as plasma 
density. The meaning of collective behavior is motions that depend not only on 
local conditions but on the state of the plasma in remote regions as well”. 

Table1.2 

The table and fig. (1.2) given below indicates typical values of the density and 
temperature for various types of plasmas. It is observed from the table that the 
density of plasma varies by a factor of 1016 and the temperature by 104 – this 
incredible variation is much greater than is possible for the solid, liquid, or gaseous 
states. 
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Figure 1.2 

1.2 Basic Parameters: Speed, Energy and Temperature 
 Plasma is a collection of various charged particles which are free to move in 
response to the fields they generate or to the applied fields and on average it is 
almost electrically neutral. This implies that the densities of the charged particles 
(ions and electrons) are almost equal, i.e.  i e sn n n and commonly termed as 

“quasi-neutrality”. This condition exists uniformly throughout the volume of 
ionized gas except at near the boundaries and valid only when the spatial scale 
length of plasma is much greater than the characteristic length over which the 
charges or boundaries are electrically shielded, known as Debye length. 
Distribution in energy to ions and electrons are characterized by temperature iT  
and eT  respectively, which are not found the same usually. In the plasma, the 
charged particle experiences a large number of collisions with each other or with 
other species (ions, electrons and/or neutrals) and thus it is not possible to analyze 
the motion of each particle. Therefore, dynamics of plasma is not then understood 
completely. Due to the collisions, there is a distribution of the velocities for each 

1.2 Basic Parameters: Speed, Energy and Temperature 
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species and then each particle will move with a velocity, which is function of the 
macroscopic temperature and mass of that species. 

For ensemble of N particles of mass m and velocity u , the average kinetic 
energy per particle is  


  2

1

1

2

N

i i
i

E m u
N

,        (1) 

and the Maxwell – Boltzmann distribution function of speed at thermal equilibrium 
is given by  

 
  

 

2

( ) exp
2 2B B

m mu
f N

k T k T



,     (2) 

where Bk  is the Boltzmann’s constant and the width of the distribution is 
characterized by the temperature T . 

 The average kinetic energy of a particle in the Maxwellian distribution in 
one dimension is given by 





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By inserting eq. (2) in eq. (3), and integrating by parts, the average energy per 
particle in each dimension is 

 BE k T
1

2
.         (4) 

Generalizing the distribution to the three dimensions as 

  
  

 

2 2 2( )
( , , ) exp

2 2B B

m m u v w
f u v w N

k T k T
,    (5) 

where u v w, ,  are the components of velocity in three coordinate axes. 

Following the same procedure, the average energy per particle in three dimensions 

is  
3
2 BE k T .         (6) 

Using this, the average KE of a gas at 1K is  J232.07 10 . Typically, the energy 
corresponding to Bk T  used for plasma temperature,   Bk T eV C191 1.602 10 . 
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Further, quasi-neutrality demands that  i en n n , then the density of the particles 
is obtained as 

 



 n n f u du( ) ,        (7) 
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The kinetic temperature of species is essentially the average kinetic energy of the 
particles is 

 T m u
1 2
3

,         (9) 

where the average speed of a particle (in Maxwellian distribution) is then given by 

 


   
 

Bk T
u

m

1/28
.        (10) 

Thermal speed of species is then  2 /ts Bu k T m  and ion thermal speed is usually 

smaller than the electron thermal speed: ti e i teu m m u/ . 

1.3 General Properties of Plasma 

1.3.1 Plasma Oscillations and Frequency 

Consider a one dimensional sitaution in which slab consisting entirely of 
one charge species in quasi neutral state, i.e.  i en n n . Displacing the group of 

electrons by an infinitesimal distancex , due to which an electric field 

E  sets up 

across the distance L (see fig. 1.3), which results to the charge density (charge per 
unit area) on each face of the slab is   en x  with equal and opposite polarity. 

 

 

 

 

 

 

Figure 1.3 

Along the x- direction, electric field generated inside the slab is  

1.3 General Properties of Plasma 
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
 


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E

0 0

.         (11) 

Using Newton’s law,  


e x

d x
m eE

dt

2

2 ,   


 
    P

e

d x ne x
x

dt m

2 2
2

2
0

,   (12) 

where 


P
e

ne

m

2
2

0

 is known as Plasma Frequency. 

Plasma frequency commonly written as 

 



 P
P ef n Hz9000

2
.       (13) 

Thus, if a group of electrons in two-component plasma are displaced 
slightly from their equilibrium position, they will experience a force that returns 
them to. When they arrive at the equilibrium position, they will have a kinetic 
energy equal to the potential energy of their initial displacement and will continue 
past until they reconvert their kinetic energy back to potential energy. The 
frequency of this simple period harmonic motion is known as plasma frequency. 
This phenomenon is known as plasma oscillation. 

The plasma oscillations will only be observed if the plasma system is 
studied over a time period longer than plasma time period  P  as 




P
P

1
. 

1.3.2 Plasma Criteria    

In a partially ionized gas where collisions are important, plasma oscillations 
can occur only if mean free time between the collisions (C ) is very much large 
compare to the oscillation time period ( P ), i.e.  




C

P

1.          (14) 

This is Plasma Criterion #I, for an ionized gas to be considered as plasma. It 
behaves like a neutral gas, if criterion does not hold. Plasma oscillation can be as  

certained by thermal motions of electrons, where the work done in displacement 
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x of electrons is  

 W Fdx ,          (15) 

Using eq. (11), 

   


 
 

x e n x
W eE x dx

2 2

00

( )
2

.      (16) 

Equating work done by displacement with average thermal kinetic energy 

 

  B

e n x
k T

2 2

0

1

2 2
   


  Bk T

x
e n

2 0
2 .     (17) 

The maximum distance an electron can travel, before it exit the system, is called 
Debye Length,   Dxmax  as 

  
  B

D

k T

e n
0

2
.         (18) 

Note that D is independent of mass, and thus generally comparable for all 
different species. Clearly, the gas is considered a plasma of length scale of system 
is larger than Debye Length  

 


D

L
1.          (19) 

 This is Plasma Criterion #2. Debye length is spatial scale over which charge 
neutrality is violated by spontaneous fluctuations. It has been emphasized that 
despite of requirement (eq. 19), plasma physics is capable of considering structures 
on the Debye scale. Debye Sheath is the most important example of this, i.e. the 
boundary layer which surrounds a plasma confined by a material surface. 

1.3.3 Debye Shielding 

Plasmas do not contain strong fields as they recognize to shield from them. 
One of the most important property of a plasma is the shielding of every charge in 
the plasma by a cloud of opposite charged particles is called the Debye Shielding. 

A fundamental characteristic of the behavior of a plasma is its ability to 
shield out electric potential that are applied to it. 

Suppose we tried to put an electric field inside the plasma by inserting two 
charged balls connected to a battery. The balls would attract particles of the 
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opposite charge. A cloud of ions would surround the negative ball and a cloud of 
electrons would surround the positive ball. In cold plasma there is no thermal 
motion, there would be as same charges in the cloud as in the ball. 

 

Figure: 1.4 
The shielding would be perfect and no electric field present in the plasma 

outside of the clouds. On the other hand, if the temperature is finite, the particles 
which are at the edge of the cloud, where the electric field is weak. The particles 
have enough thermal energy to escape from the electrostatic potential well. The 
shielding is not complete, thus finite electric fields to exist there. 

Now, we examine the mechanism by which the plasma strives to shield its 
interior from a disturbing electric field due to an external charged particle.  

Consider a test particle to have a positive charge Q  and choose a spherical 
co-ordinate system whose origin coincides with the position of the test particle. 
Then determining the electrostatic potential r( )  that is established near the test 
charge Q , due to the combined effects of the test charge and the distribution of 
charged particles surrounding it.  

Since the positive test charge attracts the negatively charged particles and repels 
the positively charged ones the number densities of the electrons en r( ) and ions 

in r( )  will be slightly different near the test charge, whereas at large distances from 
it, the electrostatic potential vanishes, i.e.    i en n n( ) ( ) . 

At t = 0, electric scalar potential due to test charge is 


 Q
r

r0

( )
4

 and as the time 

progresses, electron are attached while ions are repelled. As i em m , one may 
neglect the motion of ions. The number density for a system is usually written as,  

 
  

 B

U r
n r n

k T
0

( )
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where the factor 
 
 
 B

U r

k T

( )
exp is known as the Boltzmann factor. In a plasma, this 

is a steady-state problem under the action of a conservative electric field 


 E r( ) ,            (21a) 

  U r q r( ) ( ) .           (21b) 

Therefore, the number density can be expressed as 
 

  
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q r
n r n
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is generalized for electron and ions as 
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B
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k T
0
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where we have assumed that the electrons and ions (of charge e) have the same 
temperature T.  

At t 0  and en n , a new potential is set up with electric charge density r( ) , 
including the test charge Q, can be expressed as  

     e ir e n r n r Q r( ) ( ) ( ) ( ) ,          (23) 

where  r( ) denotes the Dirac delta function. Using eqs. (22) we get, 
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 Now, substituting 
 E r r( ) ( )  and eq. (24) into the following 

Maxwell’s first equation, 




 
   r

E r
0

( )
. ( ) ,                     (25) 

This gives the Poisson’s equation 
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 For analytical calculation, it is assumed that the perturbing electrostatic 
potential is weak so that the electrostatic potential energy is much less than the 
mean thermal energy, i.e.,  

Be r k T( )  and making use of Taylor’s expansion  

(  xe x1 ), the eq. (26) simplifies to 

   
 

      2
2

0

2
( ) ( ) ( 0)

D

Q
r r r ,       (27) 

where D denotes the Debye shielding length, 
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Since the electrostatic potential depends only on the radial distance r  measured 
from the position of the test particle, thus using spherical coordinates, eq. (27) can 
be written (for r 0 ) as  

  


  
D

d d
r r r

r dr dr
2

2 2

1 2
( ) ( ) 0 ,          (29) 

because at r 0 , Q exists. In order to solve this equation we note initially that for a 
particle of charge +Q, in free space, the directed radially outward electric field is 
given by  




  Q
E r r

r 2
0

1
ˆ( )

4
,            (30) 

and the corresponding electrostatic coulomb potential  
C r( ) due to this isolated 

charged particle in free space is  




C

Q
r

r0

1
( )

4
.            (31) 

In the very close proximity of the test particle the electrostatic potential should be 
the same as that for an isolated particle in free space. Hence, it is appropriate to 
obtain the solution of eq. (29) in the from 

 
 

 
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 D

Q r
r

r0

( ) exp
4

.           (32) 

This result is commonly known as the Debye Potential.  As r 0 , potential is that 
of free charge in free space, but for  Dr  ,potential falls off exponentially. It is 
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understood that Coulomb potential of the point charge is shielded on a distance 
scale longer than the Debye length by shielding a cloud of approximate radius D  
consisting of charge of the opposite sign. Therefore, it is guessed that a charged 
particle in a plasma interacts effectively only with particles situated at distances 
less than one Debye length away, and it has a negligible influence on particles 
lying at distance greater than one Debye length.  

For numerical, expression for Debye length is 

 D eT n69 ,    

where eT  is in K and n is in m 3 . 

1.3.4 Plasma Parameter 

The Debye Number DN  describes the no. of particles in the Debye sphere (volume) 
is defined as 

    
 D DN n 34

3
.         (33) 

The mean particle particle distance (Weigner-Seitz radius) between particles is 
defined as 

 Dr n 1/3 ,           (34) 
and the distance of closest approach is given by 

 


C
B

e
r

k T

2

04
 .        (35) 

Now we examine the significance of the ratio D Cr r : when this ratio is small, 
Debye sphere is saparsely populated means charged particles are dominated by one 
another’s electrostatic influence and their kinetic energies are small compared to 
the interacting potential energies. Such plasmas are termed as strongly coupled. 
While if the ratio is large, then strong electrostatic interactions occur rarely 
between individual particles and a particle is influenced by all other particles 
within its Debye sphere. Such plasmas are termed a weakly coupled. But actually, 
strongly coupled plasma has more in common with a liquid than weakly coupled 
plasma. 
 Defining a dimensionless plasma parameter as 

   Dn 34 ,          (36) 
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which is equal to the typical number of particles within the Debye sphere. Making 
use of eq. (18), eq. (34) & (35) with eq. (36), we may write- 

 

 

   
 

D B

C

r k T

r n

3/2 3/2

1/2

1

4
.       (37) 

It is noticed that for 1 , Debye sphere is sparsely populated and thus 
corresponds to a strongly coupled plasma. Whereas, for 1 , Debye sphere is 
densely populated corresponds to a weakly coupled plasma. The strongly coupled 
plasma tends to be a cold and dense while weakly coupled plasma tends to hot and 
diffuse. 

Description Plasma Parameter Magnitude 

1  1  
Coupling Strongly coupled plasma Weakly coupled plasma 

Debye Sphere Sparsely populated Densely populated 

Electrostatic 
Influence 

Almost continuously Occasional 

Characteristics Cold and dense Hot and diffuse 

Examples Solid-density laser application 
plasmas; very cold  and high 
pressure arc discharge; inertial 
fusion experiments; white dwarfs 
/ neutron stars atmospheres 

Ionospheric physics; 
Magnetic fusion devices; 
Space plasma physics; 
plasma balls 

 

1.4 Saha's Ionization Formula  
Saha equation gives a relationship between the particles and those bound in 

atoms. To derive the Saha’s equation, choose a consistent set of energies and also 
choose E=0, when the electron veocity is zero, so E= -I  for n=1. Ignore the 
energy of higher energy n levels, since if an electron has enough energy to reach 
n=2, then according to Bohr’s equation it needs only ¼ more energy to ionize 
completely. 

1.4 Saha's Ionization Formula  
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Derivation of Saha’s equation: 

At thermal equilibrium temperature T, the number of particles of a particular 
species in the energy range E to E + dE is given by the distribution 

 
( )/ 1BE k T

dg
dN

e  .            (38) 

Here the + sign corresponds to fermions (proton, neutron, electron etc. all of which 
have half integral spin). The distribution is known as the Fermi-Dirac distribution. 
The − sign corresponds to bosons which are particles (which can have integral 
spin). The distribution in this case is known as Bose-Einstein distribution. 

In eq. (38), dg is the number of quantum states between energies E and E + dE and 

μ is the chemical potential (the amount by which the energy of the system changes 
with the addition of a particle, keeping the volume and entropy of the system 

constant). In the limit   ( )/ 1BE k Te  , the eq. (38) reduces to 
 / /B Bk T E k TdN dg e e            (39) 

For free particles in momentum range p to p + dp, the number of states available 
are  


g V

dg p dp
h

2int
3 4 .             (40) 

where V is the volume in which the particles are confined and intg is the  internal 
states of the particle. For a particle of spin s,  g sint 2 1 . This formula does not 
apply to photons, which have integral spin. In this case, gint  is equal to two 
corresponding to the two states of polarizations (one spin up and other spin down). 

Using eq. (39), we find the number of particles per unit volume in the momentum 
range p to p + dp is given by  


2

/

int 3

4
BE k Tp dp

dn g e e
h


           (41) 

where   Bk T .  

Now consider atoms in the Ith state of ionization. Defining 

Ijn : atoms in jth state of excitation and ith state of ionization. 
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In 1 : atoms in ground state of excitation and ith state of ionization.  

Using Boltzmann distribution, we find  


1 1

/Ij BIj Ij

I I

V k Tn g
e

n g
            (42) 

where IjV is the excitation potential, i.e. the energy required to excite an atom in 

ground state in the ith state of ionization to the jth excited state in the same state of 
ionization.  

 
 I

Ij Ij I
I

n
n n Z T

g
1

1

( )                           (43)      

where IZ T( ) is the partition function.  Next, consider the ionization reaction  

 I IV V e1 .             (44) 

In equilibrium, we have    I I e1  or equivalently  I I en n n1 . The kinetic 

energy of an electron is e eE p m2 2 2 substituting this in eq. (41), we find  

 


2

2

3

/24
( ) ee B

e e

p m k Tp dp
dn p g e

h


,        (45) 

which is just the Boltzmann distribution for a free electron gas. For atoms and ions, 
we also need to include the excitation and ionization energies. Hence,  

 
  

2

, ,
2

I i I i I

I

p
E V I

m
          (46) 

 
  



  I j I j I
I

p
E V I

m

2

1, 1, 1
12

          (47) 

Further,  I I em m m1 . Substituting these relationships into eq. (41), and carrying 
out integrating over momentum p, we get 

   
 

3/2

2

2
( ) I I B

I I
n m k T

n Z T e
h


      (48) 

Here we have also summed over all the states of excitation of the atom using eq.43 

 
 

 
   

 
1 1

3/2
1

1 1 2
/2

( ) I BI B
I I

n I k Tm k T
n Z T e e

h


.        (49)        
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We, therefore, find the ratio becomes 

   11 1 /( )

( )
BI Ie

I I

I k Tn Z T
e e

n Z T
 ,      (50) 

 we also find  

 

   
 

3/2

2

2
2 e e B

e

m k T
n e

h
 

       (51) 

where we have used 2eg   corresponding to the two spin states of electron. We 

can eliminate ee in eq. (50) using this equation. This finally gives the Saha 
equation.  

Since, 99% of the matter in the universe is in the plasma state, it would 
seem that we live in the 1% of the universe in which plasma do not occur naturally. 

The reason for this can  be seen from the Saha's equation, which tells us the 
amount of ionisation to be expected in a gas in thermal equilibrium 

    121 /2.4 10 BI k Ti

n

n
e

n
       (52) 

where in and nn  the density of ionized atoms and of natural atoms. As the 
temperature is raised, then i nn n/  rise abruptly and the gas is in a plasma state. 
This is the reason plasma exist in astronomical bodies with temperatures of 
millions of degrees, but not on the earth. The natural occurrence of plasma at high 
temperatures is the reason for the fourth state of matter. 

1.5 Plasma Production 
As there is wide range of plasma according to their uses, thus there are several 
means for its generation; however, one principle is common to all of them: there 
must be energy input to produce and sustain it.  

Plasma is produced by supplying energy to neutral gas causing the 
formation of charge carriers. Electrons or photons with sufficient energy collide 
with the neutral atoms or molecules of the gas then electrons and ions are produced 
in the gas phase. For this case, plasma is generated when an electric current is 
applied across a dielectric gas or fluid (an electrically non-conducting material) as 
can be seen Fig. (1.5). 

1.5 Plasma Production 
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Figure 1.5 
The potential difference and subsequent electric field pull the bound electrons 
(negative) toward the anode (positive electrode) while the cathode (negative 
electrode) pulls the nucleus. As the voltage increases, the current stresses the 
material (by electric polarization) beyond its dielectric limit (termed strength) into 
a stage of electrical breakdown, marked by an electric spark, where the material 
transforms from being an insulator into a conductor (as it becomes increasingly 
ionized). The underlying process is the Townsend avalanche, where collisions 
between electrons and neutral gas atoms create more ions and electrons, Fig. (1.6). 
The first impact of an electron on an atom results in one ion and two electrons. 
Therefore, the number of charged particles increases rapidly (in the millions) only 
"after about 20 successive sets of collisions", mainly due to a small mean free path. 

 

 

 

 

 

 

 

Figure 1.6 
Electric arc is a cascade process of ionisation, where avalanche effect between two 
electrodes is produced. The original ionization event liberates one electron, and 
each subsequent collision liberates a further electron, so two electrons emerge from 
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each collision: the ionizing electron and the liberated electron. With sufficient 
current density and ionization, a luminous electric arc (a continuous electric 
discharge similar to lightning) between the electrodes is produced. Electrical 
resistance along the continuous electric arc creates heat, which dissociates more 
gas molecules and ionizes the resulting atoms (where degree of ionization is 
determined by temperature).  

There are various ways to supply the necessary energy for plasma 
production to a neutral gas; some of them are outlined below: 

1.5.1 Gas Discharge Plasma (Low Pressure) 

The most commonly and simplest method of providing a plasma is by 
applying an electric field to a neutral gas. A gas discharge plasma is a common 
form of plasma, which can have a variety of parameters. An electric field causing 
electrical breakdown of gas, which then generates different forms of plasma 
depending on the conditions of the process. 

In the first stage of breakdown, a uniform current of electrons and ions arise. In the 
next stage of the breakdown process, the electric current establishes a distribution 
of charged particles in space. This is a gaseous discharge. 

Glow Discharge Plasmas (GDP): Non-thermal plasmas generated by the 
application of DC or low frequency (<100 kHz) electric field to the gap between 
two metal electrodes. This is the most common plasma generated within 
fluorescent light tubes. 

Capacitively Coupled Plasma (CCP): This is similar to glow discharge plasmas 
(GDP), but generated with high frequency RF electric fields, typically 13.56 MHz. 
These differ from glow discharges in that the sheaths are much less intense. These 
are widely used in the microfabrication and integrated circuit manufacturing 
industries for plasma etching and plasma enhanced chemical vapor deposition.  

Inductively Coupled Plasma (ICP): This is same kind of plasmas as that of CCP 
except the electrode consists of a coil wrapped around the chamber where plasma 
is formed.  

1.5.2 Gas Discharge Plasma (Atmospheric Pressure) 

Arc Discharge: This is a high power thermal discharge of very high temperature 
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 (~10,000 K). It can be generated using various power supplies. It is commonly 
used in metallurgical processes. For example, it is used to smelt minerals 
containing Al2O3 to produce aluminium. 

Corona Discharge: This is a non-thermal discharge generated by the application of 
high voltage to sharp electrode tips. It is commonly used in ozone generators and 
particle precipitators. 

Dielectric Barrier Discharge (DBD): This is a non-thermal discharge generated by 
the application of high voltages across small gaps wherein a non-conducting 
coating prevents the transition of the plasma discharge into an arc. It is often 
mislabeled 'Corona' discharge in industry and has similar application to corona 
discharges. It is also widely used in the web treatment of fabrics. The application 
of the discharge to synthetic fabrics and plastics functionalizes the surface and 
allows for paints, glues and similar materials to adhere.  

Capacitive Discharge: This is non-thermal plasma generated by the application of 
RF power (e.g., 13.56 MHz) to one powered electrode, with a grounded electrode 
held at a small separation distance on the order of 1 cm. Such discharges are 
commonly stabilized using a noble gas such as helium or argon.  

Piezoelectric direct discharge plasma: This is non-thermal plasma 
generated at the high-side of a piezoelectric transformer (PT). This generation 
variant is particularly suited for high efficient and compact devices where a 
separate high voltage power supply is not desired. 

1.5.3 Photoresonant Plasma 
The convenient way to produce plasma uses resonant radiation. The 

resonant radiation means whose wavelength corresponds to the energy of atomic 
transition in the atoms constituting the excited gas. As a result of the excitation of 
the gas, a high density of excited atoms is fermed, and collision of these leads to its 
ionisation and to plasma production. This plasma is called a photoresonant plasma. 

1.5.4 Laser Plasma 
A laser plasma is produced by laser irradiation of a surface and it is 

characteriszed by parameters such as the laser power and the time duration of the 
process. If a short nanosecond laser pulse is focused on to a surface, material 
evaporates from the surface in the form of a plasma. 
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If the number density of electrons in plasma increases above the critical density, 
the developind plasma screens the radiation, and subsequent laser radiation goes to 
heating the plasma. As a result, the temperature of the plasma increases tens of 
electron volts, and this plasma can be used as a source of X-ray laser. 

1.5.5 Plasma Production by Electrons Beam 

A widely used method of plasma production is based on the transition of 
electrons beams through a gas. Secondary electrons can be used for these 
processes. The electron beam as a source of ionisation is convenient for chemical 
lasers because the ionisation process finish in a short time. 

1.5.6 Chemical Method of Plasma Production 

A chemical method of plasma production is the use of plasmes. The 
chemical energy of reagents is spent on formation of excited particles. The 
transformation of chemical energy of ionized particles is not efficient, so the 
degree of ionisation in plames is small. 

1.5.7 Plasma Production by Small Particles 

Introduction of small particles and clusters into a weakly ionised gas can 
charge its electrical properties because these particles can absorb charged particles, 
i.e., electrons and ions or negative and positive ions can recambine on these 
particles. These process occurs in an aerosol plasma, i.e. an atmospheric plasma 
that contains aerosols. 

1.5.8 Plasma Production by Fluxes of Ions 

 
Figure 1.7 



23 
 

Plasma can be created under the action of fluxes of ions or neutrons when 
they pass through a gas. Ionisation near the earth's surface results from the decay of 
radioactive elements which are found in the earth's crust. 

Thus, methods of plasma production are many and varied, and lead to the 
formation of different types of plasma. 

1.6 Illustrative Examples 
Example1. Compute the density (in units of m-3) of an ideal gas at 00C and 760 
Torr pressure (I Torr =1 mm Hg). 

Sol: Since a mole of an ideal gas contains Avogadro’s number (  236.022 10  
molecules) and occupies 22.4 liters. Therefore, number per m3, i.e. n N V/  is 

     m23 2 25 36.022 10 / 2.24 10 2.66 10 . 

Example 2. Compute the density (in units of m-3) of an ideal gas in a vacuum of 
10-3 Torr at room temperature 200C. 

Sol. PV NRT  and n N V/ , 

Then 
P

n
RT

. Taking n0  at C00  from (a) and n1  at C020 , we may then write 

 
n PT

n P T
1 1 0

0 0 1

 


    n m
2

25 19 3
1

10 273
2.66 10 3.3 10

760 293
 

Example 3.  Compute D  and DN  for the earth’s ionosphere with n m12 310 , 
Bk T eV0.1 . 

Sol.  Using 
  B

D

k T

e n
0

2
   32.35 10 m 

 and    
 D DN n 34

3
  354.45 10 . 

Example 4. Derive a constant A for a normalized one dimensional Maxwellian 

distribution    Bf u A mu k T2( ) exp / 2 , such that 




 f u du( ) 1 . 

Sol. Consider the integral in two dimensional space as 

 
  

   

  

    x y x yI e dx e dy e dxdy
2 2 2 22 ( ) , 

1.6 Illustrative Examples 
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and transforming into cylindrical coordinates, we get 

  


   r rI e rdrd e rdr
2 22

0

2    
     r re d r e

2 22

0
( )  

  I . 

Then, carrying out the integration 

  






           Bmu k TB
B

k T
f u du A e d u m k T

m

2
1/2

1/2/22
( ) 1 / 2  


          

B

B

k T m
AI A

m k T

1/21/22
1

2
. 

1.7 Self Learning Exercise 

Q.1 Calculate rmsv  for proton and electrons at K610 . {Hint: rms Bv k T m3 } 

Q.2 Compute D  and DN  for a glow discharge with n m16 310 , Bk T eV2 . 

Q.3 What do you mean by Plasma oscillations and frequency? 

1.8 Summary 
This chapter starts with the development of the fourth state of matter, i.e. 

Plasma. To understand the dynamics, basic parameters are introduced, by which 
the interesting properties of plasma, namely plasma oscillations and frequency, 
Debye shielding parameters have been laid down. From these, the criteria of being 
plasma have been then fixed up.  Further, since plasma is generated by continuous 
chain of ionization processes, is explained by Saha’s ionization formula. Finally, 
chapter is ended up with the various type of plasma  production, as these kind of 
plasma occur in lightning, fluorescent lamps, a variety of laboratory experiments, 
and a growing array of industrial processes and also a live quest to researcher, as it 
is known that 99% of the baryonic contents of the plasma, e.g. stars, nebulae, and 
even interstellar space and Solar System. 

1.9 Glossary 
Physical constants: 

Boltzmann constant:    Bk JK23 11.38 10  

1.7 Self Learning Exercise 

1.8 Summary 

1.9 Glossary 
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Permittivity of vacuum:      Fm12 1
0 8.85 10  

Permeability of vacuum:       Hm7 1
0 4 10  

Mass of electron:    em Kg319.1 10  

Mass of Hydrogen ion:   im Kg271.67 10  

Units of pressure:      atm Pa mmHg torr51 1.013 10 760 760 ; 

            micron mtorr1 1  

1.10 Exercise 

Q.1  Compute D  and DN  for a  -pinch with n m23 310 , Bk T eV800 . 

Q.2  For the radio-frequency discharge Bk T eV3 , en m17 310  and diameter 
about 100 mm, calculate D , and DN  the number of electrons in a Debye 
sphere. 

Q.3  Define the meaning of Plasma. What are the Plasma parameters? Explain. 

Q.4  What do you mean by Debye Shielding? Establish a relationship between 
Plasma parameter and Debye shielding parameter. 

Q.5  Discuss the Saha’s ionization formula and derive it explicitly. 

Q.6  Briefly discuss the production of Plasma by gas discharge method at both 
low and atmospheric pressure. 
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UNIT- 2 
Debye Shielding,  Occurrence of Plasmas in Nature 

 
 
 
 
Structure of the Unit 
2.0  Objectives 
2.1  Introduction 
2.2  Definition of Plasma 

2.3  Plasma Parameters 

2.4  Coupling parameters  

2.5  Quasi-Neutrality, Plasma Frequency and Debye length 

2.6  Debye Screening  

2.7  Alternative derivation of Debye Shielding 

2.8  Occurrence of the plasma 

 (A) Plasmas on Earth  

 (B) Near-Earth Plasma  

 (C)Solar, Stellar and Interstellar Plasma 

2.9  Illustrative examples 

2.10 Self Learning Exercise 

2.11 Summary 

2.12 Glossary 

2.13 Answers to Self Learning Exercise 

2.14 Exercise 

        References and Suggested Readings 

2.0 Objectives 
To study 

 Definition of a plasma  

UNIT- 2 
Debye Shielding,  Occurrence of Plasmas 
in Nature 

2.0 Objectives 
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 Occurrence of the plasma 

 Plasma parameter 

 Characteristic values of plasma parameter 

 Coupling parameters 

 Occurrence of plasmas in nature  

 The Sun and its atmosphere 

 Solar Wind  

 Ionosphere 
2.1 Introduction 
  

Nearly all the matter in the universe exists in the plasma state, occurring 
predominantly into this form in the Sun and stars and in interstellar space. Auroras, 
lightning, and welding arcs are also plasmas. Plasmas exist in neon and fluorescent 
tubes, in the sea of electrons that more freely within energy bands in the crystalline 
structure of metallic solids, and in many other objects. 
On the earth, plasmas are found with dimension of microns to meters, that is, size 
spanning six orders of magnitude. Lightning is a natural plasma resulting from 
electrical discharges in the earth’s lower troposphere. Such flashes are usually 
associated with clouds but also occur in snow and dust storms, active volcanoes, 
nuclear explosions. In this chapter we shall understand about the types of plasmas 
occurring in nature and their basic properties, plasma parameters etc. 

2.2 Definition of a Plasma 
1. Plasma is an ionized gas in which all or a considerable part of the atoms 
have lost one or several of their electrons, thus becoming positive ions. 

 Today the plasma state as a fourth state of matter is well known, along with 
the concepts of gaseous, liquid, and solid states. This is due to the wide occurrence 
of the plasma state in nature, and also to the prospects regarding the practical 
utilization of plasmas in various branches of modern technology. 

 The term “plasma” was introduced by I. Langmuir in 1923, when he was 
studying phenomena in electrical discharges in gases. Thus, the first definition of a 

2.1 Introduction 

2.2 Definition of a Plasma 
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plasma was connected with the concept of an ionized gas. Let us preliminarily 
define a plasma as an ionized gas comprising a large number of positively and 
negatively charged particles and sometimes also neutral atoms and molecules. It is 
the presence of the large number of charged particles in the plasma that result in 
those specific properties which allow us to define the plasma as a fourth state of 
matter to distinguish it from ordinary gases. 

 The above definition of the plasma is neither exact nor complete. In fact, it 
is impossible to give a compressive definition of a plasma, since it could have to 
cover a great variety of phenomena under various conditions. 

2.3 Plasma Parameters  
 As mentioned before, a plasma consists both of charged and neutral 
particles. Positively charged particles are ions (gaseous plasma) and holes (solid-
state plasma) ; negatively charged particles are electrons and negative ions. Since 
the later usually are insignificant in plasma phenomena, they may be ignored here. 

 The composition of a neutral plasma may be rather complex since, besides 
atoms and molecules in the ground state, it will contain excited atoms and 
molecules in addition. Since a plasma is a gas, we may use the same characteristics 
for its description as for a common gas. Let us then introduce the main plasma 
parameters using simple molecular-kinetic notions. 

 First we consider the concentration (density) of particles of different type 
N the index   denoting the type of a particle. We shall mark all quantities for 
plasma electrons by the index e , for ions by i, and for neutrals by n. If several 
types of ions exist in the plasma, we define the concentration for ions of each type 
separately. The excitation of atoms and molecules will be of little interest to us. 
Therefore, nN  will mean total number of neutral particles per unit volume without 
regard to their state. 

Alternatively, the composition of the plasma can be described as the ratio of the 

electron density to that of neutral particles, or the degree of ionization e

n

Nr
N

 . 

According to this, a plasma is weakly ionized, if –210r   to 310 , and completely 
ionized, if r   holds. (For the “degree of ionization” one frequently uses also. 

2.3 Plasma Parameters  
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  e

n
i

Nr
N N




 

For this definition r = 1 stands for complete ionization, an r <1 for partial 
ionization). 

Since plasmas consist of particles of different types, one must know their charge ae
and mass am .We have electrons with charge ee e , where |e| = 4.8 × 10–10 esu, and 
a mass me = m = 9.1 × 10−28 g, and ions with a charge ei = −Ze (Z is multiplicity of 
ionization), and an approximate mass mi = M = A. 1.66 × 10–24 g, where A is the 
atomic mass of the corresponding gas. For neutral particle en = 0, and n im m M   
holds.  
In a solid state plasma the effective mass of charge carriers (electrons and holes) 
differs from that of free electrons. Thus to avoid misunderstandings we shall mark 
them as *

em and *
im , where it is necessary. In metals we have *

e em m , in 
semiconductors usually *

em  (0.01 to 0.1) me and *
i im m . The charge of a 

negative carrier is equal to that of an electron, and the charge of a positive carrier is 

ie e  . 

 

Characteristics values of Plasma parameters : 

 * Electron discharge plasma   Ne    T 

 (glow discharge at a gas   9 11 –310 10 cm    410 K  

 pressure of ~1 Torr) 

 * Electron in metal    23 –3~ 10 cm    410 K  

 (quantum mechanically      

 Degenerate plasma) 

 * Plasma in semiconductors  16 18 –3~ 10 10to cm   < 210 K  

 (electrons-hole plasma)      

 * F-layer of the ionosphere  6 –310e iN N cm   (3 to 5) × 310 K  

      –10 –310nN cm  

      –410r    
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 * Interplanetary plasma   2 3 310 10e icm N N cm      

 410 K  

 * Solar corona   4 8 –310 10e iN N to cm 

 6 810 –10 K  

 * Fusion plasma   14 –310e iN N cm    810 K  

 * White dwarf    25 32 –310 10eN to cm          107 to 108 K 

  

2.4 Coupling Parameters 
 Plasmas are characterized by temperature and density parameters which 
vary over a wide range. It is therefore convenient to introduce dimensionless 
coupling constants, called coupling parameters, which characterize strengths of the 
particle interactions in those various charged-particle systems. We shall also 
consider parameters describing the extents to which the quantum-mechanical 
effects are involved in a plasma. This will help us in seceding whether a classical 
or quantum theoretical treatment of the plasma is valid. 

 Let us define a coupling constant η of a plasma as a ratio of an average 
Coulomb-interaction energy to an average kinetic energy : 

 

1
2 2 3

~
av

e e N
r T T

                (2.1) 

 Those plasmas with values of the coupling constant much smaller than 
unity may be called weakly coupled plasmas ; those with the coupling constant 
around or greater than unity,  strongly coupled plasma. 

 When the charged-particle system under consideration obeys the classical 
statistics, the velocity distribution of individual particles is given by the 
Maxwellian  

 
1/2

( )
2M

mf v
T

    
 

exp 
2

2
mv

T
 
 
 

 

 where m denotes the mass of the particle. The average value of the kinetic 

energy particle is then calculated as 3
2

 
 
 

T,  

2.4 Coupling Parameters 
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 which we take as T in an order – of – magnitude estimate. 

For a high-density electron system such as conduction electrons in metal, one uses 
the Fermi energy 

 
2 2 2 /3(3 )

2F
NE

m



             (2.2) 

Instead of the classical evaluation mentioned above. Here = 1.0546 × 10–27 erg-s 
is the Planck constant divided by 2 , m = 9.1095 × 10–28 g is the electron mass 
and N denotes the number density of electrons. 

Since eq. (2.2) is an increasing function of N, FE T  may be realized in a high 
density electron system. A degeneracy parameter of the electrons is thus defined by  

 (ϰ) = 
F

T
E

             (2.3)    

When (ϰ) << l, the Fermi degeneracy brought about by the quantum statistics 
becomes more important than the effects of thermal motion represented by T. In 
these circumstances it is relevant to use the Fermi energy as an estimate of the 
kinetic energy. 

For the degenerate plasma the coupling parameter  is the ration of the average 
potential energy to the Fermi energy 

 

1
2 3

F

e N
E

   ~ 
2 2

2~ 1p av

Fe De

r
r







 
 
 

           (2.4) 

 Comparing (2.4) and (2.1) we see that in the nondegenerate plasma an 
increase in the density disfavors, in the degenerate case if favors the applicability 
of the gas approximation. In metals this approximation is valid only for 

concentrations Ne≳1022 cm–3, and in semiconductors with the effective mass. 
* –210m m  for concentrations 16 17 –3

~10 10eN to cm . Thus, the condition (2.4) for 

real metals is only marginally fulfilled. 

 For a one-component plasma (OCP) containing n particles with electric 
charge Ze in a unit volume, the Coulomb energy per particle may be estimated as 

(Ze)2/a, where a is the radius of a sphere with the characteristic volume 1
N

: 
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   a = 
1/ 34

3
N 

 
 
 

           (2.5) 

This radius is usually referred to as the ion-sphere radius or the Wigner-Seitz 
radius.  

 The Coulomb coupling parameter for a plasma obeying the classical 
statistics, eq (2.1), can be expressed as  

 
2

–5( ) 2.69 10
a

Ze
r T

   
1/3

2
12 –310

NZ
cm

 
 
 

–1

610
T

K
 
 
 

           (2.6) 

This expression indicates that for Z = 1 and T = 106 K, the density N mush become 

as high as ~ 1026 cm–3 to make η = 1. 

Most of the classical plasmas that we encounter, however, are characterized by 

η<< 1. For example : 

 (1) Gaseous-discharge plasma : N = 1011 cm–3, T = 104 K,  η = 10–3     

 (2) Thermonuclear fusion plasma : N = 1016 cm–3, T = 108 K,   η = 10–5     

 (3) Plasma in the solar corona: N = 106 cm–3, T = 106 K,  η = 10–7     

They are thus weakly coupled plasmas ; their thermodynamic properties, for 
instance, are analogous to those of an ideal gas. 

 A typical example of a strongly coupled classical plasma may be seen in the 
system of ions inside a highly evolved star. The interior of such a star is in a 
compressed, high-density state. The Fermi energy of the electron system takes on a 
value much greater than the binding energy of the electron around an atomic 
nucleus, all the atoms are thus in ionized states (pressure ionization). The electron 
system constitutes a weakly coupled degenerate plasma with an immensely large 
Fermi energy 2( )FE mc . It makes an ideal neutralizing background of negative 
charges to the ion system. Those atomic nuclei stripped of the electrons form an 
ion plasma obeying the classical statistics; their de-Broglie wavelengths are much 
smaller on the average than the inter particle spacing, i.e. 

 
avr MT
 << 1            (2.7) 

 where M is the ion mass. 
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In the interior of a highly evolved star, the coupling parameter   for such an ion 
plasma is usually greater than unity ; in a white dwarf one estimates that  = 10 to 
200. 

 As an example of a strongly coupled plasma in the laboratory, we can think 
of plasmas produced by shock compression. Other examples of strongly coupled 
laboratories plasmas include liquid and/or ultrahigh pressure metals, super ionic 
conductors, and cryogenic non-neutral plasmas, contained in electromagnetic traps, 
such as the laser-cooled pure ion plasmas and the strongly magnetized pure 
electron plasmas.  

2.5 Quasi-Neutrality, Plasma Frequency and Debye Length  
 One should note that not every ionized gas is a plasma. It must also possess 
the property of quasi-neutrality, i.e on the average it must remain neutral for 
sufficiently long time and space intervals. The assumption of quasi-neutrality 
implies : 

 0e N 


              (2.8) 

Where e N   are, respectively, the charge and density of particles of type  . 

For a plasma containing single charged ions of only one type this condition 
becomes : 

 Ne = Ni, Since an electron carries the charge e = – ei.  

 We can estimate the time scale of charge separation imagine a plasma 
electron to deviate from the initial equilibrium position. A restoring force appears, 
defined in order of magnitude by the average interparticle force 

 
2

2
av

eF
r

 , where rav is the average distance between the particles : 

 34
3 avr 1eN  .      

1
33

(4 )av
e

r
N

 
   

 
 

As a result the electron oscillates with the frequency given by  

  
2

2av
emr F
r

     2
avm r  = F 

2.5 Quasi-Neutrality, Plasma Frequency and Debye Length  
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           (2.9) 

 It is called the electron Langmuir frequency, electron plasma frequency, or 
simply plasma frequency, and is a very important characteristic parameter. 

Consequences of the Coulomb Interaction : 

 A plasma is a collection of charged particles. The Coulomb force with 
which the charged particles interact is known to be long-ranged. Consequently the 
physical properties of a plasma  

exhibit remarkable differences from those of an ordinary neutral gas. 

Most of the salient features in plasmas can be understood by investing the behavior 
of the one component plasma (OCP). Here we will adopt the OCP model to study 
the basic consequences of the Coulomb interaction in the static properties of the 
plasma; this can easily, be extended also to cases with various charged species. 

 We begin with a consideration of the Coulomb cross sections for transfer of 
momentum and energy. This example is intended to illustrate how a naive 
substitution of Coulomb potential in the calculation of plasma properties would 
lead to a false prediction. It will at the same time point to the necessity of taking 
into account the organized or collective behavior of many charged particles 
brought about by the long-ranged coulombs forces; the plasma thus exhibits a 
medium like character.      

A. Cross Sections for the Coulomb Scattering : 

 Suppose that charged particles with masses m1 and m2 and electronic 
charges Z1e and Z2e scatter each other by the Coulomb force with the relative 

velocity 1 2| |v v v
 

  , and impact parameter b. In the frame of reference comoving 
at the centre-of-mass. 

 Velocity,  1 21 2

1 2

m v m vV
m m






 
      (2.10) 
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The angle χ of scattering is related to the impact parameter 

   
2

2
1 2

cot
2

b v
Z Z e

    
 

                    (2.11) 

 where 1 2

1 2

m m
m m

 


is the reduced mass. 

The differential cross section of dσ for scattering into an infinitesimal solid angle 

dΩ around a scattering angle is give by Rutherford formula 
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        (2.12) 

 The cross section m for momentum transfer can then be calculated by 

integrating ( 2.12 ) over solid angles with a weighting function (1−cosχ) which 
represents the fractional change of momentum on scattering. If for the moment a 

finite angle χmin is chosen for the lower limit of the χ integration, we calculate.  
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The logarithmic factor, whose appearance is typical of the Coulomb interaction, is 
called a Coulomb logarithm. The cross section is seen to diverge logarithmically as 

min approaches zero. 

The cross section for the momentum transfer is proportional to the electric 
resistivity of the plasma experiments tell us that ordinary plasmas are characterized 
by finite values of resistivity, non infinite ones. This points to the inadequacy of 
the foregoing treatment when it is applied directly to the charged particles in the 
plasmas. 

 The origin of the logarithmic divergence mentioned above can be traced to 
those scattering acts which takes place scattering angles. Charged particles in the 



36 
 

plasma located at long distances from a scattering centre will undoubtedly be 
influenced by many other scattering centres with similar strengths of interaction. 
Hence a simple picture of binary Coulomb scattering cannot correctly describe the 
behavior of charged particles interaction at large distances in the plasma. 

2.6 Debye Screening  
 It may now be recognized that as simple picture of binary collisions is 
inadequate to describe the interaction between the charged particles in a plasma. It 
leads to the cross-section for momentum transfer that diverges logarithmically. 

We now take up the problem of determining an effective interaction between 
charged particles in a plasma. 

We shall thus calculate the potential field around a Coulomb scattering centre in an 
OCP, by taking explicit account of the statistical distribution of other charged 
particles. 

Consider a point charge Z0e located at the organ ( r o
 

) ; 

In vacuum it produces a potential field 

 0
0 ( ) Z er

r
 


          (2.14) 

 In the plasma such a potential field acts to disturb the spatial distribution of 
charged particles. The space charge so induced around the point charge in turn 
produces an extra potential field, which should be added to the original potential 

0 ( )r
 ; a new effective potential ( )r


 is thus obtained as a summations of the two. 

The space-charge distribution in the plasma is determined, not from the bare 

potential 0 ( )r


 , but from the total potential field in a self-consistent fashion. 

 The charge Z0e produces an electric field polarizing the plasma. As in 

result, besides the density of the external charge density Ze ( )r


, the induced 
charge density    appears in the plasma.   is the unknown potential and obeys 
the Poisson equation : 

 4 ( ) 4 ( )Ze r    


                                  (2.15) 

The density of the induced charge is 

2.6 Debye Screening  
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( )e N


           (2.16)

 where 
~

( )N  is the density of particles of type  , when the field  is 
present in the plasma. 

In equilibrium the distribution of particles in potential field is governed by the 
usual Boltzmann formula. 
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 where N  is the unperturbed particle density in the absence of the charge 
Ze. Then the Poisson equation results in 

 04 ( ) 4 exp eZ e r e N
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                       (2.19) 

where we have expanded the exponentials in the range where e KT   , and the 

quasineutrality condition 0e N


  

On developing the potential ( )r  into the Fourier series 

 
.( ) ( )i k rr d k e k 

 
           (2.20) 

Applying the Laplace operator to both sides of (2.20) 

 2 .ik r
kk e d k 

  

    

 2( )k kk                  (2.21) 

Fourier analyzing equation (2.19) and making use of the result (2.21) 
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 where we have made use of the relation 
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If we integrate the expression (2.23) using the theory of analytic functions by 

closing the contour along a large circle in the upper half plane of the complex k


 

and evaluating the residue at 
D

ik


 , we obtain  
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 where De , Di are the Debye lengths of electrons and ions, respectively. 

 From the expression (2.24) we note that the field of a test charge in a plasma 
differs from the field in vacuum since it is screened at larger distances Dr  . The 
screening is a consequence of the displacement of charged particles around the test 
charge. At distances Dr   the field of the test charge in the plasma practically 
does not differ from that in vacuum. 

 Debye length is an important characteristic length for the weakly coupled 
plasmas. Putting numbers for the known physical parameters in eq. (2.22), we find 
the following convenient numerical formula for the Debye length : 

  6.9 /
D

T
Z


         (2.26) 

 where T and η are to be measured in units, of K and cm–3. As an example 
for an OCP, Z = 1 n =1010 ,T=104; D is computed to be approximately 7 × 10–3 
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cm;  the Debye length usually takes on a value smaller than a macroscopic scale of 
distance. 

 The meaning of Eq. (2.24) is clear by comparison with coulomb potential 
Eq (2.14). For Dr  , the effective potential is virtually identical to the bare 
Coulomb potential, Eq (2.14). For Dr  , the potential field decreases 

exponentially; one  can take ( ) 0r


 . 

 In otherwords, the potential field around a point charge is effectively 
screened out by the induced space charge field in the OCP for distances greater 
than the Debye length. 

 Let us consider the number of plasma particles involved in such an act of 
Debye screening. For such a purpose. We define the Debye number, ND, the 
average number of particles contained in a shire with a radius D   : 

 34
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2.7 Alternative Derivation of Debye Shielding  
 In the following we show how a plasma modifies or shields the electric 
field of a discrete charge. 

 We place a charge q at rest in a plasma with an initially uniform electron 
density n0 and treat the ions as a fixed neutralizing background. The electric 

potential ( )E 


   is determined by Poisson equation. 

 2 4 ( ) 4 ( )e oq x e n n   


                   (1) 

 where the charge is located at r = 0 for convenience. 

In the static limit, the force equation for electron fluid is reduced to  

 e
e e e

d unm n e E n
dt






    , (Condition of equilibrium) 

      0 e e en e E n


    

 e e en e E n


    

 where an isothermal equation of state has been used. 

2.7 Alternative Derivation of Debye Shielding  
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Noting that 
e

e


<<1, we expand the exponential  
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The equation (2) is easily solved by Fourier transforming and then inverting, which 
gives  
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The plasma electrons shield out the field of a discrete charge in a characteristic 
distance which is De . In general, the ions also contribute to the shielding. 
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2.8  Occurrence of the Plasma 
 Plasma is the most widespread state of matter in nature. The Sun and stars 
can be regarded as enormous lumps of hot plasma. The outer layer of Earth’s 
atmosphere- ionosphere-consists of plasma. 

 The radiation belts found outside the ionosphere around the earth are 
plasma formations of very low density. We encounter plasma in various natural 
and gas discharges, since any gas discharge (lightning, spark, arc, etc) involves 
plasma formation. Finally, we mention the solid-State plasmas, i.e. the electron 
plasmas of metals and electron-hole plasmas of semiconductors. 

 Studies in plasma physics were always stimulated mainly by the prospects 
of practical applications. At first plasma attracted attention as a peculiar conductor 
of electric current and a light source. Nowadays new techniques in plasma studies 
stem from important current technological problems for which plasma physics 
serves as a scientific foundation .The most important among these problems are 
controlled thermonuclear fusion and magneto hydrodynamic conversion of thermal 
energy into electrical energy. In the near future plasma physics will, possibly, 
make a significant contribution to accelerator technology. 

 In the scheme of “controlled thermonuclear research”, energy is released in 
fusion processes between light nuclear of hydrogen isotopes such as deuterium and 
tritium. Only two reactions are of practical interest : 

  
 4D T He n 17.6MeV     
Since atomic nuclei are positively charged, they repel each other by the Coulomb 
forces. To induce nuclear fusion reactions effectively by overcoming such 
repulsive forces, those nuclei have to collide vigorously with each other. The 
minimum conditions for net production of energy by a magnetic-confinement 
scheme are estimated to be dense, high temperature plasma of 1014 to 1015 cm–3 and 
~ 108 K held for more than a second. Stable confinement and heating of a plasma 
are essential problems in realization of the controlled release of such nuclear fusion 
energy. 

D + D
He + n + 3.25 MeV3

T + p + 4.0 MeV 

2.8  Occurrence of the Plasma 
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 It is a well known fact that most of the matter in the nature, with a few 
exceptions such as the surface of cold planets (the earth, for example) exists as a 
plasma. The physical sizes and characteristics of plasmas in the universe are 
described in the followings : 

(A) Plasmas on Earth : 

 On the earth, plasmas are found with dimensions of microns to meters. The 
magnetic fields associated with these plasmas range from about 0.5 gauss (the 
earth’s ambient field) to mega gauss field strengths. Plasma lifetimes on earth span 
12 to 19 orders of magnitude: 

 Laser produced plasmas have properties measurable in picoseconds. Pulsed 
power plasmas have nanosecond to microsecond lifetimes  and magnetically 
confined fusion oriented plasmas persist for appreciable fractions of a second. 
Quiescent plasma sources, including fluorescent light sources, continuously 
produce plasmas whose lifetimes may be measured in hours, weeks, or years, 
depending on the cleanliness of the ionization system. 

 Lightning is a natural plasma resulting from electrical discharges in the 
earth’s lower troposphere. The maximum time duration of a lightning flash is about 
2s in which peak currents as high as 200 kA can occur. The conversion from air 
molecules to a singly ionized plasma occurs in few microseconds, with hundreds of 
Mega Joules of energy dissipated and plasma temperatures reaching ~ 3eV. The 
discharge channel avalanches at about one-tenth speed of light, and the high 
current carrying core expands to a diameter of a few centimeters. The total length 
of the discharge is typically 2–3 km. 

 Lightning has been observed on Jupiter, Saturn, Uranus, and Venus. The 
energy released in a single flash on the  earth, Venus, and Jupiter is typically 6 × 
108 J, 6 × 1010 J, and 2.5 × 1012 J, respectively. 

 Nuclear driven atmospheric plasmas were a notable exception to the 
generally short-lived energetic plasmas on earth. For example, the 1.4 megaton 
(5.9 × 1015 J) starfish detonation, 400 km above Johnston Island, on July 9, 1962, 
generated plasma from which artificial “Van Allen belts” of electrons circulating 
the earth were created. 

(B) Near-Earth Plasma : 
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 The earth’s “ionosphere” and magnetosphere” constitute a cosmic plasma 
system that is readily available for extensive and detailed experimentation. It 
contains a rich variety of plasma a populations ranging from more than 106 cm–3 to 
less than 10–2 cm–3, and temperatures from 0.1 eV to more than 10 keV. 

 The earth’s magnetosphere is that region of space defined by the interaction 
of the solar wind with the earth’s dipole-like magnetic field. It extends from 
approximately 100 km above the earth’s surface, where the proton neutral atom 
collision frequency is equal to the proton gyrofrequency, to about ten earth radii 
(~63,800 km) in the and sunward direction and to several hundred earth radii in the 
anti-sunward direction. It is shown in figure 1. 

 Ionosphere :  

 The ionosphere is a layered plasma region closest to the surface of the earth 
whose properties change continuously during a full day. The ionosphere was first 
detected by radio waves and then bye radar. 

 First to be identified was a layer of molecular ionization, called the E-layer. 
This region extends over a height range of 90-140 km and may have a nominal 
density of 105 cm–3 during the  periods of low solar activity. 

A D-region underlies this with a nominal day time density of 103 cm–3.Overlying 
the E region is the F layer of ionization, the major part of the ionosphere, starting 
at about 140 km. In the height range 100–150 km, strong electric currents are 
generated by a process analogous to that of a conventional electric generator, or 
dynamo. The region and in consequence, is often termed the dynamo region and 
may have densities 106 cm–3. The F layer may extend. 

 1000 km in altitude where it eventually merges with the plasmas of the 
magnetopause and solar wind. The interaction of the supersonic solar wind with 
the intrinsic dipole magnetic field of the earth forms the magnetosphere whose 
boundary, called the magnetopause, separates interplanetary and geophysical 
magnetic fields and plasma environments. 

 Upstream of the magnetopause a collisionless bow shock is formed in the 
solar wind –magnetosphere interaction process. At the bow shock the solar wind 
becomes thermalized and subsonic and continues its flow around the 
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magnetosphere as magneto sheath plasma, ultimately rejoining the undisturbed 
solar wind. 

 In the anti-solar direction, observations show that the earth’s magnetic field 
is stretched out in an elongated geomagnetic tail to distances of several hundred 
earth radii. The field lines of the geomagnetic tail intersect the earth at high 
latitudes (~ 60º–75º) in both the northern and southern hemisphere (polar horns), 
never the geomagnetic poles. 

 Deep within the major magnetosphere is the plasmosphere, a population of 
cold ( 1 )eV  iono-spheric ions and electrons corotating with the earth. Table 1 lists 
some typical values of parameters in the earth’s magnetospheres. 

(C) Solar, Stellar and Interstellar Plasma 
Plasmas in the Solar System  

The space environment around the various planetary satellites and rings in the solar 
system is filled with plasmas such as the solar wind, solar and galactic cosmic rays 
(high energy charged particles) and particles trapped in the planetary 
magnetospheres. 

The nuclear core of the sun is a plasma at about a temperature of 1.5 keV  

(1 eV = 11600 K). Beyond this, our knowledge about the Sun’s interior is highly 
uncertain.  

 We do have information about the Sun’s surface atmospheres which are 
known as follows : the photosphere the chromosphere, and the inner corona. These 
plasma layers are superposed on the Sun like onion skins. 

 The photosphere (T ~ 0.5 eV) is only a very weakly ionized atmosphere the 
degree of ionization being 10–4–10–5 in the quiet regions and perhaps 10–6–10–7 in 
the vicinity of sunspots. 

 The chromosphere (T ~ 4eV) extends 5000 km above the photosphere and 
is a transitions region to the inner corona.  

The highly ionized inner corona extends some 105 km above the photosphere. 
From a plasma physics point of new the corona is perhaps the most interesting 
region of the Sun. The corona is the sight of unstable magnetic field 
configurations, X-Ray emission, an plasma temperatures in the range 70–263 eV. 
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Table 1:- 

Parameters associated with the Sun  

Density: 

 At centre   26 3 3(20 ) 160 /cm g cm  

 At surface   15 3 9 3(10 ) 10 /cm g cm   

 At corona   7 3 16 3(10 ) 10 /cm g cm   

Temperature 

 At centre   1.5keV  

 At surface   0.5eV  

 At sunspots   0.37eV  

 At chromosphere  0.38 4.5eV  

 In corona   70 263eV eV  

 Emission   263.826 10 W  

 Magnetic Field Strengths : 

 In sunspots   3.5 kG 

 Elsewhere on sun  1 to 100 G 

 

Plasmas Beyond the Solar System: 

 Beyond the solar system we find a great-variety of natural plasmas in starts, 
in the stellar space, galaxies, intergalactic space, and far beyond. The galactic 
plasma has an extent equal to the dimensions of over galaxy itself ~ 35kpc or 
1021m. The most salient feature of the galactic plasma are 10−3G poloidal- toroidal 
plasma filaments extending nearly 250 light year (60 pc, 1.5 × 1018 m) at  

the galactic center. 

The vast regions of nearly neutral hydrogen found in the galaxy are weakly ionized 
plasmas. These regions extend across the entire widths of the galaxy and are 
sometimes found between interacting galaxies. They are deflected by the 21 cm 
radiation they emit, Galaxies may have bulk plasma densities of 10–1 cm–3 ; groups 
of galaxies, 3 × 10–2 cm–3, and rich clusters of galaxies, 3 × 10–3 cm–3. 
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Figure 1. Schematic configuration of the magnetosphere.The dark descents 
represent the regions of trapped energetic particles (Van Allen radiation belts). The 
turbulent region between the shock wave (bow wave) and the magnetopause is 
known as  magneto sheath. Geocentric distances are indicated in units of Earth 
radii. 

2.9 Illustrative Examples 
Example 1  Complete the following table, which lists typical parameters for the 
electrons in four different plasmas : 

 no (in m–3) T (K) ωpe (rad s–1) D (m) ND 

Solar atmosphere  1018 104    

Solar corona 1013 106    

Ionosphere 1010 103    

Tokomak 1019 108    

Sol. ωpe = 

1
2 2

0

on e
m

 
 
 

is the plasma frequency  

To obtain quantitative information, we make two further steps. First, we replace 

the universal constants e2, m, and ε0 by their numerical values. Secondly , we write 

2.9 Illustrative Examples 
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no as  on
Characteristic density

characteristic density
 

 
 

. We choose the characteristic 

density to be that of a plasma in a present-day medium-size fusion experiment, 1019 

m–3. This enables us to write ωpe given by equation (1) in the from  

 
1
211 –1

19 31.8 10
10

o
pe

n rad s
m

 

    
 

. 

Thus, when n0 = 1019 m–3, ωpe = 1.8 ×1011 rad s–1. 

When n0 = 1018 m–3 , ωpe = 1.8 ×1011 –1 1/2 –1(10 ) rad s = 5.6 × 1010 rad s-1. 

For solar corona n0 = 1013 m–3 , 

Therefore ωpe = 1.8 ×1011 
1

13 2

19
10
10
 
 
 

rad s–1  

  = 1.8 ×1011 × 10–3 rad s–1  

  = 1.8 ×108  rad s–1  

For ionosphere : ωpe = 1.8 ×1011 
1

10 2

19
10
10
 
 
 

rad s–1   =
1

11 2

4

1.8 10 1
10 10
   

 
rad s–1 

   = 1.8 ×107 × 0.3 = 5.6 ×106  rad s–1    

We define the Debye length 

 

1 1
2 2

2
0

1o B B
D

pe

K T K T
n e m





       
  

 1

pe
 

KB is Boltzmann constant. We again choose typical values appropriate to medium-
size fusion experiments, with characteristic thermal energy 1 keV and number 
density 1019 m–3. Thus we can write D  

 
1
2

5
19 –37.4 10

1 10
oB

D
nK T m

keV m
           

    
 

Another convenient formula for D is  

 6.9D

T
n

Z
  (cm)  
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Where T and n are to be measured in units of K and cm–3. Z = 1 for one-
component-plasma. 

We now calculate D for solar atmosphere : 

 –36.9
( )D

T cm
n cm

   

 T = 104 K, n = 1018 3
1

m
= 1018 × 12 –3

6 3
1 10

10
cm

cm
  

  
1

4 2

12
106.9
10D cm
 

  
 

 =6.9 × 10–4 cm 

For solar corona : T = 106 K, n = 1013 3
1

m
 = 1013 3

6
1

10
cm = 107 cm–3  

  
6

7
106.9
10D cm   = 2.18 cm 

For Ionosphere : 

 T = 103 K, n0 = 
10

7

10
10

cm–3 = 104 cm–3   

  
3

4
106.9
10D cm  = 2.18 cm 

For Tokomak  36.9
( )D

T
n cm

   ,T = 108 K, n = 1019 m–3 = 1013 cm–3  

Thus 
8

13
106.9
10D cm  = 2 16.9 10

10
cm   = 2.18 × 10–2 cm. 

 In order to calculate the number of particles ND which lie within a Debye 
length of the charge is 

 3
0

4
3D DN n
  = 1.38 × 106 Z–3 

1 3
2 2

0
12 –3 610 10
n T
cm K

   
  
  

 

n0 is number density of electrons in 3
1

cm
. 

For example in solar atmosphere 

 n0  = 1018 3
1

m
  = 1012 3

1
cm

    ,T = 104 k, Z = 1 
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 ND = 1.38 × 106 
1 3

12 –3 42 2

12 –3 6
10 10
10 10

cm K
cm K


   

   
   

 = 1.38 × 106 × 1 × (10–2)3/2  

  = 1.38 × 106 × 10–3  = 1.38 × 103 Ans. 

 Similarly for other plasma. 

2.10 Self Learning Exercise 
Q.1  Estimate the plasma frequency, the Debye length of  electrons and the plasma 

parameter for the ionospheric plasma.  

 7 –3( 10 , 1 )i e iNe N cm T T eV     

Q.2 Estimate the plasma frequency, the Debye length of electrons and the plasma 
parameter for the thermonuclear plasma 15 –3( 10 , 10 )e i e iN N cm T T keV      

2.11 Summary 
In this chapter, we have introduced the fundamental parameters that characterize 
the collective, self-consistent behavior of plasmas. First we introduced the natural 
frequency of oscillation of the number density of electrons, which is the electron 

plasma frequency ωpe. We have described various types of plasmas occurring in 
space, sun, an earth. We have introduced their characteristic value of the densities, 
temperature etc. 

2.12 Glossary  
Plasma: Plasma is an ionized gas in which all or a considerable part of the atoms 
have lost one or several of their electrons, thus becoming positive ions. Plasma 
consists of charged particles that respond collectively to electromagnetic forces. 
The charged particles are usually clouds or beams of electrons or ions or a mixture 
of electrons and ions, but also can be charged grains or dust particles. 

Magnetopause: The interaction of the supersonic solar wind with the intrinsic 
dipole magnetic field of the earth forms the magnetosphere whose boundary, called 
the magnetopause, separates interplanetary and geophysical magnetic fields and 
plasma environments. 

2.13 Answers to Self Learning Exercise 

Ans.1: ωpe = 1.7 × 108s–1, 0.25Der cm ,Plasma parameter –53 10   . 

2.10 Self Learning Exercise 

2.11 Summary 

2.12 Glossary  

2.13 Answers to Self Learning Exercise 
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Ans.2: (Plasma frequency) 14 –11.7 10pe s   , Debye length ≈ 1.5 × 10–7 cm and 

plasma-parameter 61.5 10  . 

2.14 Exercise 

Q.1 Electron plasma frequency ωpe 
radin

s
 
 
 

is defined as 
1/22

0

0
pe

n e
m


 

   
where n0 

is in the unit of 3
1

m
. Show that the plasma frequency defined by f = 1

2 pe


 (in 

the unit of Hertz) can be written as  

  fp = 3( )a n m Hz. 

  ωpe = 56.6 
1
2
e

radn in
s

 
 
 

 

Q.2 Debye length 
1
2

0
2
B

D
K T

ne


   
 

. Show that it can be written as  

 
1
2

6.9.0D
T
n

    
 

(in m)where T is in Kelvin, n is m 3
1

m
 

Q.3 Write approximate magnitudes of n0, Temperature T, ωpe, D , n0 
3
D  of the 

following plasmas  

 (i) Solar corona (ii) Ionosphere (iii) Thermonuclear plasma. 

References and Suggested Readings 
1.  Plasma physics    -F.F Chen. 

2.  Statistical Plasma physics Vol. I -S.Ichemann  

3.  Fundamentals of Plasma physics -J.A. Bittencourt 

  

2.14 Exercise 

References and Suggested Readings 
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UNIT-3 
Applications of Plasma Physics : Controlled 

Thermonuclear Physics 
Structure of the Unit 

3.0  Objectives 

3.1  Controlled Thermonuclear Reactions 

3.1.1 Temperature Requirements 

3.1.2 Confinement 

3.2 Magnetohydrodynamic (MHD) Generator 

3.3  MHD System 

3.4  MHD Cycles and Working Fluids 

3.5  Plasma Propulsion 

3.6 Self Consistent Formulation 

3.7  Self Learning Exercise 

3.8  Summary 

3.9  Glossary 

3.10  Exercise 

 References and Suggested Readings 

3.0 Objective 
In this chapter, we try to understand the problem of obtaining controlled nuclear 
fusion in the laboratory, and configure a device for the containment of high 
temperature plasma at a density and for a period of sufficient time for nuclear 
fusion reactions to take place, generating more energy required to create and 
confine the plasma.  

The dynamics of conducting plasma fluid under the application of electric and 
magnetic field is important and thus working of Magnetohydrodynamic (MHD) 

UNIT-3 
Applications of Plasma Physics : 

Controlled Thermonuclear Physics 

3.0 Objectives 
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generator has been given for understanding the production of electrical power. The 
importance of MHD mechanism is used in propulsion system.  

3.1 Controlled Thermonuclear Reactions 
 Thermonuclear fusion is the process by which nuclei of low atomic weight 
such as hydrogen combine to form nuclei of higher atomic weight such as helium 
by using extremely high temperatures. Two isotopes of hydrogen, deuterium 
(composed of a hydrogen nucleus containing one neutrons and one proton) and 
tritium (a hydrogen nucleus containing two neutrons and one proton), provide the 
most energetically favorable fusion reactants. In the fusion process, some of the 
mass of the original nuclei is lost and transformed to energy in the form of high 
energy particles. Energy from fusion reactions is the most basic form of energy in 
the universe; our sun and all other stars produce energy through thermonuclear 
fusion reactions. 

We shall first discuss the physics of fusion reactions rather generally, and then talk 
about the promising reactions for practical energy product ion. 

Considering the fusion reaction 

    ( )a b fusion products Kinetic Energy few MeV  

where a and b are the initial nuclei. This fusion reaction cannot occur, however, 

unless nuclei can overlap, or get with a distance of about 1310 cm from one 
another. In particular, they must overcome the Coulombic repulsion by having 
sufficient kinetic energy when they are separated. Sometimes, larger energy is 
required to overcome the centrifugal barrier effects for particular fusion with 
substantial probability.  As the temperature of the plasma is increased, the contents 
of the plasma gain more kinetic energy and thus fusion may start to occur at the 
ignition temperature. 

 Beside the fusion energy, plasma has its own property of cooling off or 
radiating energy.  Plasma does not radiate or lose energy rapidly as the black body 

does (proportional to 4T ), and thus becomes prominent mechanism for radiation of 
energy in plasma, is known as Bremsstrahlung. If n is number density of ions, Z is 
their average charge, and T is the ion temperature, then the power radiated is 
proportional to 2 2

BZ n k T . Further, the additional loss of energy accounts for 

3.1 Controlled Thermonuclear Reactions 
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escaping the particles. The worst situation comes when the escaping particles can 
damage the walls of the cavity, destroy the superconducting magnets or 
contaminate the plasma with impurities and release harmful radiations.  

 Therefore, Lawson criterion is necessary to produce more energy by fusion 
than is lost by Bremsstrahlung and escape. It is defined as the product of the 
plasma density n  and the time   for which the plasma remains confined above the 

ignition temperature. The most favorable Lawson criterion is   1410n  for 
deuterium-tritium reaction. 

 The most commonly fusion reaction is the deuterium –tritium reaction: 

    4 (3.5 ) (14.4 )D T He MeV n MeV  

 The D-T reaction has the lowest ignition temperature of any fusion reaction. 
Most of the fusion energy is released in the form of 14 MeV neutrons, which 
finally converts into thermal energy. The kinetic energy of charged fusion products 
may be directly converted into electrical energy. Finally, the energetic neutrons 
may cause loss of radiation for this D-T reaction to materials in confinement 
system. 

 Another reaction commonly considered is D-D reaction: two sets of 
products occur with equal probability: 

  
  

 3

(1 ) (3 )

(.8 ) (2.5 )

D D T MeV p MeV

He MeV n MeV
 

In this reaction only one third of the fusion energy is given to neutrons instead of 
breeding the tritium. Drawback of this reaction is higher ignition temperature (35 
KeV) and Lawson number (1016). Further, the following three reactions which have 
the desirable feature of producing no neutrons at all, but it still requires higher 
ignition temperature and Lawson number for fusion: 

   3 4 (18.4 )D He He p MeV  

   6 4 3 (4 )p Li He He MeV  

  11 43 (8.7 )p B He MeV  

Plasma is dependent on the two parameters n and kBT, i.e. Plasma density and 
thermal energy respectively. Plasma applications cover a wide range of n and kBT. 
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Plasma density varies from 106 to 1034 /m3 and thermal energy varies from 0.1 to 
106 eV. 

3.1.1 Temperature Requirements 

 Temperature is a measure of the average kinetic energy of particles, so by 
heating the material it will gain energy. After reaching sufficient temperature, 
given by the Lawson criterion, the energy of accidental collisions within the 
plasma is high enough to overcome the coulomb barrier and the particles may fuse 
together. For example, in a deuterium–tritium fusion reaction, the minimum energy 
required to overcome the coulomb barrier is 0.1 MeV. Converting between energy 
and temperature shows that the 0.1 MeV barriers would be overcome at a 
temperature in excess of 1.2 billion Kelvin. 

There are two effects that lower the actual temperature needed. One is the fact that 
temperature is the average kinetic energy, which implies that some nuclei at this 
temperature would actually have much higher energy than 0.1 MeV, while others 
would be much lower. The other effect is quantum tunnelling. The nuclei do not 
actually have to have enough energy to overcome the coulomb barrier completely. 
If they have sufficient amount of energy, they can tunnel through the remaining 
barrier. For these reasons fuel at lower temperatures will still undergo fusion 
events, at a lower rate. 

3.1.2 Confinement 

In thermonuclear fusion, the major problem is how to confine the hot plasma? 
Actually, the plasma cannot be in direct contact with any solid material because of 
high temperature, thus it has to be located in a vacuum. But it is known that high 
temperatures also imply high pressures, and as the temperature raises the plasma 
tends to expand immediately and therefore some force is necessary to act against 
this thermal pressure. This force can be either gravitational (in stars), magnetic 
forces (magnetic confinement fusion reactors), or the fusion reaction which may 
occur before the plasma starts to expand, so in fact the plasma's inertia is keeping 
the material together. 

Gravitational confinement: 

 The force, which is capable of confining the fuel well enough to satisfy the 
Lawson criterion, is gravity. The gravitational confinement is only found in stars 
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however mass needed is so great. The least massive stars capable of sustained 
fusion are red dwarfs, while brown dwarfs are able to fuse deuterium and lithium if 
they are of sufficient mass. In heavy stars, after the supply of hydrogen is 
exhausted in their cores, their cores start fusing helium to carbon. In the most 
massive stars, the process is continued until some of their energy is produced by 
fusing lighter elements to iron. As iron has one of the highest binding energies, 
reactions producing heavier elements are generally endothermic. 

Magnetic confinement:  

Without the mass required to obtain a high gravitational field, fusion on earth must 
be controlled by means other than gravity. It is more feasible for controlled fusion 
purposes to work at low gas densities and increase the temperature to values 
considerably higher than that in the center of the sun. At these high temperatures, 
all matter is in the plasma state. Fortunately, plasma consists of a gas of charged 
particles that experience electromagnetic interactions and can be confined by a 
magnetic field of appropriate geometry. The magnetic field acts as a container that 
is not affected by heat, like ordinary solid containers, and cannot be a source of 
impurities which would prevent the fusion reaction. The motion of electrically 
charged particles is constrained by a magnetic field. In the absence of the magnetic 
field, heated particles will move in straight lines in random directions, quickly 
striking the walls of the container. When a uniform magnetic field is applied the 
charged particles will follow spiral paths encircling the magnetic lines of force. 
The motion of the particles across the magnetic field lines is restricted and so is the 
access to the walls of the container. 

Inertial confinement: 

 In inertial fusion a pulse of radiation from a driver is focused on a small fuel 
capsule, rapidly heating its surface. An inward shock wave produced by the 
outward expansion of hot surface material compresses the pellet core. When the 
deuterium-tritium fuel in the core is compressed to a density of more than 1030 
particles/m3, ignition occurs at a temperature of 108 K. Inertia holds the pellet 
material together long enough for considerable thermonuclear burn to occur, 
releasing more energy than deposited by the driver source. The pulse of radiation 
provided by the driver may be light from a high energy laser source focused 
directly on the target, or, more effectively, X-rays created by laser light striking the 
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internal walls of an hollow metallic cylinder which contains the fusion target. 
Other inertial fusion driver concepts involve heavy or light-ion accelerators. Very 
large laser facilities are presently approaching the conditions of ignition by inertial 
confinement. 

Electrostatic confinement: 

 There are also electrostatic confinement fusion devices. These devices confine 
ions using electrostatic fields. The best known is the Fusor: This device has a 
cathode inside an anode wire cage. Positive ions fly towards the negative inner 
cage, and are heated by the electric field in the process. If they miss the inner cage 
they can collide and fuse. Ions typically hit the cathode, creating prohibitory high 
conduction losses. Also, fusion rates in fusors are very low due to competing 
physical effects, such as energy loss in the form of light radiation.  

3.2 Magnetohydrodynamic (MHD) Generator 

Background: When an electrical conductor is moved so as to cut lines of magnetic 
induction, the charged particles in the conductor experience a force (Lorentz) in a 
direction mutually perpendicular to the field 


B  and to the velocity of the 

conductor. The negative charges tend to move in one direction and the positive 
charges in the opposite direction. This induced electric field, or motional emf, 
provides the basis for converting mechanical energy into electrical energy. At the 
present time nearly all electrical power generators utilize a solid conductor which 
is caused to rotate between the poles of a magnet. In hydroelectric generators, the 
energy required to maintain the rotation is supplied by the gravitational motion of 
river water. Turbo generators generally operate using a high-speed flow of steam 
or other gas. The heat source required to produce the high-speed gas flow may be 
supplied by the combustion of a fossil fuel or by a nuclear reactor (either fission or 
possibly fusion). Later on, it was recognized by Faraday that one could use fluid 
conductor as the working substance in a power generator. To verify this, Faraday 
immersed electrodes into the Thames river at either end of the Waterloo Bridge in 
London and connected the electrodes at mid span on the bridge through a 
galvanometer. Faraday reasoned that the electrically conducting river water 
moving through the earth's magnetic field should produce a transverse emf. Small 
irregular deflections of the galvanometer were observed. The production of 

3.2 Magnetohydrodynamic (MHD) Generator 
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electrical power through the use of a conducting fluid moving through a magnetic 
field is referred to as magneto-hydrodynamic power generation.  

 Thus, the interaction of moving conducting fluids with electric and 
magnetic fields provides for a rich variety of phenomena associated with electro-
fluid-mechanical energy conversion. Effects from such interactions can be 
observed in liquids, gases, two-phase mixtures, or plasmas. An MHD generator is 
an energy conservation device which can be used with high temperature heat 
source like nuclear reactor. The maximum efficiency of such a system is 
determined by the temperature of the heat source. The MHD generator develops 
DC power and the conversion to AC is done using an inverter. 

 

Figure 1 

Principle: The principal of MHD power generation is based on Faraday’s law of 
electromagnetic induction, which states that when a conductor and a magnetic field 
moves relative to each other, then voltage is induced in the conductor, which 
results in flow of current across the terminals. As the name implies, the magneto 
hydro dynamics generator shown in the figure1, is concerned with the flow of a 
conducting fluid in the presence of magnetic and electric fields. 

Theory: In conventional generator or alternator, the conductor consists of copper 
strips (windings) while in an MHD generator the hot ionized gas or conducting 
fluid replaces the solid conductor. A field of magnetic induction B is applied 
transverse to the motion of an electrically conducting gas flowing in an insulated 
duct with the velocity u . Charged particle will experience an induced electric field 

u B , which further develop an electric current in perpendicular direction to both 
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u  and 

B . This current is measured then by the pair of electrodes on opposite side 

of the duct in contact with the gas.  

 
Figure 2 

Electrodes in the MHD generator perform the same function as brushes in a 
conventional DC generator. Neglecting the magnitude of the current density for a 
weakly ionized gas is given by the generalized Ohm's law as 

  
  ( )j E u B         (1) 

Where 

E applied electric field is added to the induced field. In terms of coordinate 

system (according to figure) 

 ( )y yj E uB         (2) 

For open circuit 0yj    then electric field yE uB . For short circuit,  0yE  and 
 yj uB . For general load conditions, introducing a loading parameter  

  0 1K as 

 yE
K

uB
         (3) 

  (1 )yj uB K         (4) 

 The negative sign indicates that the conventional current flows in the 
negative y-direction. Since the electrons flow in the opposite direction, the bottom 
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electrode must serve as an electron emitter, or cathode, and the upper electrode is 
an anode. 

The electric power delivered to the load per unit volume of a MHD generator gas is 




.y yP j E          (7) 

  2 2 (1 )P u B K K         (8) 

This power density has a maximum value, for 1 / 2K  , is 

 



2 2

max
4

u B
P           (9) 

The rate of which energy is extracted from the gas by the electromagnetic field per 
unit volume is   

.u j B . Therefore, we define the electrical efficiency of a MHD 
generator as 

  





.

.( )
e

j E

u j B
                  (10) 

For the generator being discussed, efficiency  e K . 

3.3 MHD System 
The MHD generator needs a high temperature ionized gas source (either coolant 
from a nuclear reactor or more likely high temperature combustion gases generated 
by burning fossil fuels, coal) in a combustion chamber. The possible components 
of MHD system are shown in diagram below: 

 
Figure 3 

3.3 MHD System 
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The expansion nozzle reduces the gas pressure and consequently increases the 
plasma speed through the generator duct to increase the output power. But 
unluckily, at the same time, the pressure drop causes the plasma temperature to 
fall, which also increases the plasma resistance. 

 The Plasma: 

 The main requirement of MHD system is creating and managing the conducting 
gas plasma since the system depends on the plasma having a high electrical 
conductivity. Therefore, to achieve high conductivity, the gas must be ionized by 
detaching the electrons from the atoms or molecules leaving the positively charged 
plasma. The plasma flows through the magnetic field at high speed, the flow of the 
positively charged particles providing the moving electrical conductor necessary 
for inducing a current in the external electrical circuit. Suitable working gases are 
obtained from combustion, noble gases, and alkali metal vapours. 

Methods of Ionizing the Gas: 

 As we know that there are various methods for ionizing the gas, all of which 
depend on imparting sufficient energy to the gas. Mainly it is achieved by heating 
or irradiating the gas with X rays or Gamma rays. In addition to this, it has been 
suggested to use the coolant gases such as helium and carbon dioxide employed in 
some nuclear reactors as the plasma fuel for direct MHD electricity generation 
rather than extracting the heat energy of the gas through heat exchangers to raise 
steam to drive turbine generators. Seed materials such as Potassium carbonate or 
Cesium are often added in small amounts, typically about 1% of the total mass 
flow to increase the ionization and improve the conductivity, particularly of 
combustion gas plasmas. 

Containment:  

Since the plasma temperature is typically over 1000 °C, the duct containing the 
plasma must be constructed from non-conducting materials capable of 
withstanding these high temperatures. The electrodes must of course be conducting 
as well as heat resistant. 

The Faraday Current: 

 A powerful electromagnet provides the magnetic field through which the plasma 
flows, and two electrodes on opposite sides of the plasma are employed across 
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which the electrical output voltage is generated. The current flowing across the 
plasma between these electrodes is called the Faraday current. This provides the 
main electrical output of the MHD generator. 

The Hall Effect Current:  

The very high Faraday output current which flows across the plasma duct itself 
interacts with the applied magnetic field creating a Hall Effect current 
perpendicular to the Faraday current. The total current generated will be the vector 
sum of the transverse (Faraday) and axial (Hall effect) current components. The 
Hall Effect current, along the axis of the plasma, will constitute an energy loss 
unless it is captured in some way. Various configurations of electrodes have been 
devised to capture both the Faraday and Hall effect components of the current in 
order to improve the efficiency. 

 One of the configurations is to split the electrode pair into a series of 
segments physically side by side (parallel) but insulated from each other, with the 
segmented electrode pairs connected in series to achieve a higher voltage but with 
a lower current. The electrodes are skewed at a slight angle from perpendicular to 
be in line with the vector sum of the Faraday and Hall effect currents, as shown in 
the diagram below, thus allowing the maximum energy to be extracted from the 
plasma. 

 
Figure 4 

 Power Output: 

The output power is proportional to the cross sectional area and the flow rate of 
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 the ionized plasma. The conductive substance is also cooled and slowed in this 
process. MHD generators typically reduce the temperature of the conductive 
substance from plasma temperatures to just over 1000 °C.  

 Efficiency: 

 Typical efficiencies of MHD generators are around 10 to 20 percent mainly due to 
the heat lost through the high temperature exhaust. This limits the MHD's potential 
applications as a standalone device but they were originally designed to be used in 
combination with other energy converters in hybrid applications where the output 
gases (flames) are used as the energy source to raise steam in a steam turbine plant. 
Total plant efficiencies of 65% could be possible in such arrangements. 

3.4 MHD Cycles and Working Fluids 
Majorly there are two types of MHD cycles, namely Open Cycle MHD and Closed 
Cycle MHD. A brief account of these and the working fluids used are given below.  

Open Cycle MHD System: 

 In open cycle MHD system, atmospheric air at very high temperature and pressure 
is passed through the strong magnetic field. Coal is first processed and burnet in 
the combustor at a high temperature of about 2700°C and pressure about 12 atp 
with pre-heated air from the plasma. Then a seeding material such as potassium 
carbonate is injected to the plasma to increase the electrical conductivity. The 
resulting mixture having an electrical conductivity of about 10 Siemens/m is 
expanded through a nozzle, so as to have a high velocity and then passed through 
the magnetic field of MHD generator. During the expansion of the gas at high 
temperature, the positive and negative ions move to the electrodes and thus 
constitute an electric current. The gas is then made to exhaust through the 
generator. Since the same air cannot be reused again hence it forms an open cycle 
and thus is named as open cycle MHD.  

Closed Cycle MHD System: 

 In this system, the working fluid is circulated in a closed loop. Thus, in this case 
inert gas or liquid metal is used as the working fluid to transfer the heat. The liquid 
metal has typically the advantage of high electrical conductivity, hence the heat 
provided by the combustion material need not be too high. Contrary to the open 
loop system there is no inlet and outlet for the atmospheric air. Hence, the process 

3.4 MHD Cycles and Working Fluids 
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is simplified to a great extent, as the same fluid is circulated time and again for 
effective heat transfer. 

Advantages of MHD Generation: 

(i) Here only working fluid is circulated, and there are no moving mechanical 
parts. This reduces the mechanical losses almost to nil and makes the 
operation more dependable. 

(ii) The temperature of working fluid is maintained the walls of MHD. 

(iii) It has the ability to reach full power level almost directly.  

(iii) The price of MHD generators is much lower than conventional generators.  

(iv) MHD has very high efficiency, which is higher than most of the other 
conventional or non-conventional method of generation. 

3.5 Plasma Propulsion 
Humans have been developing propulsion methods for years, and there is a 
constant drive to develop faster, more powerful drive systems. Recent 
technological developments allow us to propel massive machines with an elaborate 
selection of thruster types. Some of these burn high energy fuel to generate thrust, 
whereas other devices use electricity and magnetic fields. 

A magnetohydrodynamic drive or MHD propulsor is a method for propelling 
vessels using only electric and magnetic fields with no moving parts, using 
magnetohydrodynamics. The working principle involves electrification of the 
propellant (gas or water) which can then be directed by a magnetic field, pushing 
the vehicle in the opposite direction.  

 The major problem with MHD is that with current technologies it is more 
expensive than a propeller driven by an engine. The extra expense is from the large 
generator that must be driven by an engine. Such a large generator is not required 
when an engine directly drives a propeller. MHD is attractive to engineers because 
it has no moving parts, which means that a good design might be silent, reliable, 
efficient and inexpensive. If fuel cells become common, MHD propulsors may 
have lower costs in some applications than electric motors driving propellers. In 
magnetohydrodynamic thrusters magnetic field is generated by passing an electric  

Current  through  a liquid conductor,  such  as  sea water. Using another magnetic 

3.5 Plasma Propulsion 
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field, the liquid can be pushed in a chosen direction, therefore generating thrust.  

 A number of experimental methods of spacecraft propulsion are based on 
magnetohydrodynamic principles. In these the working fluid is usually plasma or a 
thin cloud of ions. Some of the techniques include various kinds of ion thruster, the 
magnetoplasmadynamic thruster, and the variable specific impulse magnetoplasma 
rocket. Plasma rockets open up new and exciting possibilities for fast space 
transportation. The same MHD generator principle in reverse has been used to 
develop engines for interplanetary missions. A current is driven through a plasma 
by applying a voltage to the two electrodes. The 


j B  force shoots the plasma out 

of the rocket and the ensuing reaction force accelerates the rocket. The plasma 
ejected must always be neutral, otherwise, the spaceship will charge to a high 
potential. 

Plasma rockets are dependent upon the availability of electric power, which is still 
limited in space. In space, electricity is generated mainly by solar arrays, and major 
changes in solar technology have increased the availability electric power. Another 
problem with plasma rockets is the confinement of plasma. The temperature of 
plasma is comparable to temperature in the interior of sun. No known material 
could survive direct contact with such plasma. A magnetic field can be constructed 
to both heat and guide a hot plasma. So that plasma never touches material walls. 

In future, plasma propulsion could be very valuable in number of ways. For 
example, low power rockets could play an important role in space missions. Fusion 
driven plasma rockets could be instrumental in carrying us in space. 

3.6 Self Consistent Formulation 
The interaction of charged particles with electromagnetic fields is defined by the 
Lorentz force. For a particle of charge q and mass m, moving with v velocity in the 
presence of electric field (E) and magnetic field 


B , the equation of motion is 

    
  dp

q E u B
dt

,                 (11) 

It is possible to describe the plasma dynamics by solving the equation of motion 
for each particle in the plasma under the influence of externally applied fields and 
internally applied fields by the other plasma particles. 

A self consistent formulation can be used since the internal fields associated with 

3.6 Self Consistent Formulation 
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the presence and motion of the plasma particles. The electromagnetic fields obey 
Maxwell's equations.  The plasma charge and current density can be given as 

Plasma charge density:  



1
P i

i

q
V

               (12) 

Plasma current density: 



 1
p i i

i

j q v
V

                         (13) 

where the summation is over all charged particles contained in a small volume 
elementV . 

Although this self consistent approach is possible only in principle, it cannot be 
carried out in practice without average scheme, as a large number of variables are 
involved. According to the classical mechanics, in order to determine position and 
velocity of each particle in the plasma it is necessary to know initial position and 
velocity of each particle. For a system like plasma, these initial conditions are 
unknown because the observable macroscopic properties of plasma are due to the 
average collective behavior of a large number of particles and thus it is not 
possible to know the detailed individual motion of each particle.  

3.7 Self Learning Exercise 
Q.1  What do you mean by Controlled thermonuclear reactions? How the fusion 

energy of plasma is increased? 

Q.2  What do you mean by “confinement of plasma”? Discuss the various types 
of confinement mechanism. 

3.8 Summary 
In this chapter, we have discussed thermonuclear fusion process, with need of 
constraining the temperature and confinement for plasma production. Lawson 
criterion is used to produce more energy by fusion than is lost by Bremsstrahlung 
and escape. On the basis of law of electromagnetic induction, the 
Magnetohydrodynmic (MHD) generator has been discussed in detail. The working 
of MHD system (Open and closed cycle) has been described for complete 
understanding. Finally, this chapter ends with the discussion of propulsion system 
followed by the self consistent formulation of plasma. 

 

3.7 Self Learning Exercise 

3.8 Summary 
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3.9 Glossary 

ATP: stands for Ambient Temperature and Pressure. 

MHD: Magnetohydrodynmic 

Siemens: Unit of electrical conductivity. 

Thermonuclear: Reactions that occur only at very high temperatures. 

Pellet: A small, rounded, compressed mass of a substance. 

Fusor: A fusor is a device that uses an electric field to heat ions to conditions 
suitable for nuclear fusion. 

3.10 Exercise 
Q.1  Discuss the principle and working of Magnetohydrodynamic generator and 

obtain the expression of efficiency. To improve the efficiency of MHD 
generator, how the Hall effect currents is managed? 

Q.2   Give a brief account of Open cycle and closed cycle MHD system. 

Q.3   Write a short note on Propulsion system. 
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4.0 Objectives  

To learn  

 Charged particle motion in a constant uniform electric field. 

 Charged particle motion in uniform magnetostatic fields. 

 Charged particle motion in nonuniform magnetostatic fields. 

 Invariance of the orbital magnetic moment and of magnetic flux. 

 Magnetic mirror effect 

 The Longitudinal adiabatic invariants 

 Drift due to an external force ; BE


  drift. 

 Gradient drift 

 Curvature drift 

 Combined gradient -curvature drift 
4.1  Introduction  

 Every Plasma has a natural tendency to disperse unless there is some 
restraining force, the energetic particles that compose the plasma will travel away 
from their initial positions at high velocity and the plasma will cease to exist. 
Plasmas are prevented from dispersing by magnetic fields, which act on the 
charged particles through the Lorentz force. The dynamics of charged particles 
therefore form an important area of plasma physics, which we shall examine in this 
chapter. We start by considering the simplest possible example, which consists of a 
charged particle moving in a spatially uniform magnetic field B


 which does not 

vary in time. 
4.2 The Equation Motion for a Particle of Charge Q Under the 
Action of the Lorentz Force 

The interaction of charged particles with electromagnetic fields is governed by the 
" Lorentz force" . For a particle of charge q and mass m, moving with velocity v

 , 
in the presence of electric field 


 and magnetic field B


 , the equation of motion is  

 )BvE(q
dt
pd 

  

4.0 Objectives 

4.1  Introduction  

4.2  The Equation Motion for a Particle of Charge Q 
 under  the Action of the Lorentz Force 
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where p
 =m 

v  denotes the particle momentum. 

The electromagnetic fields obey Maxwell equations : 

 
   



 BE ,
t    

 
o o

EB (J )
t


     


 

 
 





o
.E ,

     
       


.B 0  

where  , J


, o , and o  denote respectively, the total charge density, total electric 
current density, the electric permittivity, and magnetic permeability of free space. 

Charged particle in an electric field obeys the differential equation: 

 Eq
dt
pd 
          (1) 

For a constant electric field, it can be integrated, giving 0ptEq)t(p


   (2) 

 where )0(pp0


 denotes the initial momentum. 

Using the nonrelativistic expression 

 
dt
rdmvmp


          (3) 

and integrating, we obtain the following expression for the particle position )t(r
 ; 

 
  2

0 0
1 qEr(t) t V t r
2 m
 

    
 

       (4) 

where 0r
  is the initial position and  0V


 the initial velocity of the particle. 

If q > 0, the particle moves with constant acceleration 
m
Eq


 in the direction of E


. If 

q <0 then the particle moves in the opposite direction of E


 

4.3 Motion of a Charged Particle in Constant, Uniform 
Magnetic Field 

* The equation of motion is  (in the non-relativistic time. 

 )Bv(q)vm(
dt
d 

         (1)

 





 1

c
v  

*Let the magnetic field B


 be in z-direction, i.e.B


 =(0, 0, B). From eq.(1),we obtain 

4.3 Motion of a Charged Particle in Constant, 
 Uniform Magnetic Field 
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 x y
qv B v
m

          (2) 

 y x
qv B v
m

           (3) 

 zv = 0          (4) 

From eq. (4), it follows 

 vz = constant = v0 (say) or 0v
dt
dz

  

Integrating 

 z = v0t + z0         (5) 

That is the particle moves in the direction of magnet field with constant 
velocity.The trajectory of the particle in the x-y plane i.e. in a plane perpendicular 
to B


 field is obtained from equations (2) and (3) 

Substituting vy from eq. (2) into eq. (3), we obtain 

    
 


2

x x
qBv v
m

         (6) 

or    2
x c xv v 0 , where   c

qB
m

 is called the cyclotron frequency of the charged 

particle. Eq. (6) can be rewritten as  

   
2

2x
c x2

d v v 0
dt

        (7) 

This is the homogeneous differential equation for a harmonic oscillator of 
frequency c , whose solution is 

 x cv (t) v ( t )             (8) 

Where  v is the constant speed of the particle in the (x,y) plane (normal to  B


), 0  
is a constant of integration that depends on the relation between the initial 
velocities vx(0)and vy(0), according to  

 
)0(v
)0(v

tan
x

y
0           (9) 

To determine vy(t), we substitute (3) in  (2) to obtain  

   2
y c yv v 0 , whose solution is  

      y cv (t) v sin( t )                 (10) 
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 We note that 22
y

2
x vvv   

The equation (8) can be integrated  to give      
 c 0 0

c

vx(t) sin( t ) X            (11) 

Similarly, integrating (10), we obtain 

     
 c 0 0

c

vy(t) cos( t ) Y                 (12) 

from (11) and (12) we find that 

 (x–X0)
2 + (y–Y0)

2  
  

 

2
2
c

c

v r                (13) 

The particle trajectory in the plane normal toB


 is therefore a circle with center at 

(Xo,Y0) and radius equal to  
 
 c

v and the particle moves along helical path (Fig.1) 

The constants of integration (X0, Y0) are the coordinates of the centre of a circular 

motion. The amplitude 

c

v  that occurs in (11) and (12) is known as the gyro-radius 

of the charged particle (also known as Larmor radius of the electrons). 

 
Figure1: Helical path of an electron in a uniform magnetic field. 



72 
 

4.4 Illustrative Examples 

Example 1.  Find rc ( Larmor radius of electrons)  

Sol:    
c

c

v vr
eB
m

                  (14) 

The Larmor radius can be expressed as 

 
1

c 1
v Br 7.6 m

1Telsam s


 

 

  
        

              (15) 

rc is the distance from the centre of the circular motion to the electron itself. The 
normalizing velocity in eq. (14)  is that of an electron of energy 1kev. 

Example 2  Find the magnetic moment associated with the circulating electron 
orbit in the presence of magnetic field. 

Sol. We note that the circulating electron constitute a current. If we project the 
motion of the electron onto a plane which is perpendicular to the magnetic field, a 

charge –e passes a given point on its orbit every cr
v

  seconds, therefore the  

 current 
c

ev
I

r2



                 (16) 

The associated magnetic moment   is the product of this current with area 
enclosed by the orbit. Hence 
 cr  I2    

   
B

mv
2
1 2


                   (17) 

The magnetic field to which   gives rise opposes the applied field B


 : This 
diamagnetic effect is by eq. (17), proportional to the perpendicular energy. 

4.5 Guiding Centre Drift due to Non-Magnetic Forces 

From Eqs. (11), (12), and (5) that the path of an electron in a constant 
homogeneous magnetic field is helical, The helix is produced by uniform circular 
motion about a point that moves with constant velocity parallel to the magnetic 
field. 

We write the electron position as 

4.4 Illustrative Examples 

4.5 Guiding Centre Drift due to Non-Magnetic Forces 
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 cc rxx


  ( cr
 is Larmor radius) 

or 2
ce

ce
c

vxx




                  (18) 

which implicitly defines the guiding centre position: (See Fig. 2) 

 
Figure 2: Guiding center position xc 

• Differentiating eq. (18) with respect to time, and using  

 find we,vv ce
   

  zzc êvx   ( zê  is unit vector in z-direction)             (19) 

• From the Fig. (2) we also note that  
c cx x r   

Now cx
 is the mean position of the electron if the rapid rotation with frequency ce

is averaged out. This mean position often contains all the information. 

• By calculating 0x , we can follow the path of the electron over a timescale which  

is long compared to 
ce

1


 

•Consider, for example, and electron subjected to an impulsive collision, which by 
definition leaves its position unchanged but instantaneously changes v

  to  
 
v v  

 Then    
   

 

     
1 2

ce ce
c c2 2

ce ce

v (v v)
x x x               (20)  

The instantaneous step


cx  in guiding centre position perpendicular to the magnetic 
field is a measure of the effect of the instantaneous momentum transfer, (Figure 3) 
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Magnetic field direction ⊗ 

Figure 3: Instantaneous guiding centre step x


  due to impulsive collision. 

Consider now a continuous non-magnetic force F


 per unit mass. The force 
equation becomes 

    
 mv ev F                  (21) 

 
   


 

c
For v v
m

 

 or 


 
c

Fv
m


      

 or 
    

   ce
Fv v F   ( F)
m

                     (22) 

Differentiating (20) with respect to time and using eqn. (22), we find 

 2
ce

ce
zzc

Fêv x






                  (23) 

The second term on the right-hand side is the guiding centre drift velocity, dv
  

It is perpendicular both to the applied force and to the magnetic field. 

• As an example, let us take an electric field, for which 
m

E eF
 

  .The 

perpendicular drift of the guiding centre is  22
ce

ce
d B

E
m
ev 








            (24) 

This is a typical example of the three components of electron motion : rapid 
perpendicular rotation with frequencyce  at a radius rc from cx

 ; particle motion 

 with constant velocity vz ; and a slow perpendicular drift dv
 . 
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4.6 Guiding Centre Drift due to Magnetic Forces 

In most of the plasma devices, we find that the magnetic field is not uniform in 
space or time. The division of particle motion into three distinct components ceases 
to be exact. 

This division, however remains a useful approximation so long as the variation of 
the magnetic field remains small on the scale of the cyclotron motion. That is  

 B
t
B2

ce














                 (25a) 

 Lr ( B)   B                (25b) 

 B  )B(2v ll
ce

z 








                (25c) 

We shall assume eq. (25 a–c) to hold in the discussion which follows. 

We consider first a magnetic field whose strength increases in a direction 
perpendicular to the direction of the field itself. The field strength experienced by 
particle changes periodically as it circulates with frequency ce . 

• The periodic shortening and lengthening of Lr  causes the guiding centre to drift 
perpendicular to the magnetic field (See Fig. 5). For clarity, the gradient in 
magnetic field strength has been replaced by a discontinuity, so that this diagram 
actually violates the condition (25b) (Fig.4)  

 
Magnetic field direction ⊗  ;Field Strength B2 > B1 

Figure 4 

4.6 Guiding Centre Drift due to Magnetic Forces 
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Figure 5 : Indicating the origin of the drift of the guiding centre in a magnetostatic 

field 

B  that a gradient variation of B in a direction perpendicular to 


B . 

• The direction of this drift depends on the sense in which the particle is rotating, 
and is therefore opposite for electrons and ions. 

 Let z
z

0 ê)
y

ByB(B






                (26) 

and define a scale length z
c

Bl .
B y


      

1

0

1  

• Using eqn. (26) in (l), and denoting the cyclotron frequency 
m

eB0  of the plasma at 

y=0 by Ωce, the electron motion is governed by: 

 










  z
z ê)

y
Byve)vm(

dt
d   

or   z
x y 0 y

ev V  B   V  y 
m y
 

    
   

or  ce
x ce y y

c
v V y v

l


                  (27a) 

and x
c

ce
xcey v y

l
vv 

                (27b) 

In the uniform field limit lc ⟶∞ and eqns. (27a-b ) reduce to eqs. (2,3). 
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We now use the uniform field orbit eqs. (8,10) and calculate the effect of the 
additional terms in eqs. (27a, b); setting x0=y0=0 for convenience: 

 )tsin(vtcos(v
l

v y
l cece

cec

ce
y

c

ce 






 

  

or )t(2sinvv
l2

v y
l ce

cec

ce
y

c

ce 















 



 

  

or ce ce
y L ce

c c
y v r  v sin2 ( t )

l 2l 
 

                  (28a) 

where  L
ce

vr 


  (Larmor radius) 

Similarly the additional term in the expression for yv (viz. eqn. 27b) is 

x
c

ce v y
l
  becomes after substitution of y and vx from eq. 12 and eq.(8): 

 








 t(cosv . t cos(v
l

v y
l cece

cec

ce
x

c

ce  

or  ce ce L
x ce

c c

r  v
y v 1 cos2( t

l 2l
 

                  (28b)

    From eq. (28b) we note that there is an extra non-oscillatory contribution 
to yv  only; all other terms arising from the spatial non-uniform of the magnetic 
field strength average to zero over a single orbit. 

• The average additional acceleration of the electron is 
2

c

va (0, ,0)
2l
 . Substituting a

  

for the force per unit  mass F


 in the drift velocity formula eqn. (23): 

 2
ce

ce
d

Fv






  )êê(

l
v

yz
c

2

2
ce

ce 



   

  L
d x

c

r  v ˆv e
l
 


                  (29) 

Note that vd is slower vby the factor  
 
 

c

L

2l
r

 which is assumed large. 

The additional drift velocity dv
  is in a direction perpendicular both to 0B


 and to B  

we can express the drift velocity dv
  in a general way as  

 

 
 L

d 2
r  v B Bv  

B
 




                 (30) 

Fig.3 depicts this drift. 
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4.7 Drift in the Case of Gradient in the Magnetic Field 
Strength Parallel to the Direction of the Magnetic Field 

We now consider the case of a gradient in the magnetic field strength parallel to 

the direction of the magnetic field : z 0,
z





 

From the equation 0B 


and expressing it in the cylindrical coordinates (R,θ,z),  

   z
R

1  R B 0,
R R z


 

 
  we find 

or 
ZR

B 
R

B zRR







  

or R z2B 2
R z


 


 

 Z
R

BRB
2 z

 
     

                 (31) 

This small radial field  is crucial to the particle dynamics of the system BR is zero 
on the axis of symmetry, however the electron senses a finite value of magnetic 
field BR as it orbits at a distance R=rL from the magnetic field line on which its 
guiding centre lies. The electron therefore experiences an additional acceleration: 

 
L R

e ˆ ˆa  v e r e
m z


 

  
     

 

    L R
e ˆ ˆ v r (e e )

m z


 
  

     
 

     z
z

c

v Be ˆ v    e
2m z





 

 
 

     
2

z
0

v  me ˆ   e
2m e  B z

 
 


 

  2

z
c

v ˆa  e
2l
                    (32) 

where we have defined a scale length Z
c

0

1l   
B z
 

  
 

 

It may be noted that the acceleration a is independent of the charge: the effects of 

  êvêv  and −e → e cancel.The effect of the acceleration is to reduce the 
parallel velocity of a particle as it moves into a region of higher field strength . 

From  eqn. (32) we  note that  the electron experiences a force as it mores into a 

4.7 Drift in the Case of Gradient in the Magnetic Field 
Strength Parallel to the Direction of the Magnetic Field 
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region of higher field strength : 

 
2

z Z
c

m v ˆF ma  e
l
  


 

Substituting the value of lc, we find 

 
2

z
0

m vF
2 B z

 
 


 

    
2

0

m v1 is the magnetic moment
z 2 B


 

       
             (33) 

This force is purely magnetic in origin. Therefore it cannot change  the total 

electron energy. When vz decreases owing to Fz, v⊥ must increase: 

 2
z z z

1F  V v m v
z 2 
  

     
                (34) 

where  
z

vz 
  gives the rate of change with time following the guiding centre 

motion. 

4.8 Electron Motion in a Magnetic Field that varies with Time 
Consider a magnetic field that varies with time. A time varying magnetic field 
induces an electric field described by Maxwell equation 

 
t





                  (35) 

Any parallel component Ez will accelerate particles along the magnetic field lines. 
In addition, if 


  includes a perpendicular component, the particle perpendicular 

energy may be changed as follows : 

In the time 
ce

2T



  taken for one cyclotron gyration, the energy acquired by an 

electron is 
   

2

Orbit

1 m v e E.d l e ( ).dS
2 

       
     

       
 

2
Le . dS  e r

t t
 

   
   

                  
t

 T r
T
e

0
2
L

0 










  

                  
t

T 0 


                  (36) 

It follows that 

4.8 Electron Motion in a Magnetic field that varies with time 
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t

v m
2
1

t
2















                  (37) 

We can now consider how magnetic fields, for which both 
t
 and 

Z
  are non-zero 

affect the perpendicular motion of the electron. 

Combining  (37) ,(34) and (33), we find 

 
dt
dBv m

2
1

dt
d 2 








                  (38) 

where z
d v
dt t z

 
 
 

is the total rate of change with time. 

Since 

2
v m 2

 by eqn. (19) it followsfrom eqn. (38) that μ and hence


2v ,  is a  

constant of the particle motion; it is sometimes known as the first " adiabatic 
invariant". 

• The magnetic flux passing through the orbit of the electron  is 

 
 2

2
L Z Z

c

vB.dS r  B B 
    

 
  

           B 
B e
m.v

22

22
  

           
B
v

e
m 22







                  (39) 

which is proportional to μ and therefore constant. 

4.9 Curvature Drift 
 We will now consider the effects on charged particle motion associated 
with the curvature of the magnetic field lines. We investigate now the effect of 

curvature terms x
z




 and y

z



 on the motion of a charged particle. We will assume 

that these terms are so small that the radius of curvature of the magnetic field lines 
is very large compared to the particle cyclotron radius. 

Let us introduce a local coordinate system gliding along the magnetic field line 

with the particle longitudinal velocity 

 . 

• Since this is not an inertial system because of the curvature of the field lines, a 
centrifugal force will be present. This local coordinate system can be specified by 

4.9 Curvature Drift 
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the orthogonal set of unit vectors 2n̂ ,n̂ ,B̂ , where B̂  is a unit vector along the field 
line, ,n̂  is along the principal normal to the field line, and 2n̂  is along the binormal 
to the curved magnetic field line, as indicated in Fig. 6 

 
Figure 6 : Curved magnetic field line showing the unit vector B̂  along the field 
line, the principal normal 1n̂ , and the binomial 2n̂ , at an arbitrary point. Note that

B̂n̂n̂ 12  . The local radius of curvature is R. 

 
Figure 7: Relative direction of the particle guiding center drift velocity 

 , due to 
the curvature of the magnetic field line. 
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The centrifugal force CF


 acting on the particle, as seen from this non inertial 
systems, is given by 

  

 C 1
mv ˆF n

R
                  (40)  

where R denotes the local radius of curvature of the magnetic field line and 


 is 

the particle instantaneous longitudinal speed. From Equation (24)  

The curvature drift associated with this force is 

 
  

   C
C 12 2

mvF B ˆV (n B)
q B R q B

                           (41) 

To express the unit vector 1n̂ , in terms of the unit vector B̂  along the magnetic 
field line, we let ds represent an element of arc along the field line subtending an 
angle d , 

  Rdds                   (42) 

If B̂d  denotes the change in B


 due to the displacement ds (See Fig.6) then B̂d  is in 
the direction of 1n̂  and its magnitude is 

  dd B̂B̂d                            (43) 

consequently,   dn̂B̂d 1                  (44) 

Dividing this equation by (42) gives, 

 
R
n̂

d R
d n̂

ds
B̂d 11 




                             (45) 

The derivative 
ds
d  along B


may be written as ).B( 


, so that (45) becomes 

 1̂ ˆ ˆ( . )n B B
R


                    (46) 

using this result into equation (40), we find  

 0
ˆ( . )F m B B

  
                     (47) 

This force is obviously perpendicular to the magnet field B


, since it is in the 1n̂ , 
direction , and gives rise to a curvature drift whose velocity is  

 0 2
ˆ ˆ( . )

 B
m

v B B B
q


  

                       (48) 
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Since B̂ BB 


and writing 
2

2
mV

w 
   for the particle longitudinal kinetic energy, 

equation (47) and (48) can be written, respectively, as  

 0 2

2
( . )

B
W

F B B
q

  


                     (49) 

 0 4

2
( . )

B
W

V B B B
q

   
                      (50) 

This, at each point, the curvature drift is perpendicular to the plane of the magnetic 
field line, as shown in Figure 7. 

4.10 Combined Gradient- Curvature Drift 
The curvature drift and the gradient drift appear together and both point in the 

same direction, since the term B  points in the direction opposite to CF


 (See 
Fig.7). These two drifts can be added to form the combined gradient-curvature 
drift. Thus, from (30) and (50), 

 GC G CV V V
  

   

         L
2 4

mvr v B B B. B B
B q B



    
       

    

         2 4 .
2  BC

mB B B B B
B q



     

         
 

           3 4

mv1 mv B B B. B B
2 q B q B


    

                       (51) 

When volume currents are not present (in a vacuum field, for example) so that 

0B 


, then using the vector identity  

   





 2B

2
1B.BB)B(


,                 (52) 

We can write (51), as  

 2
GC 4

m 1 1v v v B B
q B 2 2

  


        
  

              (53) 

4.11 Particle Trapping 

We know that in a magnetic field that varies slowly inn space and time, the 

4.10 Combined Gradient- Curvature Drift 

4.11 Particle Trapping 
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magnetic moment  1/ 2  m v
B


   is a conserved quantity. 

Consider a static inhomogeneous magnetic field, with no applied electric field. 

Then the particle kinetic energy K1 is 11
1 m(v v )
2

 
   constant. 

• We denote the subscript zero the values of the particle and field parameters at the 
initial position which for convenience we shall locate at the point where the 
magnetic field strength is weakest. We have in general, by conservation of   and 
K, 

 
0

vv
B B


    (  is constant) 

or 0
0

Bv v
B

 
                    (54) 

Now from the conservation of kinetic energy K, we get 

 2
z0 z

1 1 1 1mv mv mv mv
2 2 2 2

  
     

or 2
z0 zv  v v v  

     

Substituting for 
  from equation (54), We have 

 z0 z
0

Bv v v v
B

   
     

or z z
0

Bv v v v
B

   
      

 
0

Bv v .
B

 
    

 Z
0

vBv v 1  
B v


  

 


 
  

 
                   (55) 

In an inhomogeneous field, with increasing value of TBB   such that 

 T

0

vB1  0
B v






    i.e. Zv  becomes zero 

Hence, when B reaches the value T 0
vB B ,
v






 
  
 

              (56) 
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  is reduced to zero. Thereafter the particle reverses its path along the magnetic 
field. This is the phenomenon of magnetic trapping. Depending on their initial 
velocities, a certain portion of the charge particles in a inhomogeneous magnetic 
field will be restricted by this mechanism to the region of space where the 
magnetic field is weakest . Magnetic trapping is the basis of all mirror plasma 
confinement systems. 

Let the maximum and minimum values of the magnetic field in a mirror 
confinement system be BM and B0 respectively. 

It follows from (56) that all particles whose initial velocities are such that TB  
will be trapped. All particle with a large initial ratio of parallel to perpendicular 

velocity, Z 0

0 0

v B
v B


 




 
 , will escape. Mirror confinement systems are accordingly 

characterized by a loss-Cone distribution: that is a region in x y, z(v , v v )  space from 
which particles have escaped is formed of two cones, whose axes lie along the zv  
axis and whose tips touch at the origin, as in Fig. (8) 

 
Figure 8: Loss-Cone distribution 

4.12 Illustrative Examples 
Example 1: A particle with charge q is emitted from the origin with momentum p, 
directed at an angle   to a uniform magnetic field B which lies in the z-direction. 
At what point does the particle next intersect the z-axis.  

4.12  Illustrative Examples 



86 
 

Sol. At x=0, y=0, z v T,  Substituting ,
Bq
m2T 

  and  cosp  , we get 








 
 cos 

Bq
p2Z . The parallel velocity 

m
cos p   is unaffected by the magnetic field. 

We know that the perpendicular motion is periodic, with angular velocity 
m
B q . It 

follows that after a time 
qB

m2 , the particle returns to x=0, and y=0, having 

travelled a distance 













  cos
m
p

qB
m2  along the z-axis. 

4.13 Self Learning Exercise 

Q.1 Calculate the cyclotron frequency and cyclotron radius for: (a) An electron in 
the Earth's ionosphere at 300 km altitude, where the magnetic flux density 

–4100.5~B   Tesla, considering that the electron moves at the thermal velocity 









m
kT , with T=1000K, Where K is Boltzmann's constant. 

 (b) A 50 MeV proton in the Earth's inner Van Allen radiation belt at about 
1.5RE (where RE=6370 km is the Earth's radius) from the center of the Earth in 
the equatorial plane, considering  –510~B  Tesla  

 (c) A 1MeV electron  in the Earth's outer Van Allen radiation belt at about 4RE 
from the centre of the Earth in the equatorial plane, where –710~B  Tesla. 

Q.2 For an electron and an oxygen ion O  in the Earth's ionosphere at 300km 
altitude in the equatorial  plane, where 4105.0~B  Tesla, calculate: 

 (a) The gravitational drift velocity g
  

 (b) The gravitational current density gJ


, considering 12 310e in n m  . 

Assume that g  is perpendicular to B


. 

Q.3 Consider a system of two coaxial magnetic mirrors whose axis coincides with 
z axis, being symmetrical about the plane z=0, as show in Figure (9). Describe 
qualitatively the motion of a charged particle in this magnetic mirror system 
considering that at z=0 the particle has      and 0   . What relation  

must exist between 0 ˆ( 0)B B z z


  , ˆ( )m mB B z z z


    and    (particle 

4.13 Self Learning Exercise 
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pitch angle at z=0) for particle to be reflected at Zm? 

 
 Figure 9: Magnetic field line geometry for a system of two coaxial magnetic 
mirrors whose axis coincides with the z axis, being symmetrical about the plane 
z=0. 

4.14 Summary 
In this chapter we have studied the motion of charged particle in uniform and non 
uniform magnetic field. We have also calculated drift velocity of charged particle 
in the combined fields of E


and B


. Drift motion due to curvature of magnetic field 

lines has also been analyzed. 

Some Important Formulae: 

1. Electron cyclotron frequency 111.76 10   ( )
secce

e

eB radB in
m

     

 with B expressed in Tesla 

2. Ion cyclotron frequency 
ci

i

ZeB
m

   

3. Particle magnetic moment 2 2

1 mvW B 2  B
B B




  

   

4. Electron cyclotron radius e
ce

ce

vr 

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5. Electron Drift velocity 2
ce

ce
d

F






  

6. Curvature drift 2
c

c
F B
qB

 




  

4.15 Glossary 

 Magnetic Mirror Effect:As an electron moves into a region of higher magnetic 
field strength, the electron experiences a force that retards its longitudinal 
experiment motion. At some point of the increasing field vz comes to zero and the 
electron is reflected therefrom. This is called “Magnetic mirror effect”. 

 “Magnetic moment” associated with orbiting electron: 



 

1 mv
2

B
   

4.16 Answers to Self Learning Exercise 

Ans.1: (a) C
eB
m

  , 11e 1.76 10
m

C
kg

  , 5105B   

      68.79 10
sec.C
rad

    

        
B e

mrL
 , 

m
kT


 

 
231.38 10  , 1000      Jk T K

K
    

 5
L1.2 10    r 1.3 .m cm

s
 

       

(b)  C
qB
M

  , mass of proton kg271067.1   

 T10B 5  

 191.6 10q C    

 and  
qB
ME2

qB
MVr K

L    

 given  J106.150MeV50E 19
K

 . 

4.15 Glossary 

4.16 Answers to Self Learning Exercise 
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 Substitute these values in the formulae for C  and Lr  and get answer. 

(c)   1 MeV electron,   710B   Tesla 

 1 MeV  electron is relativistic as its kinetic energy is comparable to rest 
 energy of the electron 2

0( )m c MeV .As kinetic energy = Total 
 energy – rest energy 

 or 2 2
0 0 mKE c m c   

  2
0( 1) mKE c   

  K
K2

0

E1 ,     E
m

MeV
c

     

 or K
2

0

E 11 1 3
m 0.5c

       

 Thus  
11 7

0

1.76 10 10
 M 3 sec
qB rad







 
    

  .
sec
rad108.5 3  Also 








Lr . 

 (d) and (e) problems are to be attempted in similar way. 

Ans.2: 22g B
Bg

q
m

qB
BF


 




  

 This drift velocity depends on the ratio 
q
m  and therefore it is in opposite 

 directions for electron and O ion. Using 2
2 58(1 ) 9.8

64h s
h mg g

R s    . 

 Thus g for electron is 
31

19 5

9.1 10 9.8 58
1.6 10 5 10 64

m
s



 

 
 

  
 

     
s
m10

6456.1
588.91.9 2431




  

           710.1 10ge
m
s    

 
gO

 

  for O ion is 
s
m101.10186016

m
M 7

ge
  
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s
m103 2  

 e e  e ;  ne e i i iJ n n n
  

     

 12 19 7 2
210 1.6 10 10.1 10 3 10 AJ

m


            

     2
21912

m
A103106.110~    

     2
9

m
A108.4   

Ans.3: From energy conservation at 0zz   and mzz  : 

 ,
1 ( ) ( 0)
2 2 mZ

mm   
  

    ,                 (i) 

 using
m

  is zero, as the particle is reflected there.  

 Also from the invariance of magnetic moment   

 
m

2
Zm

0 BB



 


  

 








2

Zm

0

m

B
B , 

From equation (i) , 
 2

Zm  (where   
  

   ) 

Thus, 
2

0

1
sin

mB
B



 




 

   

 
1
2

1 0sin
m

B
B

 


 
  
  

 

4.17 Exercise 

Q.1 Calculate the electron cyclotron frequency for the ce  for the following 

magnetic fields: (a) the earth's magnetic field near a pole, 56 10 T ,(b) the 
galactic field, T103 10 , (c) a sunspot, T25.0 , 

Q.2. Write down, in vector form, the relativistic equation of motion for a charged 

particle in the presence of a uniform magnetostatic field 0 ˆB B z

  and show 

that its Cartesian components are given by 

4.17 Exercise 
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  0
x y

d qB( v ) v
dt m

   

  0
y x

d qB( v ) v
dt m

    
 

 

  z
d ( v ) 0
dt

   where 
1

1


 



 and where 

c


  . 

 Show that the velocity and trajectory of the charged particle are given by the 

same formulas as in the non relativistic case, but with c  replaced by 0

 
q B
m 

  . 

Q.3  Consider a system of N non-interacting electrons in a uniform magnetic field. 
Suppose that the initially, have an isotropic distribution of velocities, whose 
magnitude is  for all electrons. If the magnetic field strength increases 
adiabatically with time from B1 to  1  , with 2 1B B   ,calculate the 
change in energy of the system. 

4.18 Answers to  Exercise 

Ans.1:(a) 
19 15

7 -1
31

e

 B 1.6 10 6 10 1.1 10  s
m 9.1 10ce
e rad

 



  
    


 

 (b) -1s rad 54  

 (c) 110 s rad105.4   

Ans.3: Denoting velocities before and after the increase in magnetic field strength 
 by subscripts 1 and 2 respectively: we have, 

   2

1 2

v v
B B

 
    (Adiabatic invariance of  ) 

 or 2
2

1

Bv v v
B

  
            (i) 

 whereas  2 1v v 
          (ii) 

 For a given electron, the initial and final energies are related by  

    2 2 2 1 1
m mK v v v v
2 2 

   
      

  2 1 1
mK K 1  v
2


                                          (iii) 

4.18 Answers to  Exercise 
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•  We write v v sin   , and since 1
mvK

2


 ,  

 We have a change in energy  

 12 KKK   

         2m 1 v sin
2


     

   2
1 1 sinK K       for the electron considered               (iv) 

• Initially, the electrons are uniformly distributed over an infinitesimally thin 
spherical shell in velocity space, with radius v . The number of electrons per 

unit area of this shell is 2
0

N
4 v

, and the number lying between  and  d  is  

 2
0

N N2 v sin  d sin d
4 v 2


     


 

 Each electron initially at   undergoes a change in energy  (K . 

 Therefore the total change in energy of the system is  

 31
0

((  sin sin  
2 2

NKNK d d 




    

  
     
 

   

          1(
3

NK  
  

 where NK1 is the initial energy of the system. 
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UNIT-1 

Plasma 
 

Structure of the Unit  

5.0    Objectives 

5.1    Introduction 

5.2    Dielectric description of plasma  

5.3    Normal modes of an unmagnetized plasma 

5.4    Adiabatic invariants 

5.5    Dielectric tensor of a cold magnetized plasma 

5.6    Dispersion relation  

5.7    Principal solutions – parallel propagation 

5.8    Cyclotron resonance  

5.9    Illustrative Examples  

5.10  Self Learning Exercise 

5.11  Summary 

5.12  Glossary 

5.13  Answers to Self Learning Exercise  

5.14  Exercise 

5.15  Answers to Exercise 

 References and Suggested Readings 

5.0 Objectives   
In this chapter our objectives are  

 Introduction to the dielectric description of the plasma  

 Derivation of the dielectric constant of the plasma  

 Normal modes of an unmagnetized plasma 

UNIT-5 
Plasma Dielectric Constant, Magnetic 
Mirror Effect, Cyclotron Resonance  

5.0 Objectives 
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 Dispersion relation of electromagnetic wave in an unmagnetized plasma. 

 Electrostatic mode 

 Dielectric tensor of a cold magnetized plasma 

 Cyclotron resonance  

 Adiabatic invariants  

 Magnetic mirror effect 

 Magnetic heating of a plasma 
 

5.1 Introduction   
 In this chapter we analyze the macroscopic response of any medium to an 
applied electric field. This response is determined by the sum of the macroscopic 
responses of the individual particles that make up the medium. Further, we analyze 
the motion of charged particles in the presence of time-varying fields. In the case 
of slowly varying magnetic filed we derive expressions for the quantities which 
remain invariant in such a case. These are called “Adiabatic invariants”. Finally we 
discuss magnetic mirror effect and its application in the confinement of plasma. 

5.2 Dielectric Description of Plasma  
 The macroscopic response of any medium to an applied electric field is 
determined by the sum total of microscopic responses of the individual particles of 
the medium. 

 In a conducting medium, the macroscopic response id determined at a 
microscopic level by the separation between positive and negative charges that is 
produced by the applied electric field. 

 If the applied field varies with time, so too will the microscopic state of the 
medium : The separation between positive and negative charges will change with 
time, as will the electric field that is produced by their separation. 

 Thus, particle currents and displacement currents are produced. 

 At a macroscopic level, the particle current is described by the and 
conductivity tensor  , where  

5.1 Introduction   

5.2 Dielectric Description of Plasma  
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 .J E          (1) 

  is a macroscopic variable whose nature is determined by microscopic 
dynamics. 

 According to Maxwell’s equation states that J


and the displacement current 
combine to act as the source of the magnetic field in the medium : 

 0
EH J
t

   
  


  

Using (1), we have  

 0 .H E
t

       
         (2) 

Now using 0B H
 

and 0 0 2
1
c

  , we can write (2) as  

 0 0 0( .)B E
t

  
  


           (3) 

Then, if E


 varies as exp (-iωt), then (3) gives  

 2
0

.i iB I E
c

   
   

 




 
       (4) 

were I is the identity matrix. 

It follows that all information about the macroscopic response of the medium to the 
the applied electric fields is contained in dielectric tensor, defined by  

 
0

iI  
 

         (5) 

and equation (4) can be written as  

 2 .iB E
c

  
 


         (6) 

Operating on (6) with 
t



 and using Maxwell equation BE
t

  
  


 

 2 . ( . )B i E
t c t

   
     


   

or 2( ) ( ) .iE i E
c

   
    


   
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2

2
2( . ) . 0E E E

c
   

    
         (7) 

 So far, our discussion in this section has been completely general, and applies 
to any conducting medium. 

 The nature of the macroscopic quantity  , and hence  , for a plasma is 
determined at the microscopic level by the plasma particle dynamics. 

As an example, we consider the motion of a plasma electron in the absence of 
external magnetic field : 

  dm e E
dt

 
 

, where E


 is the applied electric field and varies as  

exp (-iωt). Each plasma electron will respond with a velocity  

  e E
i m

    
 




 

 The current density associated with n0 such electrons per unit volume is  

 
2

0
0

n eJ n e E
i m

   
    

 



       (8) 

So that 
2

0n e I
i m

 
  

 



.  

Then the definition of   gives , (Eq. 5) 

 
2

21 pe I
 

   
 





,         (9) 

where we have  
2

2 0

0
pe

n e
m




 . 

Eq.(9) is the dielectric tensor of the plasma. 

 

5.3 Normal Modes of an Unmagnetized Plasma 
We now calculate the normal modes – a macroscopic concept – of an unmagetized 

plasma. If E


varies as exp ( . )i k r i t
 

  , then equation (7) gives, after replacing 


operator by ik


and 
t



 by ( )i ,  

5.3 Normal Modes of an Unmagnetized Plasma 
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2

2
2( ) ( . ) . 0ik E ik i k E E

c
    

   
  

Now using from equation (9) 
2

21 ep I



 
   

 
, We finally get 

 2 2 2 2 2( ) ( . ) 0
ep c k E c k k E

  
                   (10) 

There are two classes of normal modes. First, consider the case of transverse 

modes ,that have . 0k E
 

  and are accordingly electromagnetic. Then equation (10) 
gives  

 2 2 2 2( ) 0
ep c k E


                              (11) 

This is compatible with non-zero E


only if   and k are related by  

 2 2 2 2
p c k                                        (12) 

which is our first derivation of dispersion relation. It tells us that the frequency of 
any electromagnetic wave  must exceed the electron plasma frequency. 

In addition, if we try to launch an electromagnetic wave into the plasma with 
frequency 

ep  eqn. (12) indicates that the wave will have an imaginary wave 
number k inside the plasma. The wave will therefore be evanescent, and unable to 
propagate through the plasma. Thus pe  plays the role of a cut-off frequency for 
electromagnetic waves in an unmagentized plasma. 

This fact has a number of practical implications. For example, it determines the 
range of frequencies that can be used for different types of radio communication. 
In order to communicate with a satellite, one must choose a frequency that exceeds 
the plasma frequency of the ionospheric plasma. Otherwise, the signal will be 
reflected from the ionosphere, and will not reach the satellite. Conversely, may 
send a radio single to a distant point on the Earth’s surface by choosing a 
frequency below the ionosphere to reflect the single in the required direction. 

The second class of normal mode that satisfies eq.(10) is electrostatic, with k


and 

E


 parallel. In this case, the dispersion relation is clearly  

 22
pe                   (13)  

Thus electrostatic normal modes of plasma oscillate at the electron plasma 
frequency. 
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5.4 Adiabatic Invariants and Magnetic Mirror Effect 
We consider the motion of a charged particle in the magnetic field that remains 
uniform but varies slowly in magnitude and direction. We shall show that when the 
conditions of motion are changed slowly, certain quantities called adiabatic 
invariants remain constant. 

A charged particle in a uniform magnetic field is generally known to travel along a 
helical line. The projection of the trajectory on the plane perpendicular to the 

magnetic induction B


is a circle with the radius,  

 m
qB
           (1)  

where  is the transverse component of the particle’s velocity. 

The motion along this circle is the rotation with the Larmor frequency  

 B
qB
m

           (2) 

 The particle also travels along the lines of force with the constant velocity  . 

 Generally, the magnetic field is not uniform .However ,in nonuniform fields 

typically  considered in plasma physics, induction B


has almost a constant value 
and sense at the distances of the order of Larmor radius of particles, that is, 
microscopic variations of the magnetic field are very small. We now investigate 
how such weak non-uniformity of the field affects the motion of particles. 

 At first, assume that the field varies along the field line. The trajectory of the 
particle traveling along this line noticeably changes its shape within a segment in 
which the magnetic induction B increases or decreases significantly. 

 When the particle travels towards the increasing field, the trajectory becomes 
more steep and it can be compared to a spring being compressed. When a particle 
travels towards a decreasing field, its trajectory becomes less steep. 

This effect can be easily explained. A charged particle which rotates along the 
Larmor circle gives rise to a circular current so that is is equivalent to an 
elementary diamagnetic with the magnetic moment 

 W
B

  , where W is the kinetic energy of the transverse motion.  

5.4 Adiabatic Invariants and Magnetic Mirror Effect 
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According to the Ampere’s theory, 

 2i   = 2e
T

  = 22
e
 
 

  

     = .
2 2

e e m
e B

   
  

 
21

2
m W

B B
  

         (3) 

 The magnetic field whose intensity varies along the lines of force acts upon a 
diamagnetic with the force  

 dBF
d

 


         (4) 

 (here differentiation is done in the direction of the field). 

The action of this force results in variation of the longitudinal velocity v according 
to the relationship 

 
d dBm
dt d



 


   

  W dB
B d
 


        (5) 

On multiplying both sides of this equation by v  yields  

 Wd dBW
dt B dt

          (6) 

When a particle travels in a magnetic field, W W  = constant.  

Therefore  
dW dW
dt dt

           (7) 

Substituting (7) into (6), we find 

 dW W dB
dt B dt

  . 

Form this we find  

 ;dW dB W
dt B B

  = constant       (8) 
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 This, the ratio W
B
 is constant when a charged particle travels in the magnetic 

field whose intensity variation along the field lines is not too sharp. The constant 
W
B
 is usually referred to as “adiabatic invariant” of motion. 

This emphasizes the fact that the particle travels in a slowly changing magnetic 
field. The kinetic energy of the transverse motion is 2

0 sinW W   , where 0W is 
the full energy of the particle and  is the angle between the velocity direction and 
the field line. 

 Since 0W is constant and W
B
 is the adiabatic invariant, the ratio 

2sin
B
 is also 

an adiabatic invariant. This shows that the slope increases with increasing B and in 
the region with a stronger magnetic field the helical trajectory becomes more steep 
as discussed above. 

 Assume that at a certain trajectory point 0  and 0B B . Using these 
initial conditions, we can find the value of   at any trajectory point from the 
relationship 

 
22

0

0

sinsin
B B


 , that is  

 0
0

sin sin B
B

          (9) 

When a particle traveling towards the increasing field comes to the point where 

0
2

0sin
BB


 , then the angle   becomes 90º and hence the longitudinal velocity 

vanishes. This means that at this point the direction of the longitudinal motion is 
reversed. The particle is reflected from the region of high field towards the region 
of lower field. 

 Thus, high-field regions under certain conditions can act as some magnetic 
mirrors for charged particles. For instance, if the field increases in opposite 
directions from a certain intermediate region, a charged particle can be blocked 
between two magnetic mirrors ; it will oscillate along the field lines within a 
restricted space region. The particles with a large angle   min max(sin ( )B B  will 
be confined in this region. 
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5.5 Dielectric Tensor of a Cold Magnetized Plasma  
For calculating the dielectric tensor of the plasma in presence of electromagnetic 
field, we begin with the equations of motion for a single particle of species j (j = e 
for electron, i for ion) in an electromagnetic field : 

 ( )j j j j
dm q E B
dt
   

          (1) 

along with the Maxwell Equations 

 BE
t


  



 
 

 0 0
EB J
t

   
    

         (2) 

 and the expression for the total current 

 j j j
j

J n q
 
   

where the sum is over the species. 

 Since the plasma has been presumed to be uniform and homogeneous in both 
space and time, we may Fourier transform these equations, or what is equivalent, 
assume that 

 ( . )
1

i k r tE E e
  

   

 ( . . )
0 1

i k r tB B B e
   

    

 ( . . )
1

i k r te
               (3) 

and 0B


is the static magnetic field and is taken to be in the Z-direction, and 

1 0| | | |B B


 with these inserted into Eq. (1), we may rewrite that equation in linear 
from as  

 1 1 1 0( )j j j ji m q E B
               (4) 

where the second order terms have been neglected because we have assumed the 
waves are of sufficiently low amplitude that the linear approximation is valid. The 
solution of Eq. (4) for the velocity is 

 2 2 ( )
( )

j
xj x j cj y

j cj

iq
E iE E

m
  

 
 


 

5.5 Dielectric Tensor of a Cold Magnetized Plasma  
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 2 2 ( )
( )

j
yj j cj x y

j cj

iq
iE E E

m
  

 
  


 

 j
zj z

j

iq
E

m



          (5) 

Here we have introduced the definitions 
| |

j
j

j

q
q

  to denote the sign of the charge 

for species j and 0| |j
cj

j

q B
m

  is the cyclotron frequency for species j. 

 The first two of these may be simplified by introducing rotating coordinates 
such that x yv iv    . Then we may write both of these components as  

 
( )

j

j j cj

iq
E

m 


           (6) 

Similarly, the current density may now be written as  

 
2

0 ( )
pj

j j cj

J i E



     

 

 
2

0
pj

z z
j

J i E





          (7) 

where pj is the plasma frequency for species j, given by 

 
2

2

0

j j
pj

j

n q
m




          (8) 

If we now combine the plasma current and the displacement current such that  

 0 0 .J i E i K E
   

           (9) 

Then the resulting equivalent dielectric tensor is given by 

 
1 2

2 1

3

0 0
0 0

0 0 0 0

S iD K K
K iD S K K

P K

   
        
   
   

 

where the Dielectric tensor elements are defined by  

 
2

1 2 2

1 ( ) 1
2

pj

j cj

K S R L


 
    

  
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2

2 2 2

1 ( )
2 ( )

j cj pj

j cj

iK D R L
  

  
   

  

 
2

3 21 pj

j
K P




    

2

1 2 1
( )

pj

j j cj

K iK R S D


   
     

  

 
2

1 2 1
( )

pj

j j cj

K iK L S iD


   
     

              (11) 

5.6 Dispersion Relation  
The Maxwell equations are now written as  

 ik E i B
  

                     (1) 

 0 0 .ik B i K E
   

     

with the resulting wave equation 

 ( ) . 0n n E K E   
                    (2) 

where kcn





                     (3) 

is the index of refraction vector whose direction is the direction of the wave vector 

k


and whose magnitude is the index of refraction. 

 If we now choose n  to lie in the x-z plane, and since we have already chosen 

0B


to be in the Z-direction, then equation (2) becomes : 

 

2 2 2

2 2

cos cos sin
0 0

cos sin 0 sin

x

y

z

S n iD n E
iD S n E

n P n E

  

  





    
     

     

              (4) 

Where θ is the angle between k


and the Z-axis. 

 In order to have a nontrivial solution, one requires that the determinant of 
coefficients vanish. This condition gives the dispersion relation. 

 4 2 0An Bn C           (5) 

where  2 2sin cosA S P    

5.6 Dispersion Relation  
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 2 2sin (1 )B RL PS cos     

 C = P R L         (6) 

The solutions of (5) may be written in either of two forms, as a quadratic in 2n  

 2

2
B Fn

A


 ,  2 2 4F B AC        (7) 

where 2F  may be written in the form  

 2 2 4 2 2 2( ) sin 4 cosF RL PS P D         (8) 

 or in terms of the angle,   

 
2 2

2
2 2

( ) ( )tan
( ) ( )
P n R n L
Sn RL n P


 


 

       (9) 

The general condition for a resonance, where 2n  is given by (9) as  

 2tan P
S

    General resonance condition             (10) 

and the general cutoff condition, where n =0, is given by  

  C = P R L = 0  general cutoff condition 

We note some special cases :               (11) 

1. Propagation parallel to 0 , 0B  


 (the numerator of (a) must vanish) 

(a) 3 0P K  (Plasma oscillations) 

(b) 2
1 2n R K iK   (wave with left-handed polarization) 

2. Propagations perpendicular to 0 ,
2

B
 

   (the denominator of (9) must vanish) 

 (a) 2
3n P K   (ordinary wave) 

 (b) 
2 2

2 1 2

1

( )RL K Kn
S K


  (Extra-ordinary wave) 

 

5.7 Principal Solutions – Parallel Propagation 
We first define the principal resonances to be those which occur at 0  . 

The general condition for a resonance 2( )n   is 

5.7 Principal Solutions – Parallel Propagation 
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 2tan P
S

                    (12) 

Hence, for  ( 0)  , we require ( )S  ,  

Since, P = 0 is a cutoff. Since  

 1 ( )
2

S R L  , this can be satisfied for  

 either R   (Electron-cyclotron resonance) 

or L   (Ion cyclotron resonance) 

 For a simple plasma of electrons and one ion species, the dispersion relation 
for the right-handed wave, 2

Rn R , which propagation parallel to 0B


is given by as 

 
2 2

2 1
( ) ( )

pi pe
R

ci ce

n R
 

     
   

 
              (13) 

So the resonance is clearly at ce  .   

  
Figure:  Dispersion relation for R-wave. 

5.8 Cyclotron Resonance  

When the frequency  of the applied electric field is equal to the electron 
cyclotron frequency then the electric field of right-handed circularly polarized 
wave speeds up the electron continuously and indefinitely in time. The electrons is 
able to absorb energy from the right-handed circular polarized wave. This 
phenomenon is called “ Cyclotron resonance”. 

5.8 Cyclotron Resonance  
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5.9 Illustrative Examples  

Example1 
(a) Consider a right circularly polarized wave with electric field amplitude 

2 RE , and a left circularly polarized wave with amplitude 2 LE , which have the 
same frequency . It both waves travel through a plasma along a uniform magnetic 
field which is oriented in the Z-direction, show that the total electric filed is  

ˆ[ { exp( ) exp( )}x R R L LE e E ik z E ik z

   ˆ [ exp( ) exp( )]exp( )y R R L Lie E ik z E ik z i t   , 

where kR and kL are wave numbers for right circularly polarized wave and left 
circularly polarized respectively. ˆxe  and ˆye  are unit vectors along x and y axis 
respectively. 

(b) Show that the ratio of the x and y components of the field, as a function of 
position Z,   

  
1 exp{ ( ) }

1 exp{ ( ) }

L
L R

Rx

y L
L R

R

E i K K Z
EE i

E E i K K Z
E

  
   
   

  
   
  

 

(c)A linearly polarized wave can be written as the superposition of two oppositely 
circularly polarized waves that have equal amplitudes. 

Show that, for the case considered, the plane of linear polarization rotated as the 
wave travels thought the plasma (Faraday rotation). Show that the plane of linear 
polarization has rotated through a right-angle once the wave has traveled a distance  

 
L R

L
k k





. 

(d)For a high-frequency wave that has pe   and ce , show that the angle of 
Faraday rotation is proportional to the product of electron density and magnetic 
field strength. 

Sol: 

(a)The vector amplitude of the right circularly polarized wave can be written  
ˆ ˆ( )R x yE e ie . Note that ˆ ˆ( ) 2x ye ie    

5.9 Illustrative Examples  
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Similarly the vector amplitude of the left circularly polarized wave can be  written 
ˆ ˆ( )L x yE e ie .These waves oscillate as   exp Rik z i t  and  exp Lik z i t

respectively. 

 Total electric field E


is obtained by summing the two 

   ˆ ˆ ˆ ˆ( )exp ( )expR x y R L x y LE E e ie ik z i t E e ie ik z i t


        

           ˆ ˆexp exp exp exp expx R R L L y R R L LE e E ik z E ik z ie E ik z E ik z i t


        

(b) From the expression derived in (a), it follows that  

  
 

exp( ) exp( )
exp( ) exp( )

R R L Lx

y R R L L

E ik z E ik zE i
E E ik z E ik z


 


 

Now dividing numerator and denominator by  

 exp( )R RE ik z  we finally obtain  

 
1 exp{ ( ) }

1 exp{ ( ) }

L
L R

Rx

y L
L R

R

E i k k z
EE i

E E i k k z
E

  
   
   

  
   
  

 

(c) We have L RE E ; in this case, multiplying top and bottom of the 
expression derived in (b) by exp{ ( ) / 2}R Li k k z , we obtain 

   

   

exp exp
2 2

exp exp
2 2

R L R L
x

y
R L R L

z zi k k i k k
E i
E z zi k k i k k

                
               

 

 cot
2

x
L R

y

E zk k
E

   
 

 

 This equation describes Faraday rotation . 

If x

y

E
E

is infinite at z = 0, it has fallen to zero once the wave has traveled a distance 

L such that 

 ( )
2 2L R
Lk k 

  , 

or 
( )L R

L
k k





. 
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(d) Since 
2

2 1pe


 and using the dispersion relation for right-handed circularly 

polarized wave (R-wave) : 

 2n R , 
2

1
( )

pe

ce

R


  
 


 

or 
22 2

2 1
( )

peR

ce

c k 
   

 


 

or 
22

2
2

2
1

1

pe
R

ce

k
c





 
 
  

      

 

or 
2 2

2
2

11
2 1

pe pe
R

ce

k
c

 
 


 
 
  

      

 

Similarly for L-wave, 

 
2

2
1

2 1

pe
L

ce

k
c





 
          

. 

Following (c), the angle of Faraday rotation is proportional to  

 
2

2 2. pece
L R

ce

k k
c


 

 


 

  
2

2. pece

c



 ,  

Since 2 2
ce   ,and ce is proportional to magnetic field strength and 2

pe to 
electron density, therefore Faraday rotation is proportional to the produced of 
magnetic field strength and plasma density. 

 

5.10 Self Learning Exercise 
Q.1  Calculate the electron cyclotron frequency ce for the following magnetic 

fields : 

5.10 Self Learning Exercise 
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(A)The earth’s magnetic field near a pole, 56 10 T ;   

(B)The galactic filed, 103 10 T ; 

(C)A sunspot, 0.25T 

5.11 Summary 

 In this chapter we have derived dispersion relation of electromagnetic waves in the 
absence of magnetic field and also in the presence of magnetic field. We have also 
explained the phenomenon of cyclotron resonance. Using the theory of adiabatic 
invariants we have also studied the magnetic mirror effect. 

5.12 Glossary 
Larmour frequency: The frequency of revolution of charged particle in a plane 

perpendicular to the magnetic field B


 

Adiabatic invariant: The ratio W
B
  is constant when a charged particle travels in 

the magnetic field whose intensity variation along the field lines is not too sharp. 

5.13 Answers to Self Learning Exercise  

Ans.1: 11 11.8 10
1ce

eB B rad s
m Tesla

      
 

 

(A) 7 11.1 10 rad s   

(B) 154rad s  ;  

(C) 10 14.5 10 rad s  

5.14 Exercise 

Q.1 Suppose the magnetic field along the axis of a magnetic mirror is given by  

 2 2(1 )Z OB B z  ,  

(a) If an electron at z = 0 has a velocity given by 2 2 23 1.5     , at what value 
of z is the electron reflected ? 

(b) Write the equation of motion of the guiding centre for the direction parallel to 
the magnetic field. 

5.11 Summary 

5.12 Glossary 

5.13 Answers to Self Learning Exercise  

5.14 Exercise 
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(c)  Show that the motion is sinusoidal, and calculated its frequency. 

Q.2  A 20 keV deuteron in a large mirror fusion device has pitch angle 45º  at 
the mid-plane, where B=0.7T. Compute its Larmor radius.  

Q.3 A 1-keV proton with 0  is a uniform magnetic field B = 0.1 T is 
accelerated as B is slowly increased to 1.0T. It then makes an elastic collision 
with a heavy particles and charges direction so that    . The B=field is 
then slowly decreased back to 0.1T. What is proton’s energy now ? 

 

5.15 Answers to Exercise 

Ans.1:    
2 2

max 0

Sin Sin
B B

 
 . 

Using 0 2 2
Sin  



 
 

 
  

 

2 2

2
31

2



 

 




 
 

Thus 
2

max 0

2
3

Sin
B B

 ;  

Now is θ is 
2
 at the location of maxB  as the particle is reflected from there, we find 

  
max 0

1 2
3B B

   

 or  max 0
3
2

B B  

 or 2
0 0

3(1 )
2

B z B    

  2 2 1
2

z   1
2

z    

Equation of motion is 

d dBm
dt dl
    

5.15 Answers to Exercise 
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  W dB
B dl
   

or 
2

2

d z W dBm
dt B dz

   

  2 2
0( (1 ))W d B z

B dz
   

  2
0 2W B z

B
   

or  
2

20
2

2 0d z W B z
dt m B

  . 

 Motion is SHM 2 02W B
m B

  . 

Ans.2: 45º  ,     . 

Ans.3:  

2
2

1
21

2
final

initial final

m
m
B B


 


 
 
   

 or   

21
21

0.1 1
final

m
keV

 
 
 
 

  

  21 10
2 final

m keV
   
 

 

As     after collision ,therefore  

21
2 after collision

m 
  
 

5keV . 

Hence 5
1 0.1
keV x
T

 ,  

Thus x = 0.5 keV 
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UNIT-1 

Plasma 
Structure of the Unit 

6.0  Objectives 

6.1  Introduction 

6.2  Macroscopic equations for a conducting fluid  

6.3  Complete set of Magnetohydrodynamic (MHD) Equations: 

6.4. Diffusion of charged particles in a weakly ionized gas: 

6.5  Ambipolar diffusion 

6.6  Illustrative Examples 

6.7  Self Learning Exercise 

6.8  Summary 

6.9  Glossary 

6.10 Answers to Self Learning Exercise 

6.11 Exercise  

       References and Suggested Readings 

6.0 Objectives 

• Macroscopic equation for a conducting fluid 

• MHD equations 

• Diffusion phenomenon 

• Ambipolar diffusion 

6.1 Introduction 

So far, we have based our study of plasmas on the single particle dynamics of the 
constituent electrons and ions. We have used these dynamics as the basis for a 
dielectric description of the plasma. This approach has been very effective. The 
understanding of any physical system is helped by knowledge of its normal 

UNIT-6 
Magneto Hydrodynamic (MHD) Equations 

6.0 Objectives 

6.1 Introduction 
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models, and the dielectric approach has enabled us to formulate the normal modes 
of plasma over a wide range of frequencies, However, when we study normal 

modes, whose frequencies ω lie well below the lowest characteristic single 

particle frequency, the ions cyclotron frequency ωci ,  on these time scale, only the 
averaged, guiding centre positions of thee plasma particles are significant. In this 
regime of frequencies and length scales a fluid-like description of the plasma 
would be more appropriate. In the following we derive the basic equations for 
conducting fluid in a magnetic field. 

 

6.2 Macroscopic Equations for a Conducting Fluid  

 The plasma can be considered as a conducting fluid, without specifying its 
various individual species. 

 If the plasma density is sufficiently high, we must take into account the fields 
produced by plasma motion. These fields, which are due to distribution and 
motion of plasma, affect the motion of plasma, that is, the plasma parameter 
and the filed produced by plasma are interrelated.  

 The motion of plasma and variation of its parameters can be described by  

(i) The continuity equation for the density of electrons and ions,  

(ii) The equation for the mean momentum of electrons and ions, 

(iii) Poisson's equation, and 

(iv) The Maxwell equations. 

Here we are considering plasma as composed of two distinct but intermingled 
fluids, the electron and ion fluids, coupled together by their opposing electrical 
charges.  

At macroscopic level the plasma will be treated as electrically neutral. The plasma 
will be treated as a single, electrically neutral and perfectly conducting fluid. This 
reflects the fact that, on the timescales of interest, the high mobility of the electrons 
enables them both to keep the plasma electrically neutral and to cancel out any 
applied electric field. We shall need to distinguish between the macroscopic 
consequences of electron motion alone, which will support a current with volume 

6.2 Macroscopic Equations for a Conducting Fluid  
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density J


, and the macroscopic motion of the plasma as a whole, characterized by 

the bulk velocity  , It should be noted that J


 and   are independent. 

It is possible to visualize  small elements of fluid moving in a given direction with 

velocity  , while containing a current density J


 that is oriented in some other 
direction. 

The mass density of the plasma fluid be denoted by  . At the macroscopic level, 
  is given by the product of the ion number density ni and ion mass M- since M 
greatly exceeds the electron mass m.  

 In the fluid equations we shall allow the single fluid representing the plasma to 
possess a pressure  p, which implies non-zero temperature. 

 We now proceed to setup the equations of ideal magnetohydrodynamics. 

A. Continuity Equation: 

The continuity equation is  

 .(  

 t
 
   


        (1) 

This expresses the conservation of mass. To drive this equation consider some 
closed volume V of space, and denote its bounding surface by S ,the total mass of 
fluid contained in this volume is 

   3
f

V

M d x.          (2) 

The change with time of the mass contained in a certain volume is determined by 

the derivative 
 dV. 

t 
 On the other hand, the change in unit time, say, is 

determined by the quantity of mass which in unit time leaves the volume and goes 
to the outside or, conversely, passes to its interior. The quantity of mass which 

passes in unit time through the element fd


 of the surface bounding our volume is 

equal to .
 df , where   is the velocity of the mass at the point in space where 

the element fd


is located. The vector fd


is directed, as always, along the external 
normal to the surface, that is, along the normal toward the outside of the volume 

under consideration. Therefore .
 df  is positive if mass leaves the volume, and 

negative if mass enters the volume. 
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The total amount of mass leaving the given volume per unit time is consequently 


  .df  ,where the integral extends over the whole of the closed surface bounding 

the volume, from the equality of these two expressions,  

we get  fddV
t 


  


        (2) 

The minus sign appears on the right, since the left side is positive if the total mass 
in the given volume increases. The equation (2) is the so-called "equation of 
continuity", expressing the conservation of mass in integral form. Noting that 

  
is the mass current density j


, we can rewrite (2) in the form 

( )
  

 j  
 

dV j df
t

 
   

        (3) 

We also write this equation in differential form. To do this we apply Gauss's 
theorem to (2) : 

   dV( divfd 
  

and we found   










 .0dV
t

  div   

Since this must hold for integration over an arbitrary volume, integrand must be 
zero : 

   0 div
t

 



          (4) 

This is the equation of continuity in differential form. 

Next, we require an equation for the time evolution of the fluid velocity  . We 
wish to calculate the rate of change of the velocity of a particular fluid element in 
response to the forces acting on it.  

• It will therefore be necessary to take a time derivative following the motion of the 
fluid element.  

 For this consider any function g which depends both on spatial coordinates x  and 
on time t. In the short interval of time t , a fluid element starting at x  will move 
to a new position at )x(  tx 

 . The value g appropriate to the new coordinates of 
the fluid element is, by Taylor's theorem : 
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   t),x( g –~ )tt),x( tx(g 
   t),x(g).x( t   ( ( ))

 .  x, tt g
t





  (5) 

In equation (5), the operator that is multiplied by t  is the total or convective time 
derivative, following the motion of the fluid element, that we are seeking: 

 


 

d
dt t


  


         (6) 

Thus in our equation for the time evolution of the fluid velocity, the left-hand side 
will be given by 

 .)(
t dt

 d






 

         (7) 

 The right hand side is determined by the forces acting on the fluid element. First, 

the fluid element contains a current density J


, so that in a magnetic field it will 

be subject to the force 

BJ


 per unit mass. Here we have assumed that fluid 

element is large enough to be electrically neutral, so that there is no Lorentz 

force associated with its velocity  . Second, there is a pressure force p1










  

per unit mass. Hence 

  pBJ
dt
d







       (8) 

Also, p and   are not independent. They are related by the standard equation of 
state, which for the behavior that we shall  be considering is 

  or Constant, pV   

  ,0p
dt
d









         (9) 

where   is the adiabatic exponent.  

The three equations that we have considered so far, equation (1), (8), (9), govern 

the time evolution of the fluid quantities  ,  and p given a current J


 and 

magnetic field B


. 

• In addition, we require complementary information: How J


 and B


 evolve in a 
given fluid. This is obtained as follows from Maxwell's equations and Ohm's law. 
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• Consider first Ohm's law for an element of a fluid that conductivity  . we have 

  J  E' 
 

 
Where 


E is the electric field experienced by the fluid element in its frame. Now 

the fluid element is moving at velocity   with respect to the laboratory magnetic 

field B


. This motion gives rise to an electric field in the rest frame of the fluid 
element, which is described by the Lorentz Transformation: 

  
     E E B.                 (11) 

Hence E


 denotes the electric field in the laboratory frame, and we have neglected 
all higher order relativistic corrections because .c2 combining (10), and (11), 
we have 

  ),BE(  J


  

 or BEJ 



  .              (12) 

• In a perfectly conducting fluid,   tends to infinity. This limiting case defines the 
subject area known as ideal magneto hydrodynamics.  

• The left hand side of equation (12) tends to zero, and we have 

  ,BE


                 (13) 

This equation tells us that the electric field 

E  in the rest frame of a conducting 

fluid is zero: This is evident from equation (11) and (13). The instantaneous 
response of the perfectly conducting fluid immediately cancels out any attempt to 

create a non-zero 

E . 

• Now the laboratory is moving at velocity 
  with respect to the rest frame of the 

fluid element, where the magnetic field 
 
 B B , when terms of order 2c

  are 

neglected. Then the Lorentz transformation back to the laboratory frame gives 

  
          E E B B,               (14) 

 Since  

 E 0.  

• Thus the existence of non-zero E


 has two physical origins. First, there is the 
assumed infinite conductivity of the fluid. Second, there is the fact that the division 
of an electromagnetic field into electric and magnetic components is frame 
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independent. 

E  is zero, and B


  is non-zero, and this is sufficient to make E


 

non-zero. 

• We now include Faraday's law of electromagnetic induction equation (Maxwell 
equation) : 

  
   BE
t


  


 

Taking the curl of equation (13), gives  

  ).B(
t
B 



                (15) 

We have now eliminated E


, and obtained in equation (15) an expression for the 

time evolution of B


  in terms of   and B


 itself. 

• Equation (15) is a combined statement of Ohm's law and Faraday's law for a 
perfectly conducting fluid in a magnetic field. It leads to the concept of magnetic 
flux freezing. To understand this important physical phenomenon, we return to the 
equation (15): 

  )B( Curl    
t
B 




  

We expand the right hand side, using the fact that 


di  (use formula  
( ) ( . ) ( . )   di   di .)a b b a a b a b b a          

            

  

 

 di B B )gard )grad .B(
t
B  

Substituting from the equation of continuity (equation 4): 

  0)(di
t



   

 or 0 grad  di
t



   

 or , grad
t

1  di











  

We obtain after a simple rearrangement of terms 

  



































 

 


  grad . B  B

dt
dB  grad

t 
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 or 






















 grad . B  B
dt
d                (16) 

We now consider some "fluid line", i.e. a line which moves with the fluid particles 

composing it. Let 

 be an element of length of this line; we shall determine how 



  varies with time. if   is the fluid velocity at one end of the element 


 , then 

the fluid velocity at the other end is ( .grad)    
   During a time interval dt, the 

length of 

  therefore changes by dt( .grad)  

  , i.e. d ( ) / dt ( .grad)    
    . 

• We see that rates of change of the vectors 

l  and  /B


are given by identical 

formulae. Hence it follows that, if these vectors are initially in the same direction, 
they will remain parallel and their length will remain in the same ratio. In other 
words, if two infinitely close fluid particles are on the same line of force at any 

time, then they will always be on the same line of force, and the value of 

B


 will 

be proportional to the distance between particles. 

• Passing now from particles as an infinitesimal distance apart to those at any 
distance apart .We conclude that every line of force moves with the fluid particles 
which lie on it. We can picture this by saying (in the limit   ) the lines of 
magnetic force are "frozen" in the fluid and more with it. 

 The quantity 

B  varies at every point proportionally to the extension of the 

corresponding "fluid line". if the fluid may be supposed incompressible   = 
constant, and the field B  varies as the extension of the lines of force. 

 

6.3 Complete set of Magnetohydrodynamic (MHD) Equations 
We collect here the following set of simplified MHD equations: 

1. Equation of continuity: 

  .( v
t


  




 

2. Equation of Motion of conducting fluid: 

   v (v. ) v J B p
 t

        

   
 

6.3Complete set of Magnetohydrodynamic(MHD)Equations 
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3. Maxwell's equations : 

  
t 
BE







 

4.   JB


  

5. Generalized Ohm's law 

  J v B) J B
    



    
 

In this set of equations, viscosity and thermal conductivity are neglected. Also 

from equation (4) we have 0J . 


 

6.4 Diffusion of Charged Particles in a Weakly Ionized Gas 
• Diffusion of particles in a gas and plasma are due to the gradients of the 
macroscopic parameters. These gradients give rise to fluxes that finally equalize 
the microscopic parameters over the plasma volume. 

• We first consider the simplest diffusion phenomenon due to the transport of 
particles. If the density of a given particle species is not spatially uniform and this 
gas state is hydrodynamically stable, there is a directional flow of particle tending 
to equalize in space the density of the given particle species.  

• If the density of the given species varies slightly over the mean free path, that is, 

the density gradient is small, the diffusion flux density j


 is proportional to that 
gradient: 

 j


= – D  grad  N        (1) 

• The factor D in equation (1) is called the diffusion coefficient. 

• We analyze the restoration of the equilibrium gas density after a density gradient 

has been established. Inserting (1) into the continuity equation viz div j 0
t


  




, 

where j N v
 

, we obtain:  

 div j
t


  




 

        div( D grad N)  
  

        )N .( D   

6.4 Diffusion of Charged Particles in a Weakly Ionized Gas 
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 )N( D 
t

2

         (2) 

Let us denote by L the characteristic distance at which there occurs a noticeable 
variation of the gas density. Then equation (2) yields the characteristic time of the 
density variation,  

2 2

L
L L ,
D v

  


 where  is the mean free path and  is the characteristic velocity. 

6.5 Ambipolar Diffusion 
We now take up the case of diffusion of charged particles in a weakly ionized gas. 
The degree of ionization is assumed to be so small that collisions between charged 
particles may be neglected in comparison with those between charged particles and 
neutral atoms. 

Even under these conditions, the diffusion of the two types of charged particles 
(electrons and ions) is not independent, because an electric field arises in the 
diffusion process. 

• It may be noted that electrons have a considerably larger diffusion coefficient 
than the ions ;therefore ,the electrons are spreading over the gas volume 
considerably  faster than the ions. This results in a disturbance of quasineutrality  
of the plasma and in the emergence of electric fields in the plasma created by the 
charged particles. 

• The electric field E


 created due to the spatial distribution of charged particles 
satisfies Poisson’s equation:  i ediv E 4 e(N N )  


     (1) 

Where Ne and Ni are the densities of the electrons and ions (ions are assumed to be 
singly charged). 

• The flux densities of the electrons and ions in the system are the sums of the 
diffusion flux density and the flux density due to the electric field: 

 e   grad Ne e e ej D K N E  


      (2) 

 i   grad Ni i i ij D K N E  


      (3) 

6.5 Ambipolar Diffusion 
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In the above equation De  and Di are the diffusion coefficients of the electrons and 

ions in the gas, Ke and Ki are the mobilities ( e i
e i

v vK , K
E E

  ) of the electrons and 

ions respectively, e  and i  are electron and ion drift velocities respectively, 

Let us now consider such a mode of development that the plasma remains 
quasineutral is the process of motion. This is the case for relatively high densities 
of charged particles; the separation of charges gives rise to large fields which 
prevent further separation and preserve the quasineutrality of the plasma. This 
phenomenon is termed the "ambipolar diffusion" In this case Ne= Ni = N So that 

NNNN ie   and the fluxes of the electrons and ions are the same. 

• We now analyze equation (2) and (3) for the electron and ion flux densities in the 
case of ambipolar diffusion. 

• For the electron flux to be equal to the ion flux, the first term in equation (2) must 
almost cancel the second term: E N KN grad D eeee


 . 

This means that the electric field strength must be 

 
e

e

e

e

N
)N grad(

K
DE 











       (4) 

    
N

)N grad(
K
D

e

e 







  

The ratio of the mobility Ke to the diffusion coefficient is known as the Einstein 

relation and is given by 
ee

e

T
e

D
K

       (5) 

• Thus the electric field E


 must be 

 
N

N) grad(
e
TE e 








        (6) 

• Inserting this into equation (3), we find the flux density of the charged particles: 

 
 

i i grad N -K  N  Ei ij D   

     
























N
N grad  

K
D– N 

T
D e - N grad D

e

i

i

i
i     (7) 

Now substituting 
e

e
e T

D)e(K 
  (Einstein's relation) 
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in equation (7), we find 

 


i e e

i e

e D – D  T
 grad N – 

T (–e) D
i i

gradNj D N
N

   
     

   
 

    i– D e
i

i

TD gradN
T

 
  

 
 

    N grad D– a         (8) 

where 1a i D   D  e

i

T
T

 
  

 
         (9) 

Above eq. is known as the ambipolar diffusion coefficient. In the above analysis, 

we made use of the Einstein relation viz. 
T
DeK  , and assumed that the electron Ti 

thus, the ambipolar diffusion of the charged particles is a diffusion-like motion 
with the time parameter corresponding to the ions. 

Assuming ie TT  , then the ambipolar diffusion coefficient is twice that of the ions, 
Thus, during a time ~ i  ( i  is the characteristic ion diffusion time), the electrons 
and ions diffuse together ( )e iN N   with a diffusion coefficient twice that of 
the ions; this process is called "ambipolar diffusion." Half of the coefficient is due 
to the intrinsic diffusion of the ions, and half to the electric field resulting from the 
accelerating electrons. 

 

6.6 Illustrative Examples 
Example 1 (a) solve the "diffusion equation" 

 )t,r(nD
t

)t,r(n 2 



  

by the method of separation of variables, let 

 ( , ) ) ( )n r t S r T t    

and show that  

 )tk (–D exp T)t(T 2
0k   

 2 2( ) ( ) 0k S r    

Where k2 is the separation constant and T0 is constant. 

6.6 Illustrative Examples 
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(b) Assuming that S  depends only on the x coordinate, show that 
( ) ( )S x C k  exp (i k x)  

where k can be either positive or negative, and that 

 



 dk  t)k D– k x  (i exp )k(C)t,x(n 2  

 0 ( ) ( ) exp (i k x) dkn x C k




   

where n0(x) = n(x,0) is the know "initial" density distribution. 

(c) Using Fourier transform theory, show that 

 





 dx k x) (–i exp )x(n
2
1)k(C 0 , and consequently, that 

  2

1/2

1( , ) ( )
2( ) 40

– x–x
n  exp   dx

t
n x t x

Dt D 





 
   

  
  

(d) Taking as initial condition 

 






 
 2

0

2

0 x
xexp)x(n  

show that 






























t4x

xexp
t4

)t,x(n
D

D
2
0

22/1

D

D  

Where 
D
x2

0
D   is a characteristic time for diffusion to smooth out the density n. 

Sol.(a) Diffusion equation is  

 )t,r(nD
t

)t,r(n 2 



  

We solve this equation by method of separation of variables: 

 Let n(r,t) S r )T(t); 
 

 

substituting in diffusion equation, we find 

 2 TS D T  S 0
t


  


 

or 21  T D  S 0
T t S


  

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Let ,k
t
T 

T D
1 2


  then 2 21  S k

S
     

Integrating we obtain tk –D
0

 2

e TT   

and 2 2S k S 0     

or 0S)k( 22   

 (b)  kn(x,t) S(x)T (t) dk






   

  



 dk  t)k (–D exp  tok x) (i exp )k(C 2  

 



 dk )t k D– k x (i exp )k(C)t,x(n 2  

 T0 = Constant = 1 (by Choice) 

and n0 (x) = n (x, 0) is obtain by putting t=0 in the above expression 

 



 dk )k x (i exp )k(C)x(n0  

(c) Substituting from Fourier transform theory 

 




  
  0
1C(k) n (x ) exp (–i k x ) dx

2
  

In the expression for n(x, t) 

 
 

 

 


  

2i  k x i k x – D k t
0

1n(x,t) dx '  n (x ') e  dk
2

 

carrying out this simple integration and using the well know integral 

e



 



  


2x dx , we finally obtain : 

 




 
    


2

0
1 – (x–x')n(x,t) n (x ') exp 

4 Dt2 Dt
 

(d) Substituting 
 

  
 

2

0 2
0

–xn (x ')  exp 
x

 and carrying out this simple integration we 

obtain the required expression.   
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Example 2 Consider the solution of the diffusion equation by separation of 
variables in the linear geometry of the plasma slab indicated in figure given below. 

Show that solution of the equation 

 
2

2
2

d S(x) k S(x) 0
d x

   

That satisfy the boundary conditions S=0 at Lx  ,are 

 1( ) cos ( )
2

 

L
m

m

xS x a m     
  

 ( ) sin( )  
m

m

m xS x b
L


  

Explain why the solution as a sine series is not a physically acceptable solution for 
this case. Consequently, from n(x,t) = S(x) T(t), show that the number density can 
be expressed as: 

  



 



  

m
2

2
m L

x)
2
1m cos

L
t)

2
1m(D–  exp a)t,x(n  

Therefore, the decay time constant for the mth mode is 

 
D
1

)
2
1(m 

L

2

m


















  

This result shows that the higher modes decay faster than the lower ones. 

How are the coefficients am determined in terms of n0 (x) ? 

 
Figure : Geometry of the plasma slab for the solution of the diffusion equation 
considered in illustrative example 2. 
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Sol. Diffusion equation is 

 2x
)t,x(nD

t
)t,x(n







 

        (1) 

Let n(x,t)  S (x) T (t)   

Substituting in (1) one fields 

 
2

2
dT d SS DT
dt dx

  

Dividing by DST gives 

 
2

2
1 dT 1 d S   –   0

DT dt S d x
  

The variables are separated. 

 Let 2k 
dt
dT  

DT
1

        (2) 

       
2

21 d S   k
S dx

                      (3) 

Integration of equation (2) gives 

  t)D(–k exp  T T 2
0 , where T0 is a constant. 

Equation (3)  gives 2 0
2

2

d

d x

S k S   

The solution for S(x) is 

 1 2S(x)  C  cos k x  C  sin k x   

Using the boundary condition 

 S(x) 0,          x L    

 Lk sin  C  Lk  cos C  0 21   

If ,0C2   then 

 





 

2
1mkL   m is integer  

 
L2

1mk 






   

 
   m

m

1S(x) a  cos (m ) x
2 L

      (4) 
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If C1= 0, then the solution with the boundary condition S(x)=0,  Lx   gives 

 m
m

m xS(x) b  sin ( )
L


         (5) 

Taking account the symmetry of the problem [Ne(x) = Ne(–x)] the solution for S(x) 
is given by (4). 

Therefore 

  
L
x

2
1mcos. tk D– exp  a)t,x(n

m

2
m








   

Substituting the value of 





 

2
1mk   ,we find 

 2

1( , ) cos .
2

2 1
  exp –D (m )

2
m

m

xn x t a t m
L L
           

  

Therefore, the decay constant for mth mode is given by 

 1t,
L

)
2
1(m D 2

 2 





 

or )say(
D)

2
1m(

Lt m
2




  

or 
D
1.

)
2
1m(

L

2

m


















  

Therefore higher modes decay faster than the lower modes. 

Example 3 Consider a fluid whose conductivity  is not infinite.  

(a) Show the MHD equation in this case satisfies 

  B 1)B(  
t
B 2












 

(b) Show that, when the evolution of the magnetic field is dominated by the new, 
non-ideal term, the field decays in a way described by a diffusion equation. What 
is the relation between the characteristic timescale and length scale of this process 
?  
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(c) Show that the decay of the magnetic field is due to the dissipation of energy 
through Joule heating. 

Sol.(a)  J B


         (1) 

  )BE(J


        (2) 

Substituting (2) into (1) gives 

   BB


    (Ohm's law) 

Taking the curl of this equation, and dividing by  , we obtain 

  )B(E)B(1 




 

or    )B(
t 

BB)B.(1 2









 

  ( )
 

B B
t


   



  .        (3) 

represents MHD equation of non-ideal MHD fluid ( . 

(b) If the ideal term on the right hand side of (3) is negligible, we are left with a 
diffusion equation: 

  B1
t 

B 2











 

Each component of B


 satisfies the diffusion equation. 

Let  (t) )x(X)t,x(B  . Then we have 

0

( ) "( )X x X x 
 

 
1

 (t) (t)  

Where the prime denotes differentiation with respect to x or t as appropriate. 

Dividing both sides by ( )X x  (t)  

  
0

"( )
( )

X x
X x


  



(t) 1

(t)
 

The left and right hand sides of the equation are functions of different independent 
variables. Equality for all values of x and t is possible only if both sides of the 
equation are, in fact, constant. 
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We write ( ) 1
( )
t
t T








 

where T is a fixed quantity which necessarily has time as its dimension, similarly, 
we write 

  2L
1

)x(X
)x("X
  

Where L is a fixed quantity which necessarily has length as its dimension. 
Substituting back, we obtain the relation. 

  2
0 L T   

6.7 Self Learning Exercise 

Q.1 Show that the solution of the diffusion equation in the case of cylindrical 
geometry (see figure) 

 
2

2
2

d S(r) 1 dS(r) k S(r) 0
d r r dr

    

can be written in terms of Bessel functions ( )mJ kr , Explain how k must be 
determined  so that  t),r(n    satisfies the boundary condition 0n   at 0Rr  . 

 
Figure: Cylindrical geometry of plasma column for the solution of the diffusion 
equation considered  

Q.2 Prove that total time derivative following the motion of the fluid element is 
given by 

  






tdt
d  

6.7 Self Learning Exercise 
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6.8 Summary 

In this chapter we have treated plasma as a conducting fluid. The behavior of the 
plasma is completely described by a complete set of magnetohydrodynamic 
(MHD) equations. We have also discussed the phenomenon of diffusion in a 
weakly ionized plasma. This leads to an interesting phenomenon of “ Ambipolar 
diffusion.” 

6.9 Glossary 
Ambipolar diffusion:  

diffusion of electrons and ions together in steady state. 

“Frozen” in magnetic field:  

In the limit of infinite conductivity of plasma fluid ,the lines of magnetic force are 
frozen in fluid and move with it. This is called “Frozen” in magnetic field. 

6.10 Answers to Self Learning Exercise 

Ans.1 : S(r) satisfies the Bessel equation. 

 S(r) J (k r)  

The boundary condition n=0 at r = R 

 implies 0S(r R ) 0,   This gives 

  ( ) 00 RJ k   

This gives  405.2R k 0   or 
0R

405.2 k   

Hence the solution is 
0

rS(r) J (2.405 )
R

. 

The complete solution for )t,r(n  is 

  ( , ) ( )   T(t)n r t S r   

there  0( )T t T
2– D k  te  

 an 
0

2.405 rS(r) J ( ).
R

 

6.8 Summary 

6.9 Glossary 

6.10 Answers to Self Learning Exercise 



132 
 

Ans.2 : Consider any function  g which depends on spatial position x and on time  
t. In time interval t , a fluid element starting at x  will move to a new position at 

( )x t x 
  . The value of g appropriate to the new coordinates of the fluid element 

is, by Taylor's theorem 

 ).t,x(g
t

t    t),x( g).x( t)t,x(g~ t)t),x(t   x( g 



  

or )t,x(g
tt

)t,x(gt)t),x(t   x( g 














  

or )t,x(g
t

   t),x( g 
dt
d 












  

or equivalently 

 




 

t
 

dt
d  

6.11 Exercise  

Q.1  Write full set of ideal MHD equations. 

Q.2  What is ambipolar diffusion? derive and expression the coefficient of 
ambipolar diffusion. solve ambipolar diffusion equation when the fluid is 
confined in rectangular box. 

Q.3  Explain the concept of magnetic flux freezing. 

Q.4  Deduce the equation of continuity of an ideal fluid. 

Q.5  Derive generalized Ohm's law.  

 

References and Suggested Readings 
1. Electrodynamics of continuous media : Landau and Lifshitz 

2. Plasma Physics : J.A. Bittencourt 

  

6.11 Exercise  

References and Suggested Readings 



133 
 

UNIT-7 
Some Basic Plasma Phenomena 

 and Pinch Effect 
 

Structure of the Unit 

7.0  Objectives 

7.1  Introduction  

7.2  The Debye shielding Problem 

7.3  Plasma Sheath 

7.4  Electric Potential on the wall 

7.5  Plasma Probe (Langmuir probe) 

7.6  The Equilibrium Of A Perfectly Conducting Fluid (Plasma) At Rest In A 
 Constant Magnetic Field 

7.7  Illustrative Examples 

7.8  The Bennet Pinch 

7.9  Instabilities in a Pinched Plasma Column: 

7.10  The Sausage instability 

7.11 The Kink Instability  

7.12  Plasma Confinement in a Magnetic field 

7.13  Self Learning Exercise 

7.14  Summary 

7.15  Glossary 

7.16  Answers to Self Learning Exercise 

7.17  Exercise 

7.18  Answers to Exercise 

 References and Suggested Readings 

UNIT-7 
Some Basic Plasma Phenomena 

 and Pinch Effect 



134 
 

7.0 Objectives 

To learn 
• Electron plasma oscillations and Plasma Sheath  
• Floating negative potential & Electric Potential on the wall 
• Plasma Probe (Langmuir Probe) 
• Characteristics of I-V curve of an electrostatic plane probe immersed in a plasma 
• Pinch effect and  Equilibrium of a perfectly conducting fluid (Plasma) 
• Bennet Pinch 
• Kink instability& Sausage instability 
7.1 Introduction  

 One of the fundamental properties of a plasma is its tendency to maintain electric 
charge neutrality on a macroscopic scale under equilibrium conditions .When this 
macroscopic charge neutrality is disturbed, so as to produce a significant 
imbalance of charge, large Coulomb forces come into play, which tend to restore 
the macroscopic charge neutrality. Since these Coulomb forces  cannot be naturally  
sustained in the plasma, it breaks into high-frequency electron plasma oscillations, 
which enable the plasma to maintain on average its electrical neutrality, The 
frequency of these oscillations is usually very high, and since the ions (in view of 
their higher mass) are unable to follow the rapidity of the electron oscillations, 
their motion is often neglected. In the following we will examine the mechanism 
by which the plasma strives to shield its interior from a disturbing electric field. 
When a material body is immersed in a plasma, the body acquires a net negative 
charge and therefore a negative potential with respect to the plasma potential. In 
the region near the wall of the body there is a boundary layer, known as "Plasma 
sheath" in which the electron and the ion number densities are different. We shall 
study the mechanism of formation of plasma-sheath." 
In this chapter we consider the equilibrium of a plasma column at rest in a constant 
magnetic field. This study is important from the point of view of plasma 
confinement by a magnetic field in controlled thermonuclear research. The 
confinement is produced by an azimuthal ( ) self-magnetic field, due to an axial 

current in the plasma generated by an applied electric field. J B
 

 force, acting on  
the plasma, forces the column to contract radially. This radial constriction of   the 

7.0 Objectives 

7.1 Introduction  



135 
 

plasma column is known as the "Pinch effect".  

7.2 The Debye Shielding Problem 
 To examine the mechanism by which the plasma strives to shield its interior form 
a disturbing electric field, consider a plasma whose equilibrium state is pretended 
by an electric field due to external charged particle. Let this test particle' has a 
positive test charge + Q and it is located at the origin of spherical coordinate 
system. We are interested in determining the electrostatic potential ( )r    that is 
established near the test charge Q, due to the combined effects of the test charge 
and the distribution of charged particles surrounding it. Since the positive  test 
charge Q attracts the negatively charged particles and repels the positively charged 
ones, the number densities of electrons )r(ne

  and of the ions ))r(n( i
  will be 

slightly different near the origin (test particle), whereas at large distances from the 
origin the electrostatic potential vanishes, so that 

 ,0ie n)(n)(n   
Since this is a steady- state problem under the action of a conservative electric 
field, we have   

 )r()r(E 
          (1) 

 



 


kT

)r( e exp n)r(n 0e

         (2) 

 



 


kT

)r( e– exp n)r(n 0i

         (3) 

where we have assumed that the electrons and ions have the same temperature T. 

 The total electric charge density )r , including the test charge Q can be 
expressed as  
   )r(Q)r(n)r(n e )r ie


       (4) 

Using (2) and (3) 

 )r(Q  
kT

)r( e– exp
kT

)r( e expn e )r 0















 





 

    (5) 

 Making use of the following Maxwell equation, 

 




)r(E .


          (6) 

 

7.2 The Debye Shielding Problem 
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and  E  


, we obtain the following differential equation: 

 
 















 





 





)r(Q  

kT
)r( e– exp

kT
)r( e expn e )r 02

     (7) 

which allows the evolution of the electrostatic potential )r( . 

We now assume that the perturbing electrostatic potential is weak so that the 
electrostatic potential energy is much less than the mean thermal energy, that is 
 kT)r(e 

           (8) 
Under this assumption we can use the approximation  

 
kT

)r(e 1  –~
kT

)r(eexp







 
        (9) 

Therefore the equation (7) simplifies to 

 








)r(Q)r(2)r( 2
D

2
                 (10) 

where D  denotes the Debye length 

 
pe

th
2
1

2
0

D en
kT












          (11)  

where 
2
1

e

e
th m

kT








  and pe  is the plasma -frequency 

2
1

e

2
0

m
en











 

Since the problem has spherical symmetry, therefore   depends only on the radial 
distance r measured from the position of the test particle, it being independent of 
the spatial orientation of r  i.e.   and  . 

 0)r(2)r(
dr
dr

dr
d

r
1

D

2
2 








  

                (12) 

In order to solve this equation we note initially that for an isolated particle of 
charge  + Q, in free space, the electric field is 

 r̂
r
Q

4
1  )r( E 2




 ,                 (13) 

So that the electrostatic Coulomb potential C due to this isolated charged )r(c




particle in free space is   

 ( )C
Qr
r


 




1
    

4
                  (14) 
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Hence we note that in the very close proximity of the test particle the electrostatic 
potential should be the same as that for an isolated particle in free space. Hence it 
is reasonable to seek the solution of (12) in the form 

 ( ) ( )c
Fr r

r
 

 

 


Q  (r) 
  F(r)     

4
               (15) 

where the function  F(r) must be such that 0r  when)r(F   

Further,  r when . 

Substituting  (15) into (12) yields the following differential equation for F(r): 

 )r(F2
dr

)r(Fd
2
D

2

2


                  (16) 

Diff. Equation (16) has the solution for F(r)  as 

 





















DD

r 2 exp Br 2 expA)r(F               (17) 

The condition that  )r(  as r   , requires A=0, Also the condition that 
1)r(F   as 0r   requires  B=1, Therefore, the solution of (12) is 

 

























 DD
c

r 2 exp 
r4

Qr 2 exp )r()r(              (18) 

Eqn. (18) represents Debye potential, The charge Q of the test particle is 
neutralized by the charge distribution surrounding the test particle.  The charge 
density is (from eq. (5) and (9) 

 )r(Q
kT

)r(en2)r(
2

0 



                 (19) 

Substituting  for )r(  from (18), then 

 )r( Q
Tk 

r 2 exp 
 r2

Q)r( 2
D










 


                   (20) 

The neutralization of the test particle takes place effectively on account of the 
charged particles inside the Debye sphere. In the neighborhood of the test particle 
the electron number density is larger than the ion number density, on account of 
the fact that the positive test particles attracts the electrons and repels the ions. 
Therefore, in the close neighborhood of the test particle there is an imbalance of 
charge and consequently, an electric field, the shielding of this electric field is 
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effectively completed over a distance of the order of D . Thus, for macroscopic 
neutrality, it is necessary that the plasma characteristic dimension L be much 
greater than D .   

7.3 Plasma Sheath 
When a material body is immersed in a plasma, the body acquires a net negative 
charge and therefore a negative potential with respect to the plasma potential. In 
the region near the wall of the body there is a boundary layer, known as the 
"Plasma sheath" in which the electron  and the ion number densities are different.  
Inside the plasma sheath the potential increases monotonically from a negative 
value on the wall to the value corresponding to the unperturbed plasma. The 
thickness of the plasma sheath is found to be of the order of a Debye length. 

Physical Mechanism For The Formation of The Plasma Sheath: 

We can understand the physical mechanism responsible for the formation of the 
plasma sheath as follows: 

• The charged particles in the plasma that strike the wall because of their random 
thermal motions are for the most part lost to the plasma. 

• The ions generally recombine at the wall an return to the plasma as neutral 
particles, whereas the electrons may either recombine there or enter the conduction  
band if the surface is  a metal. 

• As it is already known that the number of particles that hit the surface per unit 
area and per unit time, from one side only, for the case of an isotropic velocity 
distribution, is given by 

 n
    


        (1) 

where   is the average particle speed for a species. But 
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












 
         (2) 

So that       
1
2kTn

2 m


 


 
    

        (3) 

  is known as random particle flux. If is evident from this result that if initially 
the electron and the ion number densities are equal, then the random particle flux 

7.3 Plasma Sheath 
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for the electrons ( )e  greatly exceeds that for the ions ( )i  .This is because the 

electron thermal velocity 
2
1

e

e

m
T








  is much greater than 
2
1

i

i

m
T








 . Therefore the wall 

in contact with plasma rapidly accumulates a negative charge, since initially more 
electrons reach the wall than positive ions. The negative potential repels the 
electrons and attracts the ions so that electron flux diminishes and the ion flux 
increases. Eventually, the negative potential at the wall becomes large enough in 
magnitude to equalize the rate at which electrons  and ions hit the surface. At this 
"floating negative potential" the wall and the plasma reach a dynamical 
equilibrium such that the net current at the wall is zero. 
7.4 Electric Potential on the Wall 
Let the electric potential x    at the wall (x = 0) be given by 

 w          (1) 
Let us choose the reference potential inside the plasma, at a very large distance 
from the wall, equal to zero, 
 0           (2) 

 The electrons and ions are assumed to be in thermodynamic equilibrium at the 
same temperature T, with the negative potential on the wall, at x , the plasma 
is unperturbed and 0ie n~n~n  .The electron and ion number densities can be 
expressed as 

 



 


kT

)r(e exp n)r(n 0e

        (3) 

 



 


kT
)r(e exp n)r(n 0i

        (4) 

Under equilibrium conditions there must be no charge build up at the wall (x=0), 
so that 
 (0) (0)e iJ J          (5) 

where eJ  and iJ  represent electron and ion current densities respectively, using 

the formula J n  
 

 e  equation (5) gives 

 

1 1
2 21 1w w

e im kT m
             

      

e – e 
 exp  exp 

kT
     (6) 

7.4 Electric Potential on the Wall 
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or 
1
2w i

e

–2e mexp 
kT m

      
   

       (7) 

From (7), We obtain 

 















e

i
w m

mln 
e4

kT–         (8) 

From(8) we note that the magnitude of the potential energy near the wall   we  is 
of the same order as the average thermal energy kT of the particles in the plasma, 

Since     
  

 
w i

e

e m1 ln
kT 4 m

,for a hydrogen ion, for examples, we 
kT

    is approximately 

equal to 2, whereas for heavier ions it may be close to 3. 

7.5 Plasma Probe (Langmuir Probe) 
The plasma probe is a device used to measure the temperature and density of a 
plasma.The plasma probe (electrostatic probe) was originally developed by 
Langmuir Its physical mechanism of its operation can be explained using the 
theory of "Plasma sheaths". A conducting probe, or electrode, is immersed in a 
plasma and the current that flows through it is measured  for various potentials 
applied to the probe.The temperature and number density of the electrons can be 
obtained from the characteristics of the resulting current-potential curve. When the 
surface of the probe is a plane, the current-potential curve has a shape like that in 
figure 1. 

 
Figure:1 

7.5 Plasma Probe (Langmuir Probe) 
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The probe, when inserted in the plasma, is surrounded by a plasma sheath that 
shields the major portion of the plasma from the disturbing probe field.The 
thickness of the sheath is of the order of a Debye length. 

• When no current flows through the electrode, it stays at the negative floating 
potential w , which is the wall potential.   

 
Figure : 2 

• Under these equilibrium conditions, the number of electrons reaching the probe 
per unit time is equal to the number of positive ions reaching the probe per unit 
time. 

• We assume the current to be positive when it flows in the direction away from the 
probe, The current associated with the electron flow is directed away from the 
probe and therefore it is considered as positive. Consequently, the electric current 
associated with the flow of ions is negative. 

• Under equilibrium conditions there is no net current flowing through the probe 
and its potential is the floating potential w . 

• When the probe potential is made more negative than w , the electron current is 
reduced due to increased repulsive force imposed by the probe electric field on the 
electrons. 

• As the potential is made more negative, the contribution to the electric current 
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arising from the electrons will eventually become negligible and the total electric 
current asymptotically approaches a constant negative value, corresponding to the 
electric current density iJ  associated with the flow of ions only. 

• The ions that reach the edge of the plasma sheath fall into the potential well and 
their current is practically unaffected if the potential is made even more negative. 

• On the other hand, when the probe potential is increased from the negative value 

w , more electrons reach the probe than ions per unit time due to the decrease in 
the repulsion force on the electrons, and the net electric current becomes positive. 

• When the electric potential is zero, that is when the probe is at the same potential 
as the plasma, there is no electric field near the electrode and, since the average 
thermal velocity of the electrons is much greater than that of ions, the electron 
current densities 0 ( 0)eJ for   is much greater than the ion current density. 

• If the potential is made sufficiently positive, a situations arises in which the 
current associated with the ions become negligible, but all the electrons that reach 
the edge of the sheath are collected by the probe. The electron current density 
reaches a fairly constant value for sufficiently high positive value of  . 

 The plateau  region is the probe current-potential curve is called the region of 
saturation of the electron current. 

• For higher positive values of   there are  complications in the i- v curve. 

• An approximate expression for the magnitude of the electron density, away from 
the region of saturation is given by 

 0e e
e

eJ J
kT
 

  
 

 exp         (1) 

where 0J  is the electron current density when electric potential is zero. 

• Since for 0  electron flux 
4

e
e e

n     , 

we find 

1
2

2
e

e
e

kTJ e
m

 
  

 
e n ,       (2) 

where ne is the electron number density in the unperturbed plasma region, Note that 

iJ  is constant in the negative potential region, 

 Thus, we can express the probe current density in the region where 0 , as 
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 0 expp e i
e

eJ J J
kT
 

  
 

    (for  )     (3) 

 From this equation we can deduce the result 

 
1

ln( )e p i

e dT J J
k d


      

       (4) 

This expression can be used to determine the electron temperature as follows. First, 
the electrode is made sufficiently negative with reference to the plasma potential, 
so that the current that flows through the probe is due to the ions only. The 
measurement of this current gives directly the value of iJ . Then, the current-
potential characteristic curve of the probe is measured and a plot of ln( )p iJ J  as 
a function of   is made. This curve has a straight-line section corresponding to the 
probe potential less than the plasma potential,  and the slope of this straight line 

gives the value of ln( )p i
d J J

d
    which, when substituted in (4) gives the 

electron temperature in the plasma. After the electron temperature eT  has been 
determined, we can evaluate the electron number density from (2), which can be 

written as 

1
2

0 2e e
e

e

J mn
e KT

 
  

 
.The value of 0eJ  is determined by measuring the 

probe current corresponding to the plateau (electron saturation) region of the 
current potential characteristic of the probe. 

7.6 The Equilibrium of a Perfectly Conducting Fluid (Plasma) 
at Rest in a Constant Magnetic Field 
The equilibrium of a perfectly conducting fluid (plasma) at rest in a constant 
magnetic field is described by the equations (obtained from fluid equations) 

 grad p B 


   J ,         (1)  

where J


 is the current density, B


 is the magnetic field, and p is the plasma kinetic 
pressure. 
 B J 

  
         (2) 

 0B. 


         (3) 

 For simplicity, the current density, the magnetic field, and the plasma kinetic 
pressure are assumed to depend only on the distance from the cylinder axis. Here 

7.6 The Equilibrium of a Perfectly Conducting Fluid 
 (Plasma) at Rest in a Constant Magnetic Field 
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we shall consider some general properties of equilibrium configurations derivable 
from these equations.  

 Scalar multiplication of (1) by B


 and by J


 gives 

 ( . ) ) 0;B grad p J grad p  
 

 0, (        (4) 

That is, the pressure gradient is zero along the lines of magnetic induction B


 and 
along the current lines. Thus both sets of lines lie on surfaces 

 ( , , )p x y z  constant,         (5) 

called "Magnetic surface". 

These isobaric surface, for which p= constant, are concentric cylinders. 

 We now consider an infinite cylindrical column of conducting fluid with an axial 
current density ˆ( )zJ J r z


 and a resulting azimuthal magnetic induction 

 
ˆ)r(BB


, as depicted in Figure 3 

 
Figure 3: Schematic diagram illustrating the various parameters relevant to the 
study of the equilibrium longitudinal pinch configuration. 

The radial component of (1) gives ( ) ( )z
d J r B r

dr  
 p(r)     (6) 

Inside a cylinder of general radius r, the total enclosed current Iz (r) is 
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0

( ) ( )2
r

z zI r J r r    dr        (7) 

From (7) we get 

 ( ) 2 ( )z
d r r r

dr
 z I

 J         (8) 

Ampere's law in integral form relates )r(B  to the total enclosed current: 

 
0

( ) ( ) ( )
r

z zr I r J r r
r r

 

  

 B   dr       (9) 

 A number of results can be obtained even without specifying the precise form of 
( )ZJ r . If the conducting fluid lies almost entirely inside r=R, then the magnetic 

induction )r(B  outside the plasma is 

 0( ) ( )Ir r R
r



 


B                  (10) 

where  0 0
( )2 ( )

r

z ZI J r rdr I R                        (11) 

which is the total current flowing inside the cylindrical plasma column.  

Thus the substitution of ( ) ( )zB r r  and J  from (9)  and (8) respectively in (6) results 
in  

 
dr

)r(I d)r(I
rdr

)r(dp z
z2






 ,                (12) 

which can be written as 

 2 2( ) 1 ( )
2 z

dp r dr I r
dr dr

 


      
               (13) 

Integrating this equation from r=0 to r=R 

 2 2
00

4
RRr r I   

    
1

 p(r)   2  p (r) dr  –  
2

                  (14) 

where )R(II z0   is the total current flowing through the entire cross-section of 
plasma column and obviously, 0)0(Iz  .Considering the plasma column to be 
confined to the range Rr0  , it follows that )r(p  is zero for Rr  , and finite for 

Rr0  , so that the first term in the left-hand side of (14) vanishes. Therefore, we 
find that 

   






R

0

2
0 dr (r) p r28I                 (15) 
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If the partial pressures of the electrons and ions are governed by the ideal gas law, 

 ee kT)r(n)r(p                   (16) 

 ii kT)r(n)r(p                   (17) 

assuming that eT  and iT  are constants throughout the plasma column, we have 

 )TT(k)r(n)r(p)r(p)r(p ieie                 (18) 

therefore, (15) becomes 

  






R

0ie
2
0 dr n(r)  r2 )TT(k8I                (19) 

which can be rewritten as 

 2
0

8 ( )e i lI k T T


   N                  (20) 

where 2l r
R

0
N  =  n(r) dr                  (21) 

is the number of particles per unit length of the plasma column. Eq. (19) is known 
as the "Bennett relation". 

It gives the total current  that must be discharged through the plasma column in 
order to confine a plasma at a specified temperature and a given number of 
particles l(N )  per unit length. 

For example we consider 1910l 
–1N    m , 810e iT T K   

  
m
H104 7

  , 231.38 10 Jk
K

  ,then ~I0  One million amperes. 

 To obtain the radial distribution of )r(p  in terms of )r(B  ,it is convenient to start 
from (6) and proceed as follows. 

First, we note that from Maxwell equation B J 
  

 we have, in cylindrical 
coordinates, with only radial dependence, 

  1 ( ) ( )d r r r
r dr    B  J                 (22) 

from which we get 

 
0 0

1 1( ) dJ r
dr r
 

   
 B  (r) B  (r)

                 (23) 

Substituting the expression for ( )J r  from (23) into (6), we get 
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  )r(Br
dr
d

r2
1

dr
)r( dp 2

2




                 (24) 

Now, integrating this equation from r=0 to a general radius r, 

  dr)r(Br
dr
d

r
11)0(p)r(p 2r

0 2






                (25) 

In particular, since for r=R we have  ( ) 0p R  , 

 2
20

1 1(0) ( )
R dp r r dr

r dr 




    B                (26) 

and substituting this result into (25), 
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2

1 1( ) ( )
2

R

r

dp r r r dr
r dr 





    B                (27) 

The average pressure p  inside the cylinder can be related to the total current 0I  
and the column radius R without knowing the detailed radial dependence. The 
average of the kinetic pressure inside the column is defined by 

 2 0

1 2 ( )
R

p r p r dr
R




                    (28) 

Simplifying this expression by an integration by parts, gives 

 2
2 0

1 R
p r

R
  

d p (r)
 dr
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                (29) 

Since the integrated term is zero, because 0)R(p  . 

Replacing 
dr

(r) p d  using (24), we get 
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2
)R(Bp 














                 (30) 

This result shows that the average kinetic pressure in the equilibrium plasma 
column is balanced by the magnetic pressure at the boundary. From (7), (9), and 
(27) we can deduce the radial distribution for )r(Iz , )r(B , and )r(p if we know the 
radial dependence of ( )zJ r . 

 As a simple example consider the case in which the current density ( )zJ r  is 
constant for Rr  . 

Taking  0
2z

IJ
R

  in (9), we obtain for Rr   
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 0
2 0
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rIB r r

R r

 
 
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 0

2

 I  r
 dr  (r R)

2 R
              (31) 

Substituting this result into (27) we obtain a parabolic dependence for the pressure 
versus radius, 
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R 4
 I                              (32) 

Note that, in this case, the axial pressure )0(p is twice the average pressure p  given 
in (30). The radial dependence of the various quantities for this example is shown 
in Figure.  

 
Figure 4 

Another radial distribution ( )zJ r  that is of interest in the investigation of the 
equilibrium pinch is the one in which the current density is confined to a very thin 
layer on the surface of the column. This model is appropriate for a highly 
conducting fluid. In a perfectly conducting plasma, the current cannot penetrate the 
plasma and exists only on the column surface. This surface current density can be 
conveniently represented by a Dirac delta function at r=R. In this case there is no 
magnetic field inside the plasma and )r(B  exists only for  Rr  . 

From (10) the magnetic induction is given by 

 0( )
2

IB r
r



 


        (r R)                         (33) 
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where 0I  is the total axial current. Therefore, from (25  ) we have  

  R)r(0       (0) p  p(r)                  (34) 

So that the plasma kinetic pressure is constant inside the cylindrical column and 
equal to the average value given in (30).Thus, for a perfectly conducting plasma 

column, the magnetic induction vanishes inside the column and falls of as 
r
1  

outside the column. The plasma kinetic pressure outside it. The pinch effect, in this 
special case, can be thought of as due to an abrupt build up of the magnetic 

pressure 





2
B  in the region external to the plasma column. 

7.7 Illustrative Examples 
Example1. Consider a cylindrical plasma, extending along the z-axis, which 

carries a steady electric current whose density can be written ˆ( ) zJ r e , where r 
denotes distance from the z-axis. 

(a) obtain the magnetic field as a function of r. 

(b) obtain an expression for ( )J r , in terms of the magnetic field and its gradient.  

(c) Show that the J B
 
  force is directed radially inward, and has magnitude 

 ))r(Br(
dr
d

r2
1 22

2


 

(d) If the plasma is in magnetohydrodynamic equilibrium, obtain an expression for 
the pressure )r(p , assuming that the pressure vanishes at the plasma boundary r=a. 

Sol. (a) Clearly, the magnetic field is azimuthal: 

 ê)r(BB , where ê is the azimuthal unit vector.  

Using Ampere's law 

 .
Loop

B dl


  times the total current through the loop. 

or 
0

( )2 ( ')2 ' '
r

B r r J r r dr   
 
Hence 

0

( ) ( ') ' '
r

B r J r r dr
r
   

(b) Take the derivative of the preceding expression with respect to r: 

 2
0

( ') ' ' ( )
rdB J r r dr J r r

dr r r
      

7.7 Illustrative Examples 
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Then 
( )) B r dBJ r
r dr

     

(c)  ˆ ˆ( ) ( )ZJ B J r e B r e
 

   ˆ( ) ( ) rJ r B r e   

The is an inward radial force ,whose magnitude is  

0 0
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r dr 
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 
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   
 

 

Using the result of (b) it is easy to check that this expression is equivalent to the 
more compact one given in the question. 

(d) At equilibrium, we know that J B p
 
  . That is, using the previous result 

 ( )r
dp J B
dr

 
  ( ) B ( )J r r   

       













 






B
dr
dB

r
B1  

       














)B(
dr
d

2
1

r
B1 2

2

 

or  )r(Br
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dp 22

2
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Integrating this expression outwards from r'r    to a'r   where the pressure is 

zero, we obtain  



a

r

22
2 'dr)'r(B'r

'dr
d

'r
1

2
1)r(p  

where )r(B follows from (a) above. 

7.8 The Bennet Pinch 
In this case a stream of electrons and a stream of ions are moving through each 
other along the z-axis. In view of the fact that the ion mass is much larger than the 
electron mass, the drift velocity of the ions is much smaller than that of the 
electrons and can therefore be neglected on a first approximation. 

Thus, we consider the current density to be given by 

 e( )  n (r)uJ r e
 

          (1) 

7.8 The Bennet Pinch 
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Since the applied electric field is in the z-direction, we have  

 ˆ( ) (r)zzJ r J


  and e ˆu ezu z
  . 

Therefore, (r) e n (r) z ezJ u        (2) 

Using the equation (previously derived) ( ) ( ) ( )z
d p r J r B r
dr    and using

),TT(k)r(np ie   we get 

 )r(Bu (r)n  e 
dr

)r(dn)TT(k ezie        (3) 

if we multiply this equation by  )TT(k (r) n
r

ie 
 and differentiate it with respect to 

r, we obtain 

  )r(B r
dr
d 

)TT(k 
u e

dr
(r)dn  

(r) n
r

dr
d

ie

ez











      (4) 

Making use of Maxwell equation B J
 

    we have, in cylindrical 

coordinates, with only radial dependence   
1  B (r) ( )z

d r J r
r dr    

or   )r(nr  u e (r) B r
dr
d

ez         (5) 

and using this result in (4), 

 0(r)n  r
)TT(k

ue
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(r) n
r
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d

ie

2
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2




















       (6) 

Equation (6) is a non linear differential equation. Bennet obtained the solution of 
this nonlinear equation subjected to the boundary condition that n(r) is symmetric 
about the z-axis, where r=0, and is a smoothly varying function of r, so that  

 0)r(n
dr
d

0r









        (7) 

The solution of (6), subjected to the boundary condition (7), is known as the 
Bennet distribution and is given by 

 22
0

0

)r b n1(
n)r(n


         (8) 

where )0(nn0  which is the number density on the axis,  

and 
)TT(k8

u e b
ie

2
ez

2




          (9) 
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which has the dimension of length. The radial dependence of the number density 
n(r) is sketched in Figure (5). It can be used to determine )r(B . 

 
Figure 5: The Bennet distribution for the particle number density n(r) in an 
equilibrium pinched plasma column. 

The Bennet distribution shows that particles are present up to infinity but, n(r) falls 
off every rapidly with increasing values of r, we can consider, for all practical 
purposes ,that the plasma is essentially confined symmetrically in a small 
cylindrical region about the z-axis. Using (8) we obtain the number of particles Nl 

(R) per unit length contained in a cylindrical column of radius R,  

 
0 20 0

0

           ( ) ( )2  r d r  2 n dr
(1 n  b r )

R R
l

rN R n r   


             (10) 

Evaluating this integral gives 

  
2

0
2

0

 ( )
(1 n  b R )l

n RN R 



                 (11) 

Since particles are present up o infinity, the total number of particles per unit 
length can be obtained  from (11) by taking the limit as R  , which gives 

 ( )lN
b


                    (12) 

Let   denotes the fraction of the number of particles per unit length that is 
contained in a cylinder of radius R, that is 

 ( ) ( )
( )
l

l
l

N R b N R
N




 


                 (13) 

Making use of (11), one finds 
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1

1 2
2

0( )
1

n b R 



 
    

                          (14) 

Therefore, if 90% of the plasma particles are confined within the cylindrical 
plasma column of radius R, that is 0.9  , we must have 

 3R )bn( 2
1

0                    (15) 
Thus, even though the particles extend up to infinity, the major portion of them lies 

in a small neighborhood around the z-axis. R )bn( 2
1

0  is the normalized radius of 
the cylindrical plasma column. 

7.9 Instabilities in a Pinched Plasma Column 
 Although it is possible to achieve an equilibrium state for a plasma confinement 
with the pinch effect, this equilibrium state is not possible. A small departure from 
the cylindrical geometry of the equilibrium state results in the growth of the 
original perturbations with time and in the   disintegration of the plasma column. 
The growth of instabilities is the reason why it is difficult to sustain reasonably 
long-lived pinched plasma in the laboratory. 

7.10 The Sausage Instability 
In nature as well as in the laboratory, plasmas are generally confined by magnetic 
fields bent into bounded volumes. The magnetic tension associated with the bent 
magnetic fields constitutes a source of free energy for instabilities. We consider the 
simplest confinement Z-pinch geometry. In a Z-pinch, the current is made to run 
through a plasma between two electrodes. The magnetic field generated by the 
current provides a force that can accelerate the plasma inwards. 

 If a z-pinched plasma is squeezed somewhere between the two electrodes, 
however, the current density and therefore the confining magnetic field will 
increase at that point. This has the effect of squeezing the plasma further "Sausage 
instability", can be eliminated by applying a longitudinal magnetic field Bz (Figure 
6) Because of conservation of flux, the perturbation of the longitudinal field for a 
constriction a  of the radius of column ,a , is given by considering that the 
magnetic flux )r  B( 2

zm   through the cross sectional area of the column 
remains constant:  

 
2

zm r  B  = constant                 (16) 

7.9 Instabilities in a Pinched Plasma Column 

7.10 The Sausage Instability 
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 Therefore  0rdr  2 B dBr d zz
2

m   

 2
z

z r
dr r 2BdB




                  (17) 

or if the plasma column radius is a, 

Then 
a
aB2B zz


  (during constriction ar  )             (18) 

The azimuthal field perturbation can be calculated by considering that the 
azimuthal flux density B  external to the plasma column is given by Ampere's law 
as 
 B ( )r d r = Constant.                (19) 

Therefore, the azimuthal magnetic flux density, at the constricted surface increases 
by amount 

 
r

drBB d    ,                 (20)

 The azimuthal field perturbation at r=a is  

 
a
aBB 

    on)constricti is adr(               (21) 

The column is stable if the restoring pressure caused by the longitudinal field 
compression exceeds the increase in the azimuthal field pressure, or if 

 )B  )(B 2
z


                  (22) 

We see that a longitudinal field has a strong stabilizing influence. This stabilizing 
influence is ineffective to present shear-Alfvin instabilities.  

 
Figure 6: The sausage instability in a z pinch plasma 

7.11 The Kink Instability  
Another type of instability of the pinched plasma column is the so-called "Kink 
instability". The Kink distortion consists of a perturbation in the form of a bend or 
kink in the column, but with the disturbed column maintaining its uniform circular 

7.11 The Kink Instability  
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cross section, as shown in Fig. (8).Consider the case of long thin, current carrying 
plasma wire in a longitudinal magnetic field. Twisting this plasma into a corkscrew 
introduces an angle between the external magnetic field and the plasma current. 

This result in a force J B
 
  (Figure 7)  

 
Figure 7: Kink instability of a current carrying plasma filament 

If the pitch of the twisted plasma matches that of the unperturbed magnetic field, 
the perturbation will amplify as the plasma tries to align the magnetic field 
produced by the current it is carrying with the externally applied magnetic field. 
The thin current carrying plasma is thus unconditionally unstable. This is called the 
"Kink " instability. Usually there may be several kinks along the column length. In 
the neighborhood of the column, where the kink has developed, the magnetic field 
lines are brought closer together on the concave side, and separated on the convex 
side, so that the external magnetic pressure is increased on the concave  side and 
decreased on the convex side. 

Therefore, the changes in the external magnetic pressure are in such a way as to 
accentuate the distortion still further. This type of distortion is therefore unstable. 

The kink instability can be obstructed by the application of a longitudinal magnetic 
field within the plasma column, as in the case of the sausage instability. In the kink 
distortion, the longitudinal magnetic field lines frozen inside the plasma column 
are stretched and the increase tension acting along the longitudinal magnetic field 
lines opposes the external forces. The net result is the stabilization of the column. 

 
Figure 8: The Kink instability 
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7.12 Plasma Confinement in a Magnetic field 

 The subject of plasma confinement by magnetic fields is of considerable interest 
in the theory of controlled thermonuclear fusion. We now pay attention to the 
consequences of the fundamental equations characterizing the state of a plasma in 
an electromagnetic field. Here we will deal only with quasi-stationary states 
without touching upon the question of their stability. From the fluid equation of 
motion 

 .m u u J B p
t

  


 
     

  
 

or 
D u 
D tm J B p
  

           (1) 

where 




.u

t tD
D  represents the total time derivative operator.  In the static 

case
 

0
 tD

D
 , thus (1) reduces to  

 J B p
 
           (2) 

In this case, the pressure gradient is perpendicular to B


 .Hence, the plasma 
pressure must be constant along the lines of magnetic force. For the case where the 
lines of force are straight and parallel to each other, it is possible to obtain an 
equation relating the pressure to the field strength. To these equations we must add 
Maxwell curl equation, in the following reduced form, 

 B J
 

           (3) 

From equations (2) and (3) it follows that in a quasi-stationary state 

 1  Bgrad p curl B
 



           (4) 

Let the z axis be parallel to the lines of force. Then B


 will have only the 
component zB , whose value is a function of x and y and is independent of z (due 

to the condition div 0H 


).From (4), the components of the pressure gradient are 

given by )B(
x
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Therefore  0
2
Bp

y
 

2
Bp

x 0

2
z

0

2
z 












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



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






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Consequently, 
0

2

2
B

p


 = constant       (5) 

This result is interesting from a number of viewpoints. First, it follows that a 
plasma is diamagnetic, since the field strength within the plasma is less than that 
outside. Second, the equation (5) is the mathematical expression of the idea of 
confining a plasma by means of a magnetic field. The magnetic pressure outside 
the plasma is greater than the magnetic pressure inside by the value of a kinetic 
pressure inside by the value of the kinetic pressure of the plasma. Relatively 
speaking, the plasma pressure attains its greatest value pmax when the field inside 
the plasma becomes zero; that is: 

 



2
Bp

2
0

max  where 0B  is the field strength just outside the plasma boundary. 

7.13 Self Learning Exercise 

Q.1  What are “magnetic surfaces”? 

Q.2  What is the electron plasma frequency ? Prove that electron plasma frequency 

pf q n , where n is electron density is the unit of 3

1
m

. 

Q.3  Consider a cylindrically symmetric plasma, using cylindrical coordinates (r, 

θ, z), with symmetry in the θ and z- directions. A purely axial current 

ˆ ( )J z J r

  , maintains the azimuthal magnetic field ˆ B(r)B  . Use MHD 

equations derive the equilibrium relation between ( ), ( )B r J r  and the 
pressure p(r). Also compute the magnetic curvature for this configuration . 

 (In the plasma confinement literature, this configuration is called  a z- pinch, 
since a plasma current along the z-axis creates the confining magnetic field). 

7.14 Summary 

 In this chapter we have examined the mechanism by which plasma tries to shield 
its interior from a disturbing electric field. It is found that the shielding of this 

electric field is effectively completed over a distance of ~D (Debye length ). We 

7.13 Self Learning Exercise 

7.14 Summary 
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have also discussed the physical mechanism for the formation of the plasma 
sheath. In order to measure the temperature and density of the plasma ,we have 
discussed the physics of plasma probe (Langmuir probe ).In this chapter we have 
discussed the equilibrium of plasma column at rest in a constant magnetic field. 
We have also discussed the radial constriction of the plasma column commonly 
known as the “pinch effect” .We have found that for a perfectly  conducting 
plasma column, the magnetic induction vanishes inside the column   and falls off 

as 1
r

 outside the column. The plasma kinetic pressure is constant inside the 

column. 

7.15 Glossary 
Plasma sheath: In the region near the wall of the body there is a boundary layer, 
known as the "Plasma sheath" in which the electron  and the ion number densities 
are different.  

7.16 Answers to Self Learning Exercise 

Ans.1: These are isobaric surfaces which satisfy the conditions 

 
   . 0, . 0,B grad p J grad p 
 

 
That is ,the pressure gradient is zero along the lines of magnetic induction B


 

and along the current lines. Thus both sets of lines lie on surfaces  

 
( , , ) constantp x y z 

 called “magnetic surfaces” 

7.17 Exercise 

Q.1  What is pinch effect? 

Q.2  What are the instabilities in a pinched plasma column ? 

Q.3  Estimate the maximum plasma pressure that can be confined by a magnetic 
field 0B

 
Q.4  What is Z pinch ? 

Q.5 Why a plasma is diamagnetic ? 

7.16 Answers to Self Learning Exercise 

7.17 Exercise 

7.15 Glossary 



159 
 

Q.6  Explain the reason for acquiring a negative charge by a body in contact with 
plasma. 

7.18 Answers to Exercise 

Ans.3:
 

2
0

max
02

Bp
μ


 

Ans.4: A plasma column carrying a plasma current along the z axis is called z 

pinch .A purely axial current ˆ( )J J r z


  maintains the azimuthal magnetic 

field ˆ( )B B r θ


and this magnetic field confines the plasma . 

Ans.5: From the equilibrium condition  

  

22
0

0 02 2
BBp

μ μ
 

 

 It follows that the field strength within the plasma is less than the outside . In 

other words the magnetic field inside the plasma is reduced than its value 

outside. For this reason we can say that plasma is diamagnetic. 
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UNIT-1 

Plasma 
Structure of the Unit 

8.0  Objectives 

8.1  Introduction  

8.2  Alfven Waves 

8.3  Propagation perpendicular to the magnetic field. 

8.4  Propagation parallel to the Magnetic field 

8.5  Illustrative Examples 

8.6  Self Learning Exercise 

8.7  Summary  

8.8  Glossary 

8.9  Answers to Self Learning Exercise 

8.10  Exercise 

8.11  Answers to  Exercise 

 References and Suggested Readings 

8.0 Objectives  
To learn  

• The fluid model of the plasma. 

• Fluid approximation. 

• Force and motion in ideal magneto hydrodynamics. 

• Alfven velocity . 

• MHD waves 

• Propagation parallel and perpendicular to magnetic field. 

• Dispersion relation of Alfven waves. 

• Magnetosonic waves 

UNIT-8 
MHD Waves 

8.0 Objectives  
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8.1 Introduction  

So far, we have based our study of plasmas on the single particle dynamics of the 
constituent electrons and ions. We have used this dynamics as the basis for a 
dielectric  description of the plasma. This approach has been very effective. The 
understanding of any physical system is aided by knowledge of its normal modes, 
and the dielectric approach has enabled us to formulate the normal modes of 
plasmas over a very wide range of frequencies. However, to study phenomena 
whose frequencies lie well below the lowest characteristic single particle 
frequency, the ion cyclotron frequency ci , an alternative approach might be 
fruitful. when ci , the time scales in question are much longer than those of 
any ion or electron oscillation associated with cyclotron or space charge motion. 
On these time scales, only averaged, guiding centre positions of the plasma 
particles are significant. It is, thus, clear that we have entered regime of 
frequencies and length scales where a macroscopic, fluid-like description of the 
plasma would be more appropriate.  

The question now arises, what sort of fluid model should we develop ? What 
features can we distinguish, that will make the model apply specifically to 
plasmas?  

One set of answers is provided by the two-fluid description of plasmas, where the 
plasma is taken as composed of two distinct but intermingled fluids, the electron 
and ion fluids, coupled together by their opposing electrical charges. 

Here, we shall adopt a simpler approach to the fact that at a macroscopic level the 
plasma is composed of oppositely charged particles of unequal mass, but that at a 
macroscopic level it is electrically neutral. The plasma will be treated as a single, 
electrically neutral and perfectly conducting fluid. This reflects the fact that, on 
time scales of interest, the high mobility of electrons enables them both to keep the 
plasma electrically neutral and to cancel out any applied electric field. 

• The most fundamental type of wave motion that propagates in a compressible, 
non conducting fluid is that of longitudinal "Sound Waves". For these waves the 
variations in pressure (p) and in density )( m , associated with the fluid 
compressions and rarefactions, obey the adiabatic energy equation commonly used 
in thermodynamics  

8.1 Introduction  
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     constantmp     

where   denotes the ratio of the specific heats at constant pressure and at constant 
volume. 

Differentiating (1) we obtain 

  2
m s m

m

pp V
 


      

  where 

1 1
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s
m

p kTV
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 



   
         

 

is the wave propagation speed, known  as the "adiabatic sound speed".  

Longitudinal sound waves propagate in a  compressible, non conducting fluid with 
speed  

  

1
2

s
m

pV 



 
   
 

 

8.2 Alfven Waves 

In the case of a compressible, conducting fluid immersed in a magnetic field, other 
types of wave motion are possible.  

We are now going to examine time-dependent phenomena described by the 
complete set of hydromagnetic  equations. 

As in electromagnetic theory we are looking for periodic wave solutions. However, 
hydromagnetic set of equations is nonlinear. Nevertheless we shall examine the 
possibility of obtaining wave equations.  

Since these equations are nonlinear we shall linearize  the hydromagnetic equations 
by considering small amplitudes. 

•Looking at the hydromagnetic equations, the existence of some wave solutions is 

immediately apparent.  With 0B 


 these equations reduce to the regular fluid 
equations, and yield after the linearization  the well-known sound waves. 

•Apart from these trivial solutions one suspects that the coupling of fluid and 
electromagnetic phenomena might result in new types of waves. To simplify our 

8.2 Alfven Waves 
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investigations we restrict ourselves first to an incompressible fluid with infinite 
conductivity. 

The appropriate system of equations, which governs the behavior of this type of 
fluid, with the assumptions involved are 

  0)u.(
t m
m 


         (1) 

  ( . )m m
u u u p J B
t

 


     


   
    (2) 

  m
2
sVp          (3) 

  B J 
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       (4) 

  
t

E






        (5) 

  0BuE 


        (6) 

To reduce this system of equations we combine equations (2) to (4) in the form 

 2 1( . )   ( )m m s m
u u u V B B
t

  



       



    
  (7) 

as well as (5) and (6) in the form 

  
t

)Bu(




        (8) 

• Under equilibrium conditions, the fluid is assumed to be spatially uniform with 
constant density 0m , the equilibrium velocity is considered zero, and throughout 

the fluid the magnetic induction 0B


is uniform and constant.  

• In order to deduce the dispersion relation for small amplitude waves, consider 
small- amplitude departures from the equilibrium values, so that 

  0 1( , ) ( , )B r t B B r t 
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      (9) 

  )t,r()t,r( 1m0mm


                (10) 

  1( , ) ( , )u r t u r t
  

               (11) 

Substituting (9) to (11) into (1), (7), and (8), and neglecting second-order terms, 
one obtains the linearized equations in the small first-order quantities: 



164 
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t 10m

1m 

                 (12) 

  21
0 1 0 1

1 ( ) 0m s m
u V B B
t

 



     



  
          (13) 

  1
1 0( ) 0B u B

t
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
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             (14) 

Equation (12) to (14) can be combined to yield an equation for 1u , alone. For this 
purpose, we first differentiate (13) with respect to time, obtaining 
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  Next, using (12) and (14), we can write (15) as 
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where we have introduced the vector Alfven velocity.    
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• Without loss of generality, we can consider plane wave solutions for (16) in the 
form 

  1 1( , ) exp(  k. r–i  t)u r t u i 
   

             (18) 

Thus, in (16) we can replace the operator  by k i


 and 
t
 by i , so that 

   2 2
1 1 1( . )   0s A Au V k u k V k k u V           

      
          (19) 

• Since for any three vectors A


, B


, andC


 we have the vector identity 

  C)B.A(B)C.A()CB(A


              (20) 

We can rearrange (19) to read 

  2 2 2
1 1( )( . )s Au V V k u k   

  
 

      0V)u.k(k)u.V(uV.k)V.k( A11A1AA 


           (21) 
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Although this expression appears to be somewhat involved, it leads to remarkable 
simple solutions for waves propagating in the directions parallel or perpendicular 
to the magnetic field. 

 

8.3 Propagation Perpendicular To The Magnetic Field 

When the wave vector k


 is perpendicular to the magnetic induction 0B


 , we have 

0V.k A 


,and simplifies to  

  2 2 2
1 1( )( . ) 0s Au V V k u k   

  
             (22) 

 from which we obtain 

  2 2
1 12

1 ( )( . )s Au V V k u k


 
  

             (23) 

Therefore, 1u  , is parallel to k


, so that 11 kuu.k 
 , and the solution for 1u , is a 

longitudinal wave with the phase velocity 

   
1

2 2 2
s AV V

k

                 (24) 

The magnetic field associated with this longitudinal wave can be obtained from 
(14): 

  1
1 0( ) 0B u B

t


   


    

Taking   1 1( , )  exp (i k . r )B r t B i t 
              (25) 

One gets 1 1 0( ) 0B k u B    
 

             (26) 

or  1 1 0 0 0( . ) ( . ) 0B u k B B k u   
    

 

or  0 1 0 1
1

( . )B k u B uB

k


 
 
  
 

 
               (27)

  The electric field associated with this wave is to be given by 

  01 BuE


                 (28) 

8.3 Propagation Perpendicular To The Magnetic Field 
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This wave is somewhat similar to an electromagnetic wave, since the time-varying 
magnetic field is perpendicular to the direction of propagation, but parallel to the 
magnetostatic field, whereas the time- varying electric field is perpendicular to 
both the direction of propagation and the magnetostatic field. 

It is a "Longitudinal" wave, however, since the velocity of mass flow and the 
fluctuating mass density associated with the wave motion are both in the wave 
propagation direction. For these reasons, this wave is called the magnetosonic 

wave. The phase velocity 2
1

2
A

2
s )VV(

k
w

  is independent of frequency, so that it is 

a nondispersive wave. 

The magnetosonic wave produces compressions and rarefactions in the magnetic 
field lines without changing their direction. Since the fluid is perfectly conducting, 
the lines of the force and the fluid move together. 

• The restoring forces operating in the magnetosonic  wave are the fluid pressure 
gradient and the gradient of the compressional stresses between the magnetic field 
lines. 

• When the fluid pressure is much greater than the magnetic pressure, the effect of 

the magnetic field is negligible, so that sV
k
w
  and the wave becomes essentially 

an acoustic wave (sound wave).  

On the other hand, when the magnetic field is very strong so that the magnetic 
pressure is much larger than the fluid pressure, then the phase velocity of the 
magnetosonic wave becomes equal to the Alfven wave velocity AV . 

The magnetosonic wave mode is also known as the compressional Alfven wave or 
fast Alfven wave. 

8.4 Propagation Parallel To The Magnetic Field 

For waves propagating along the magnetic field 0( )k B
 
  , we have AA kVV.k 


 

.We now take up the general dispersion relation viz. equation (21): 

  2 2 2
1 1( )( . )s Au V V k u k   

  
 

     0V)u.k(k)u.V(u)V.k()V.k( A11A1AA 

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This equation now simplifies to  

   
2

2 2 2 2
1 12 1 ( . ) 0s

A A A
A

Vk V u k u V V
V


 
     
 

  
           (29) 

In this case, there are two types of wave motion possible. 

For 1u  parallel to 0B


 and k


 , we find from (29) that a longitudinal mode is 
possible, with the phase velocity  

  SV
k

                 (30) 

This is an ordinary longitudinal sound wave, in which velocity of mass flow is in 
the propagation direction. There is no electric field, electric current density, or 
magnetic field associated with this wave. 

A transverse wave, with 1u  perpendicular to 0B


 and k


, is other possibility. In this 

case 0V.u A1 
 and (29) gives for the phase velocity of this transverse wave, known 

as the "Alfven wave", 

  AV
k
w
                 (30) 

where   
2
1

m

2
0

A  
BV 













               (31) 

Since the phase velocity is independent of frequency , there is no dispersion. 

The magnetic field associated with the Alfven wave is found, from (14) and (26), 
to be given by 

  0
1 1( / )

BB u
k

 
                 (32) 

Hence, the magnetic field disturbance is normal to the original magnetostatic 
induction 0B


.The small component 1B


, when added to 0B


, gives the lines of force 

a sinusoidal ripple (see figure...). The associated electric field is given by (28). 

The Alfven wave involves no fluctuations in the fluid density or pressure, although 
both the fluid and the magnetic field lines oscillate back and forth laterally, in the 
plane normal to 0B


.  
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The magnetic energy density of this wave motion 







2

B2
1  is equal to the kinetic 

energy density of the fluid motion 






 
2
u2

10m  . This equipartition  of energy is easily 

verified: 

 
2 22
0 11

2

 
2

2

B uB

k
 





 
  
 

   

2 2
0 1

2
A

 u
2 V
B


  

 

2
21

0 1
1  u

2 2 m
B




                    (33) 

• The Alfven wave mode is also known as the "shear Alfven wave" or the "slow 
Alfven wave". 

8.5 Illustrative Examples 

Example 1: Find the velocity of an Alfven wave in mercury in a magnetic field 
100B0  gauss. 

Sol.   
 2

1

m

0
A

BV





 

   Tesla10 100  gauss100B 4
0

  

   ,
m
kg106.13 3

3
m    

   
m.A

Wb104 7
   

 Substituting in the above formula gives 

   
sec
cm6.7VA   

Example 2. Calculate the speed of an Alfven wave for the following cases: 

8.5 Illustrative Examples 
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(a) In the Earth's ionosphere, considering that 35
e cm10n  , 5.0B   gauss, and 

that the positive charge carriers are atomic oxygen ions. 

(b)  In the solar corona, assuming 6 310en cm , 10B   gauss, and that positive 
charge carriers are protons. 

(c) In the interstellar space, considering 37
e m10n   and 710B   Tesla, the 

positive charge carriers are protons. 

Sol. (a)  
 2

1

m

0
A

BV





, given 4
0 105.0B   Tesla 

  ionoxygen  one of massnm   

  5 24
3 10 16 1.67 10 g

cm
     

  3
319

m
kg101067.116    

  3
16

m
kg1072.26   

Substituting in the formula for AV , we find  

  
4

1
7 16 2

0.5 10

4 10 26.72 10
A

mV
s





 



    

 

  
sec
m108.8 5  

In a similar way find AV  for (b) and (c). 

8.6 Self Learning Exercise 

Q.1 What are sound waves and what is their speed ? 

Q.2 Prove the equipartition of kinetic and magnetic (wave) energy in a small- 
amplitude Alfven wave. 

Q.3  Find the equations and phase velocity of an Alfven wave in an incompressible 
fluid propagating along the magnetic field in  

 (i) longitudinal mode i.e. 1u  is parallel to 0B


 

8.6 Self Learning Exercise 
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  (ii) a transverse mode with 1u perpendicular to 0B


. 

Q.4 What are Alfven waves ? Derive a formula for the speed of Alfven waves.   

8.7 Summary  

The behavior of conductive fluids is described by the set of hydromagnetic 
equations.  

  0)u.(
t m
m 


   

  Bpu).u(
t
u

mm







  

  m
2
sVp   

  B J 
 

 

  
t

E






 

  0BuE 


 
The conductivity is assumed to be large enough so that the displacement current 
can be neglected compared to the conduction current. On the fluid-vacuum 
boundary, the boundary condition 

  0
2
Bp

2







 apply. 

For the special case  , the fluid-vacuum system conserves the sum of kinetic 
and potential energy 

  constant WK   

where   dV
2
1K 0m   

  
2

2
BW p dV


 
  

 
  

where integration extends over the entire fluid-plus-vacuum volume. 

Fluid elements lying along a magnetic field line can be thought of as being 
mechanically connected by the (elastic) field line. An oscillation of fluid element 

8.7 Summary  
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transverse to the magnetic field propagates along the field lines, with the Alfven 
velocity 

  
 2

1

m

0
A

 

BV





 

Compressional acoustic waves (except when propagating along the field) couple to 
the magnetic field, giving rise to magnetoacoustic waves. Such waves, when 
propagating perpendicular to the field with the phase velocity 

1
2 2 2

MA s AV (V V )
k

    can be easily interpreted ; compression (and 

expansion) of a fluid element is linked with compression (and expansion) of the 

flux frozen therein, adding to 0p  the quantity 2
2
B2

0 









, in accordance with the 

notion of magnetic pressure and 2  for its two-dimensional equation of state. 

8.8 Glossary 

Two fluid description of plasmas: 

In this description the plasma is taken as composed of two distinct but intermingled 
fluids, the electron and ion fluids. 

Linearization: 

Equations retaining first order quantities and neglecting second and higher order 
terms. 

Hydromagnetic waves: 

These are the waves in a compressible ,conducting fluid immersed in a magnetic 
field. 

Fast Alfven wave: The magnetosonic wave mode is also known as the 
compressional Alfven wave or fast Alfven wave. 

8.9 Answers to Self Learning Exercise 

Ans.1: Sound waves are longitudinal that propagate in a compressible , 
nonconducting fluid. The adiabatic sound speed is given by  

8.8 Glossary 

8.9 Answers to Self Learning Exercise 
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1 2/

S
m

pV 


 
  
 

 

Where Vs is the sound speed  

 γ is the ratio of the specific heats P

V

C
C

 

m = mass density of conducting fluid 

p =pressure 

Ans.2: The magnetic energy density of this wave motion is 
2

B2
1 .  

The equipartition of energy is verified by nothing that  
  2 2 2 22

0 1 0 11
2 22 2

2 A

B u B uB
V

k
 

 


 
 
  
 

 

  2
10m u 

2
1
  

That is magnetic energy density 
2

B2
1  is equal to the kinetic energy density of the 

fluid motion. 

8.10 Exercise 

Q.1  What is a magnetosonic wave and what is the phase velocity of the 
magnetosonic wave ? 

Q.2  What is an Alfven wave  and what is the phase velocity of Alfven wave? 

Q.3  What are magnetohydrodynamic (MHD) waves ? 

Q.4  Find the equations for magnetosonic waves propagating normal to 0B


. Show 

that the phase velocity is 2
1

2
A

2
s )VV(V   

Q.5  What are Alfven waves? Using the fluid equations appropriate to an 
incompressible fluid with infinite  conductivity find the dispersion relation 
for Alfven waves propagating perpendicular to the magnetic field. 

8.10 Exercise 
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Q.6  Find the dispersion relation of Alfven waves propagating parallel to the 
magnetic field. 

Q.7  Derive expression for speed of longitudinal sound wave, 

Q.8  Consider an incompressible fluid with infinite conductivity . Write complete 
and appropriate system of equations that governs the behavior of this type of 
fluid. 

8.11 Answers to Exercise 

Ans.1: Magnetosonic waves are longitudinal waves in which the velocity of mass 
flow and the fluctuating mass density associated with the wave motion are both 
in the wave propagation direction. The phase is given by  

  
1

2 2 2
s AV V

k

   

 Where VS is sound velocity and VA is Alfven velocity. 
k
 is the phase velocity of 

magnetosonic wave, ω is the frequency and k is the wavenumber of 
magnetosonic waves. 

Ans.2: These are the waves propagating in a homogeneous conducting medium in 
a uniform constant magnetic field.  

 The physical velocity of propagation of waves is called the group velocity 
(Alfven speed) and is given by  

  
 

0
1 2

0
A /

m

BV
k


 


 



  

 In Alfven wave an oscillation of fluid elements transverse to the magnetic field 
propagates along the field lines with the Alfven speed VA. 

Ans.3: If a conducting fluid moves in a magnetic field, electric fields are induced 
in it and electric currents flow. Conversely ,the currents themselves modify the 
magnetic field.  

 Thus we have a complex interaction between the magnetic field and the fluid 
dynamic phenomena and this flow is examined by combining the field equations 

8.11 Answers to Exercise 
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with those of fluid dynamics. MHD waves are small disturbances that propagate 
in a homogeneous conducting medium in a uniform constant magnetic field. 

Ans.4: When the wave vector  k


 is perpendicular to 0B


, then 0V.k A 


. equation 
(21) simplifies to  

    2 2 2
1 1. 0s Au V V k u k   

    

 Therefore    2 2
1 12

1 .s Au V V k u k


 
   . 

 Thus 1u  is parallel to k


, so  that 11 kuu.k 
  and the solution for 1u  is a 

longitudinal wave with the phase velocity 

   
1

2 2 2
s AV V

k

   
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UNIT-1 

Plasma 
 

 

Structure of the Unit 
9.0  Objectives 

9.1  Introduction  

9.2   Dielectric tensor of the plasma (without external magnetic field) 

9.3  Dielectric tensor of a cold magnetized plasma 

9.4  High- Frequency waves in a cold magnetized plasma 

9.5  Dispersion relation of Left-Circularly Polarized wave: 

9.6  Dispersion relation of right- circularly polarized wave: 

9.7  Dispersion relation when Wave vector k is perpendicular to the magnetic 
 field direction 

9.8  Illustrative Examples 

9.9  Self Learning Exercise 

9.10  Summary  

9.11  Glossary 

9.12  Answers to Self Learning Exercise 

9.13  Exercise 

9.14  Answers to  Exercise 

 References and Suggested Reading 

9.0 Objectives 
To learn 

 Derivation of dielectric constant of unmagnetized plasma. 

 Derivation of dispersion relation of electromagnetic wave propagating 
 through an unmagnetized plasma. 

UNIT-9 
Dispersion Relation, Wave Propagation In 

Magnetized Cold Plasma 

9.0 Objectives 
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 Derivation of dielectric tensor of a cold magnetized plasma. 

 Highly frequency waves in a cold magnetized plasma. 

 Dispersion relation of left circularly polarized wave. 

 Dispersion relation of right circularly polarized wave. 

 Dispersion relation when the wave vector k


is perpendicular to the 
 magnetic field direction. 
9.1 Introduction  

In this chapter we discuss the theory of wave propagation in a cold homogeneous 
plasma, immersed in a magnetic field. 

There are two main different methods of approach that are normally used in 
analyzing the problem of wave propagation in plasmas. In one of them, the plasma 
is characterized as medium having either a conductivity or a dielectric constant and 
the wave equation for this medium is derived from Maxwell equations. In the 
presence of an externally applied magnetostatic  field, the plasma is equivalent to 
an anisotropic dielectric characterized by dielectric tensor or dyad.  

• In another approach, Maxwell equations are solved simultaneously with the fluid 
equations describing the particle motions. In this case we do not explicitly derive a 
wave equation, and expressions for the dielectric or conductivity dyad are not 
obtained directly. Instead, we obtain a "dispersion relation", which relates the wave 

number k to the wave frequency ω. All the information about the propagation of a 
given mode is contained in the appropriate dispersion relation. We shall adopt the 
first method. 

9.2  Dielectric Tensor of The Plasma (Without External 
Magnetic Field) 
The macroscopic response of any medium is to an applied electric field is 
determined by the sum of the microscopic responses of the individual particles that 
make up the medium. In a conducting medium, macroscopic level by the 
separation between positive and negative charges that is produced by the applied 
electric field. If the applied field varies with time, so too will the microscopic state 
of the medium:  

9.1 Introduction  

9.2 Dielectric Tensor of The Plasma (Without 
 External Magnetic Field) 
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The separation between the positive and negative charges will change with time, as 

will the electric field that is produced by their separation. Thus particle currents 

and displacement currents are produced.At a macroscopic level, the particle current 
is described by the conductivity tensor  , where 

  .J E
 

         (1) 

That is,   is a macroscopic variable whose nature is determined by microscopic 
dynamics,  

Maxwell's equation  EH J
t

 
 


  


  states that J


 and the 

displacement current combine to act as the source of the magnetic field in the 
medium .Using (1), we have  

  H E
t

 
 

 
     

       (2) 

• Now recalling equation HB


 and 2c
1

   and if varies E


 as exp( )i t , 

then equation (2) gives  
2

0

i iB I E
c

  


 

       
    (3) 

Where I is the identity matrix. It follows that all information about the macroscopic 
response of the medium to applied electric fields is contained in the dielectrics 
tensor defined by 

  
0

iI 
 

          (4) 

and equation (3) can now be written  

  2

iB E
c

 



         (5) 

•Operating on equation (5) with 
t
 , we find 

  2( )  .ii E
t c

 
 

  
       

   

   
2

2  .E E
c

  
     

Using the vector formula 

      2.E E E
    

     , One obtains 
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    0E. 
c

E.E 2

2
2 





      (6) 

• The nature of the macroscopic quantity  , and hence  for a plasma is 
determined at the microscopic level by the plasma particles dynamics. As the 
simplest example, consider equation of motion of a plasma electron in the absence 
of an magnetic field. 
 E ex m

  , where E


 is the applied electric field varying as exp(-i t) . 

Each plasma electron will respond with a velocity 

  e E
i m






 
     

       (7) 

• The current density associated with n0 such electrons per unit volume is 

  
2

0
0

    En eJ n e
i m

 



   

 
      (8) 

So that
2

0  I
  
n e

i m




 
   
 

. Then the definition equation (4) of   gives 

  
2
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where we have used 
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
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0
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• Now we calculate the normal modes- a macroscopic concept of an unmagnetized 

plasma. If E


 varies as   exp( . )ik r i t
 

 equations (6) and (9) combined to give (by 

replacing the operator 


 by ik


) 

  0)E.k(kcE)kc( 2222
pe 


             (10) 

• There are two classes of normal mode. First, consider the case of transverse 

mode, that have 0E.k 


 and are accordingly electromagnetic. Then equation (10) 
gives 
  0E)kc( 222

pe 


              (11) 

This is compatible with non-zero E


 only if   and k


 are related by 
  22

pe kc                 (12) 
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which is our first derivation of a dispersion relation. It tells us that the frequency of 
any electromagnetic wave in an unmagnetized plasma must exceed the electron 
plasma frequency. In addition, if we try to launch an electromagnetic wave into the 
plasma with frequency pe  equation (12) indicates that the wave will have an 
imaginary wave number k inside the plasma. The wave will therefore be 
evanescent, and unable to propagate through the plasma. 

Thus pe  plays the role of a cutoff frequency for electromagnetic waves in an 
unmagnetized plasma. 

This fact has a number of practical applications. For example, it determines the 
range of frequencies that can be used for different types of radio communication. 

In order to communicate with a satellite, one must choose a frequency that exceeds 
the plasma frequency of the ionospheric plasma. Otherwise the signal will be 
reflected from the ionosphere, and will not reach satellite.  

Conversely, we may send a radio signal to a distant point on the Earth's surface by 
choosing a frequency below the ionospheric plasma frequency, and use ionosphere 
to reflect the signal in the required direction. 

The second class of normal mode that satisfies (10) is electrostatic, with k


 and E


 
parallel. In this case, the dispersion relation is clearly 

  2 2
pe                  (13) 

Thus the electrostatic normal modes of a plasma oscillate at the electron plasma 
frequency . 

9.3 Dielectric Tensor of A Cold Magnetized Plasma 
The effect on particle dynamics of the magnetic component of an electromagnetic 
wave can be shown to be negligible so long as the particle velocities are non-
relativistic and ce . 

• In this case, we only consider the effect of the rapidly oscillating electric field. 
The motion of an electron parallel to the static uniform magnetic field is governed 

by  )t(E
m

e
zz


 
                 (14) 

which is the same as we have used while considering the motion in electric field 

only. This is because the magnetic field does not affect motion parallel to it. The 

9.3 Dielectric Tensor of A Cold Magnetized Plasma 
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perpendicular equation of motion, 

  ( ) ( )ce
e E t v t
m
                       (15) 

follows from Lorentz force equation: Differentiating (15) with respect of time, and 

substituting from (15) for  Vce
 , we obtain 
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Now, using the fact that ce
  and 

  are perpendicular to each other and hence 


 .ce  is equal to zero, we obtain  
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
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In the absence of perpendicular electric field, equation (16) reduces to equation 
which describes cyclotron motion, whose solution we shall denote by  )t(0

  

 Now we write ( ) Re( )i tE t E e 
 
   and 

  ( ) ( ) i tt t e    
   
    

Then equation (16) becomes 
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Combining equation (14) and (17) 
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and hence 



181 
 

  

2 2 2

2 2 2

      0

( ) ( )       0

0                  0          

ce
x

ce ce

ce
y

ce ce

z

i E

e it t E
m

i
E



  



 

   

 
 

   





 

                          

 

  ˆ( ) ( ) Re .  tt t O E e     


                   (18) 

 where 

2 2 2

2 2 2

      0

ˆ       0

0                  0          

ce

ce ce

ce

ce ce

i

e iO
m

i

 

   

 

   







 
 

  
 
 

  
  

  
  

            (19) 

All information about the particle drift arising form E


 is contained in Ô setting 
0Ey   , we see that  
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From equation (20) we see that particle motion in the x y plane follows an ellipse, 
whose mean radius and eccentricity depend on the size of the electric field and the 

value of 
ce
 . This motion is superimposed on oscillation along the magnetic field 

in the harmonic field zE . 
In equation (18), the response of the electron to the wave field is given by the 
second term on the right. This is the term on which we wish to concentrate, and we 
shall accordingly adopt a model in which the plasma is cold so that the electrons 

have no thermal motion, so we have 0  and Larmor radius 0r
ce

L 



  and 

consequently in equation (18) 0)t(0   . 

Then the current ( )J t


 associated with the response to an electromagnetic wave of 

the n0 electrons contained in unit volume of magnetized plasma is  

        )t(en)t(j 0 
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   0
ˆ O. ( )n e E t
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                 (21) 

This defines the conductivity tensor   for a cold magnetized plasma. 

• We now obtain the magnetic field which is set up in the plasma by the oscillating 
electric field and by the response to it of the electrons from (5). The dielectric 
tensor   in equation (5) for a cold magnetized plasma follows from (4), (21), and 

(19):  
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pe                 (22) 

We have thus calculated the cold plasma dielectric tensor   from considerations of 
particle dynamics, represented by (14) and (15). 

The tensor   contains a large amount of information. In particular, it governs the 
propagation of electromagnetic waves in magnetized plasmas. 

Now we look for wave fields which oscillate as  ˆ ˆexp .ik r i t  and propagate in 

cold magnetized plasma. 

The wave equation is 
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Replace  
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by k

 , we find 
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2 .M k k k I
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Where I  is the identity matrix. 

The normal modes of the system are accordingly given by 

  0)Mdet(                  
(25)Equation (25) is the basic dispersion relation. 

The wave vector k


and frequency   are related to each other by components of the 
dielectric tensor  , which themselves contain   and the parameters pe  and ce  
which describe the state of plasma. The solutions of equation (25) describe  the 
electromagnetic wave that propagate in a cold magnetized plasma. It is remarkable 
that all this information can be obtained using only the single-particle dynamics 
embodied in equation (14) and (15), will be collective behavior described by the 
simple summation over all electrons in equation (21). 

9.4 High- Frequency Waves in A Cold Magnetized Plasma 
We now consider the high-frequency normal modes of cold magnetized plasma. 
The frequency of each normal mode is a root of equation (25); the corresponding 
polarization is obtained from equation (23). For easy manipulation of the dielectric 
tensor   given in (22) we define 
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define a vector N
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, as follows, whose magnitude is given by the refractive index 

and whose direction is given by the wave vector k
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Then we may write M, defined in equation (24), as 
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consider first waves that propagate parallel to the magnetic field. In the case 

  Nx= Ny=0 and Nz=N. by equation (31), 

M reduces to 
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• The corresponding normal modes of the plasma have frequencies that are the 
roots of det (M)=0, that is 

     0N 22  
                (33) 

This equation is satisfied first by 

  0                  (34) 
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will      


22N  then by the definition equation (28) of  , 
equation (34) gives  

    pe                 (35) 

To establish the polarization of the wave, substitute equation (34) into equation 
(32). In this case, equation (23) will be satisfied by an electric field of the form  

  ).E 0, ,0(E z


 

Thus, this normal mode of a cold magnetized plasma is an electrostatic wave, 
whose wave vector and field amplitude are both directed along the magnetic field. 
The wave oscillates at the plasma frequency, and is indistinguishable from the 
Langmuir wave (Plasma wave) in a plasma with no magnetic-field. Physically, 
each electron is acted on by an electric field that is parallel to the magnetic field, so 
that there is no perpendicular component field, so that there is no perpendicular 

component of motion that could be affected by the Lorentz force 0B 
 . 

9.5 Dispersion Relation of Left-Circularly Polarized Wave 
The other normal modes that propagate parallel to the magnetic field follow from 
equation (33) with    and 
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The polarization of this wave is obtained by substituting equation (37) into 
equation (32) and setting 
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where we have replaced 
  by 2  this gives 
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Similarly the other equation viz 
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and the third equation gives 0E z  . 

This is satisfied by an electric field of the form  0,E,EE yx
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, where 
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It follows from equation (39) that when ~ exp( )xE ikz i t we must have 
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, lies entirely in the positive x-direction. 
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As   increases from zero, Ex decreases in magnitude and Ey goes in the negative y-

direction, that is, 


 rotates in the xy-plane in the direction of the curled fingers of 
the left hand when the thumb lies along the magnetic field, which as usual defines 
the z-direction. Therefore equation (38) is the dispersion relation of a left circularly 
polarized wave. 

9.6 Dispersion Relation of Right- Circularly Polarized Wave 
Returning to equation (36), we now consider the second case 
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Substituting equation (40) into equation (32), and considering M.E=0, we 
determine the polarization  of this wave. 
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gives  x y E  E 0i      

and  x E 0yi E     

  3 z E 0   

From these equation its follows that 

  x yE E 0i                  (42) 

9.6 Dispersion Relation of Right- Circularly Polarized Wave 
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By repeating the phase analysis of the preceding paragraph, it can be seen that this 
is a right circularly polarized wave. 

It may be noted that this sense of rotation is the same as that of an electron in the 
magnetic field. Conversely, the ions, which are oppositely charged, rotate in a left-
handed sense about the magnetic field. The ion cyclotron frequency ce is given by 

  
1

7 19.6 10
1

e
ci

p

z B B MZ rad s
M Telsa m






           

 

where mp denotes proton mass, Z is the charge number, M is the ion mass. ci  is 

much smaller than ce by the factor 
e

p

m
m

~ .It is for this reason we could afford to 

neglect ion dynamics. 

Noting that ion dynamics are neglected, we consider the left circularly polarized 
dispersion relation (38) :  
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We note first that k is zero, corresponding to infinite wavelength when 
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             (47) 

  is known as the cut-off frequency. If the plasma parameters are such that 

22
ce

2
pe 




, it follows from equation (47) that ce  ; and vice versa. 

At high frequency  pe and ce equation (38) gives ck~ , so that the waves 
propagate with a phase velocity, close to the speed of light in vacuum, which is 
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almost independent of k. These waves are unaffected by the presence of the plasma 
for two related reasons. First, the plasma particles are too heavy to be able to 
respond coherently to the rapidly changing wave field. Second, the timescale of 
electron cyclotron is much longer than that of the wave oscillation. The electrons 
hardly move on their Larmor orbits while the wave phase reverses, so that the 
electrons are effectively unmagnetized  with respect to the wave. 

Now we consider the dispersion relation for right circularly polarized wave 
(equation 41). We note first that as   approaches ce  from below, the magnitude k 
of the wave vector tends to infinity, corresponding to zero wave length. 

This phenomenon occurs in general when the normal mode corresponds to some 
resonance of the system. In this case, it reflects the equality of the frequency of the 
right circularly polarized wave with the frequency ce of electron gyration in the 
magnetic field, which is also a right-handed motion. 

The analogous resonance for left circularly polarized waves occurs when ci   
.Returning to equation (41), we see that if   exceeds ce by a small amount, the 
quantity )(/ ce

2
pe   is negative and has a magnitude much greater than unity, 

so that no real value of k satisfies the equation. As   is increased further, the 
magnitude of )(/ ce

2
pe   is reduced, and when   reaches the value. 
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Equation (41) has the solution k=0. For  , equation (41) again has real 
solutions. Thus   is  the low frequency cutoff a second branch of right circularly 
polarized waves.  

By equation (41) when   is sufficiently small (though still large compared to the 

characteristic ion frequencies) that ce  and 1
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2
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, the Whistler wave 

frequency is given approximately by  
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At very high frequencies pe  and ce  , this second branch has ck~ , which 
repeats the behavior that we noted for high-frequency left circularly polarized 
waves. 

9.7 Dispersion Relation When Wave Vector K is 
Perpendicular to The Magnetic Field Direction 

We shall now consider the normal modes that have wave vector k


 perpendicular to 
the magnetic field direction. We choose the x-axis to lie in the direction parallel to 

the wave vector k


. Then by equation (30), Ny=Nz=0 and equation (31) becomes 

  2
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       –i         0
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0            0      

M i N
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

 

 

 
 
   
  

.             (50) 

The corresponding normal modes of the plasma have frequencies are the roots of  

  ,0)M( det   which now gives 

    2 2 2
2( ) 0N N                       (51) 

This equation is satisfied first by 

  2N                 (52) 

with  2 2
2 0N       . By the definition of   in equation (28) gives 

  
2 2

21 pe c k

 




   

or  222
pe kc                (53) 

which is identical to the dispersion relation equation (11) for electromagnetic 
waves propagating in arbitrary directions in an unmagnetized plasma. The fact that 
plasma is magnetized does not enter equation (53) , and this normal mode is 
accordingly referred to as the ordinary mode(O-made).Physicsally ,the non 
appearance of the magnetic field indicates that the particle dynamics associated 
with the O- mode must take place exclusively in the direction parallel to the 

magnetic  field, so that 0B 
 . Therefore the O- mode must be polarized with an 

amplitude (0,0,E). 

9.7 Dispersion Relation when Wave Vector K is 
 Perpendicular to The Magnetic Field Direction 
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Equation (51) is also satisfied by  

  0)N( 2
2

2                  (54) 

with  2
3 N  using equation (26) and (27), this gives 
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which can be simplified to  
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             (55) 

Here   and 2  are the frequencies that were defined in equation (47) and (48) 
respectively, and U   denotes the upper hybrid frequency : 

  2
1

cepeU )( 
                 (56) 

The term hybrid is used because this frequency combines two distinct aspects of 
electron plasma dynamics: space-charge density oscillion )( pe  and electron- 

cyclotron motion )( ce . We first consider the magnitudes of    and 2  relative to 

U . 

Combining equation (47) and (56), 
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              (57) 

So that   is always less than U  , irrespective of the values of pe  and ce . 
Similarly combining equation (49) and (56)   
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The first square root term in equation (58) exceeds unity by more than amount by 
which the second square-root term is less than unity. Thus the value of the entire 
term in {} in equation  (58) must exceed two, and 2  is always greater than UH  , 
irrespective of the values of pe  and ce  . So quite generally  

    UH                  (59) 

Now we return to eq. (55). If follows from equation (59) that there are real 
solutions k only when UH  or 2 in addition, the value of k tends to 
infinity as   approaches UH  from below. It follows that there are two regions of 
propagation for this wave, which is known as the extraordinary mode (X-mode). 
The low-frequency branch has a low-frequency cut-off at  , and a resonance 
at UH . The high-frequency branch has low-frequency  cut off at 2 ,and by 

equation (55) satisfies ck   at high frequencies. Figure 2. depicts the 
frequencies of the ordinary mode and both of the extraordinary mode as a function 
of k. 

 
Figure1: Relation between   and k for wave that propagate parallel to the 
magnetic field.  
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Figure 2: k  dispersion diagram showing frequencies of waves that propagate 
perpendicular to the magnetic field. O is the ordinary mode and both branches of 
the extraordinary mode. 

9.8 Illustrative Examples 

Example 1. Prove that transverse waves with frequencies p  are evanescent in 
a cold plasma.  

Solution: Dispersion relation of transverse waves is 

  222
pe

2 kc 2
2

1 ( )pek
c

      

  
1

2 21 ( )pe ik i ik
c

      

Thus k is purely imaginary, hence wave propagating factor ik zikze e , 

when 
1
21 ( )i pek

c
     the wave will be damped in a distance 

i

z
k


  .That is the 

wave is evanescent.   

9.8 Illustrative Examples 
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Example 2. An electromagnetic plane wave of frequency  impinges  on a half-
space filled with plasma frequency p . What is the characteristic depth of 

perpetration? prove that for p this distance is 
p

c


, called the collision less 

skin depth. 

Solution: from the solution of Example 1, penetration depth 1
2( )pe

cZ
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pepe
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



  

9.9 Self Learning Exercise 

Q.1 Define electron cyclotron frequency. 

Q.2 Derive an expression for the dielectric tensor of an unmagnetized plasma in 
the from 

  
2
pe I




 

 
   
 

 

Q.3 Derive dispersion relation of left circularly polarized wave. 

9.10 Summary 
We now summarize the properties of the normal modes of a cold magnetized 

plasma that have k


 parallel to the magnetic field direction and frequency   

significantly greater than ci .Right circularly  polarized waves exist for ce   

and 2 . Relation between ω and k for waves that propagate parallel to the 
magnetic field are shown in Fig. 1. The branch with ce , is known as the 
Whistler wave.  

9.11 Glossary 
Evanescent wave:A wave which is unable to propagate through the plasma 

9.9 Self Learning Exercise 

9.10 Summary 

9.11 Glossary 
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Whistler Wave:A wave that propagates parallel to the magnetic field and whose 

frequency ceω ω and is approximately given by 
2

ce
pe

ckω ω
ω

 
  
 

  

9.12 Answers to Self Learning Exercise 

Ans.1:  11 11.8 10
1ce

e B Bω rad s
m Tesla

    
 

  

Ans.2: See derivation of equation (9). 

Ans.3: Please see the derivation of eq.(38) 

9.13Exercise  

Q.1  What is the frequency of an upper hybrid wave. 

Q.2  Define upper hybrid frequency. 

Q.3  Using Maxwell’s equations derive an expression for the dielectric tensor in 
the form 

 0

1 i
 

 
 

  
where σ is the conductivity 

Q.4  Show that the frequency ω of an electromagnetic wave and its wave vector 

k while propagating through a plasma of plasma frequency ωpe satisfy the 
dispersion relation 2 2 2 2

peω ω c k 
 
What is the cutoff frequency? 

Q.5 Calculate the normal modes of an unmagnetized plasma. 

Q.6 Derive an expression of the dielectric tensor of a cold magnetized plasma. 

Q.7  Derive the dispersion relation of high frequency normal modes of a cold 
magnetized plasma. Show that normal mode of a cold magnetized plasma is 
an electrostatic wave and other normal modes that propagate parallel to the 
magnetic field are left-circularly, right-circularly polarized electromagnetic 
wave. 

Q.8  Draw k  diagram for waves that propagate parallel to the magnetic field. 

Q.9  Draw k  diagram for waves that propagate perpendicular to the magnetic 
field. 

9.12 Answers to Self Learning Exercise 

9.13 Exercise  
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Q.10 What is an ordinary wave? what is an extraordinary wave. Derive their 
dispersion relation. 

9.14 Answers to  Exercise 

Ans.1:   cepeUH  

Ans.2:  1/22 2
UH pe ceω ω ω   

Ans.3: Please see the derivation of eq.(4) 

Ans.4: For the relation 2 2 2 2
peω ω c k  ,see the derivation of eq.(12) 

 Cut off frequency ω is given by   

 
2 2

peω ω  so 0k   

 Or 
2

0

neω
mε

  

Ans.5: (i) Transverse mode )0E.k( 


 

  222
pe kc  

  See equation (12) of the text. 

 (ii) Electrostatic mode (i.e. k


 and E


 parallel; 2
pe  

  See equation (13) of the text. 

Ans.6:  See the derivation of equation (22) 

Ans.7: See the derivation of high-frequency waves in a cold magnetized plasma. 

References and Suggested Readings 
1. Fundamentals of plasma physics by J. A. Bittencourt. 

2. The physics of High Temperature plasmas by George Schimidt . 

3. Plasma physics by F.F. Chen 

4. Plasma Dynamics by Dendy. 

  

9.14 Answers to  Exercise 

References and Suggested Readings 
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UNIT-10 
Faraday Rotation and  Landau Damping 

 

Structure of the Unit 

10.0  Objectives  

10.1  Introduction  

10.2  Cut-offs resonances 

10.3  Faraday Rotation 

10.4  Landau Damping ( The wave - particle interaction) 

10.5  Self Learning Exercise 

10.6  Summary 

10.7  Glossary  

10.8  Exercise 

References and Suggested Readings 

10.0 Objectives  
To learn the   

• Dispersion relation, cut-offs and resonances  

• Faraday rotation  

• Waves in hot plasmas 

• Wave-particle interaction 

• Landau damping 

• Ponderomotive force 

10.1 Introduction  
The Plasma waves are linear cold plasma waves in an infinite, homogeneous 
plasma. The plasma is not isotropic, however, since the presence of magnetic field 
provides one preferred direction. Without the magnetic field, the plasma may be  

represented by a simple dielectric constant and the only wave solution is a simple 

UNIT-10 
Faraday Rotation and  Landau Damping 

10.0 Objectives  

10.1 Introduction  



198 
 

electromagnetic wave that propagates above the plasma frequency, peω . 

By Cold plasma, we mean a collection of charged particles without any net 
charges, and the particles are at rest except as they are induced to move through the 
action of the self-consistent  electric and magnetic fields of the wave, or in other 
words, the particles have no kinetic thermal motion of their own. In this chapter we 
examine the general forms of the dispersion relation in the presence of magnetic 
field and discuss various cut-offs and resonances of various modes of plasma in the 
presence of magnetic field. We also discuss an important feature of the 

magnetoactive media is that they lead to Faraday rotation of E


 as the wave 
propagates through the media. The electromagnetic field interacts with the particles 
of the plasma and as a result of this interaction the wave may damp giving energy 
to the particles (Landau damping) or the wave may gain energy from the particles. 

An important nonlinear interaction originating from B


  force leading to 
ponderomotive force will be elaborated. 

10.2 Cut-offs Resonances 
In chapter 3 we have derived the dispersion relation of a cold magnetoactive 
plasma: 

 0cBnAn 24          (1) 

where ckn
ω




 , or  ckn
ω

 is the index of refraction     (2) 

 2 2A Ssin Pcos            (3) 

 )cos(1 PSsinRLB 22        (4) 

 L R PC           (5) 

where  
 


2
pj
2

j
P 1          (6)   

j refers to the species of the plasma  particle , ej   for electron, ij   for ion etc. 

 
2
pj

j j cj

R 1
( )


 

          (7) 

 
2
pj

j j cj

L 1
( )


 

          (8) 

10.2 Cut-offs Resonances 
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pjω  is the plasma frequency for species j , given by  

 
2

2 j j
pj

j

n q
ω

m 




         (9) 




j

j
j q

q
 to denote the sign of the charge for species j. 

1j   for electrons and 1j   for positive ion etc.  

 0 j
cj

j

q B
ω

m
 

  is the cyclotron frequency for species j. 

  is the angle between k


 and direction of external magnetic field 0B


 to be 
in the z- direction. 

The solutions of Eqn. (1) may be written in terms of the angle: 

 
2 2

2
2 2

( ) (n )tan
( ) (n )
P n R Lθ
Sn RL P

 
 

 
               (11) 

The general condition for a resonance, where 2n  , or where 0 , is given 
by Equation (11) as 

 2 Ptan
S

    (general resonance condition)                                               (12) 

and the general cutoff condition, where n=0, or  , is given by Eq. (1) as 

 0LR PC     General cutoff condition                           (13) 

We note some special cases at this point : 

1. Propagation parallel  to 0B


,   (The numerator of Equation (11) must vanish) 

(a)    
2
pj
2

j
P 1 0


  

  (Plasma oscillations)  

(b)    
2
pj2

j j cj

n R 1
( )


  

     (wave with right-handed polarization) 

(c)    
2
pj2

j j cj

n L 1
( )


  

    (wave with left-handed polarization) 

2.  Propagation perpendicular to  0B


, 



  (the denominator of equation (11) 
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must vanish.) 

 (a)  Pn2    (ordinary wave) 

(b) 2 RLn
S

  (Extraordinary wave) 

Principal solutions- Parallel Propagation: 

We first define the principal resonances to be those which occur at 0  and 




 . The general condition for a resonance 2(n )  is from Equation (11) 

 2 Ptan
S


  . 

Hence, for  , we require S  since P=0 is a cutoff. Since 1S (R L)
2

  , 

this can be satisfied for  

 either R    (electron cyclotron resonance) 

 or        L    (ion cyclotron resonance) 

The Right-Handed Wave:  

For a simple plasma of electrons and one ion species, the dispersion relation for the 

right-handed wave, Rn2
R  , which propagates parallel to 0B


 is given by equation 

(11) as 

 
2 2

pe2 1  
( ) ( )

pi
R

ci ce

ω ω
n R

ω ω ω ω ω ω
   

 
              (14) 

So, the resonance is clearly at ceω ω . The cutoff frequency, where 0Rn2   is 
given by 

 
2 2

pe2 1  1
 

pi
R

ci ce

ω ω
n

ωω ωω
     

 

1
2 2

2

2 2
ce ci ce ci

R p
ω ω ω ωω ω

       
   

              (15) 

where 2 2 2
p pe piω ω ω  . 

For low and high density limits, the cutoff frequency may be approximated by 
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2

21              R-wave cutoff- low density

1               R-wave cutoff- high density
2

pe
ce

ce
R

pe ce

ω
ω

ωω

ω ω

  
      




            (16) 

where we have assumed ie mm  . 

For high and low frequencies, the index of refraction approaches limits 

 

2 2

2 2
2

2

2

1 ,  as 
  

1 ,    as 

pi

ci A
R

pe

ω c ω
ω Vn
ω

ω
ω


   

 

 

                (17) 

where 






0

A

(

BV , )mm(n0
   is the mass density. 

Fig.1 displays the dispersion curve for R-wave. Fig.(1a) is for the case pe ceω ω   
and Fig. (1b) is for the low density limit: pe ceω ω  

 
Figure1: Dispersion relation for R wave (a)high density case pe ceω ω  (b) low 
density case pe ceω ω  

The Left- Handed wave: 

The dispersion relation for the left - handed wave, Ln2
L  , is also given by 

equation (11) as  

 
2 2

2 1
( ) ( )

pi pe

ci ce

ω ω
n L

ω ω ω ω ω ω
   

 
              (18) 
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So the resonance in this case is clearly at ciω ω . The cutoff frequency where 
0Ln2   is given by  

 

1
2 2

2

2 2
ci ce ci ce

L p
ω ω ω ωω ω

       
   

              (19) 

For low and high densities, the cutoff frequency may be approximated by  
2

          L- WAVE CUTOFF- low density

1        L- WAVE CUTOFF- high density
2

pi
ci

ci
L

pe ce

ω
ω

ωω

ω ω


 

 

            (20) 

where we have again assumed me ie mm  . 

For high and low frequencies, the index of refraction approaches the limits 

 

2 2

2 2
2

2
pe
2

c1    as  

1            as  

pi

ci A
L

ω
ω

ω Vn
ω

ω
ω


   

 


 

                (21) 

Fig. 2 displays the dispersion curves for the L-wave. 

 

Figure 2: Dispersion relation for R wave (a)high density case pe ceω ω  (b) low 
density case pe ceω ω  
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Principal Solutions- Perpendicular Propagation : 

As 



 , P
S
 , and since P  is a trivial solution (either ω , so no 

wave at all, or pω  , which is impossible), we require S  . These 
resonance are called hybrid resonance because they generally involve some 
combination of cω  and pω . The solutions for perpendicular propagation are the 
ordinary and extraordinary waves. 

The ordinary wave: 

The dispersion relation for the ordinary wave is the same as in an unmagnetized  
plasma, and is given simply by 

 
2 2 2

2
0 2 2 21 1pe pi peω ω ω

n P
ω ω ω

                     (22) 

for a single ion species plasma, and it is immediately apparent that this wave has 

no dependence on the magnetic field at all. This wave has E


 parallel to 0B


, so the 
particles do not experience any effect of the magnetic field. It is clear that there is 

no resonance and that the cutoff is at peω ω , neglecting again terms of order 
i

e

m
m

.There is no propagation below peω  and 2n  as ω . 

The Extraordinary Wave: 

The dispersion relation for the extraordinary wave, given by 

       
      

2 2
2

2 2 2 2 2 2 2

  

 
ci ce p ci ce p

x
ci ce pe pi ce ci

ω ω ω ω ω ω ω ω ω ωRLn
S ω ω ω ω ω ω ω ω ω

            
    

      (23) 

is the most complicated of these simplified  dispersion relation, since neither the 
resonance nor the cutoffs have simple expressions. The resonance are given by the 
zeros of the denominator, which lead to the quadratic roots, 

 

1
2 22 2 2 2

2 2 2
pi 

2 2
e i e i

pe
ω ω ω ωω ω ω

   
    
   

              (24) 

where 2 2 2 ,   j e, ij pj cjω ω ω   . One of the roots is simply given by the sum of the 
electron cyclotron frequency and the electron plasma frequency, namely 



204 
 

 2 2 2
UH pe ceω ω ω   (Upper Hybrid Resonance)             (25) 

The other root is more complex, but again neglecting terms of order 
i

e

m
m , 

 
2

ci2
2 2

 pe ce
LH ce ci

pe ce

ω ω ω
ω ω ω

ω ω
 

    
 [Lower Hybrid Resonance]             (26) 

10.3 Faraday Rotation 
An important feature of magnetoactive media is that they lead to Faraday rotation. 

In order to analyze the Faraday rotation of E


 as the wave propagates in a 
magnetoactive plasma, we shall limit the analysis to  where the Maxwell 
equations become 

 
Β ( )E ik E iω B
t


        



    
              (27) 

 DB iK B ( i ) KE
t  


          



     
              (28) 

where K


 is the dielectric tensor defined as  

 
S     iD      0

K iD       S       0
0         0        P

 
   
 
 


                (29) 

Now taking z x y,(0, 0, k ),       B (B ,B  0)k  
 

and )0E ,(EE y,x


 we find 

 y x E  Bzk ω                   (30) 

   x y E  Bzk ω                  (31) 

 y x2 B SE Εz y
ωk iD
c
                      (32) 

   x x2 B  E Εz y
ωk iD S
c
                     (33) 

we then define the rotating coordinate variables 

 Ε x yE iE                   (34) 

 x yB B iB                     (35) 

 1 ( )
2

S R L                    (36) 

10.3 Faraday Rotation 
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 )LR(
2
1D                    (37)

 S D R                    (38)  

S D L                    (39) 

We find  Bzk E iω                    (40) 

 2   E (S )z
iωk B D
c                    (41) 

These may be solved to obtain the result 

 2( ) E 0n K                    (42) 

where xx xyK K iK                    (43) 

 xx xyK K iK                      (44) 

Equation (42) has two solutions. 

1.  Suppose  E  then Ln2   and 0E   So 

 yx E iE   which confirms that this is the L-wave. 

 The E  field may then be represented by 

 ˆ  exp i
c L
ωE E n z ωt 

       
 

where Ê is the complex amplitude . 

2.  Suppose  E then Rn2   and 0E  so yx E iE   which confirms our 

identification of this as the R-wave. The E field may then the represented by  

 ˆ  exp i
c R
ωE E n z ωt 

       
 

where again Ê is the complex amplitude. 

Constructing the measurable field xE  and yE  from these, we obtain. 

 
1 ˆ ˆ( ) ( )

2 2e x e e

L R
ω ωi n z ωt i n z ωtc cE ER E R R E e E e

      
                    

 

       
  

      (45) 

If we now take 0))t,0(E(R ye  so that the electric is aligned with the x-axis at z=0, 

then this demands that 0EÊÊ   which we take to be real. We may then factor 
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out a common term and represent the result as  

 
 

0
Δ( ) cos Re
2

ωi n z ωt
c

e x
n ωR E E x e

c

   
     

    
              (46) 

 
 

0
ΔRe( ) sin Re
2

ωi n z ωt
c

y
n ωE E x e

c

   
     

    
              (47) 

where )nn(
2
1n RL                 (48) 

 0nnn  RL                   (49) 

From this it is apparent that xE and yE are being modulated by the sine and cosine 
terms while the phase velocity of the composite wave is determined from the 

exponential terms which yields a phase velocity of 
n
c

p   choosing a point of 

constant phase, the total electric field rotates in space as the wave propagates, as 
shown in figure 3. If we take the angle of rotation to be  , then the rate of rotation 
of the E field vector is given by  

 Δ 1  
2 2 c L R

dφ d n ω ωz n n
dz dz c

    
 

              (50) 

 
Figure 3. Faraday Rotation of the electric field 

High Frequency Limit- Region 1 : 

In  order  to  estimate  the  amount  of  faraday  rotation  - for  frequencies 
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ce ciω ω ω  , we begin with the dispersion relation for the R-wave: 

 
2 2

2 1
( ) ( )

pi pe
R

ci ce

ω ω
n R

ω ω ω ω ω ω
   

 
 

       
12

2 1pe ceω ω
ω ω


   
 

 

      
2

2 1pe ceω ω
ω ω

   
 

       

 
2 2

ce2
2

. pe pe
R

ω ω ω
n

ω ω
                  (51) 

and similarly for the L-wave 

 
2 2

2 ce
2 2 .pe pe

R

ω ω ωn
ω ω ω

                            (52) 

These dispersion relation are compared with the definitions  

 
2

2 2
,

1 Δ  Δn
2R Ln n n n n     

 
               (53) 

but comparison yields the results 

 
2

2
21 1peω

n
ω

    (approximately free space propagation) 

 
2

2 .pe cen n n
 
 

                   (54) 

This result, along with equation (51) then give the rate of rotation as 

 
2

2

Δ 1 . . .
2 2

pe ce
ω ωdφ n ω ω

dz c ω ω c
   

or 
2

ce
02  n B

2
pe

e

ω ωdφ λ
dz ω c

                  (55) 

where    is the free space wavelength. The total rotation angle then is given by 

 2
00

 (z) B ( )L

eφ λ n z dz                  (56) 

If the Faraday rotation is used as a diagnostic for estimating the magnetic field in a 
plasma, it is preferable to use long wavelengths (since 2  ), but one must  still 
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keep ce peω ω ω   in order to get a significant rotation. 

Since the rotation is proportional to both density and magnetic field strength, one 
must be known to determine the other, and some idea of the variation along the 
path is necessary. Simultaneous measurement  of the phase can give some 
additional information, since n  differs some from unity. The phase is given by 

 
2

20 0
0

(1 )  ( )
2

LL L pe
e

ωω ωφ n dz dz λ n z dz
c c ω

                   (57) 

Since  
2

21
2

peω
n

ω
  . Thus measurement of both the phase and rotation can give 

estimates of the mean density and mean magnetic field along the path of 
integration. 

10.4 Landau Damping (The Wave-Particle Interaction) 

 Intense laser light couples with the plasma either into electrostatic  waves (due to 
resonance absorption and ion acoustic decay 2 peω  instability ) or into both 
electrostatic  and scattered light waves (Raman and Brillion scattering ). We need 
to understand how electrostatic waves are damped. Since electrostatic wave are 
simply charge density fluctuations and their associated electric fields, these waves 
do not readily escape from the plasma. Their energy is ultimately transferred to the 
particles via either linear or nonlinear damping mechanisms. 

(A) Collisional  damping (electron-ion collisions) 

The coherent motion of oscillations of electrons in the electric field of the wave is 
converted to random (or thermal ) motion at the rate at which electron-ion 
collisions occur. To balance the energy dissipated, the energy of the wave then 
damps at the rate   i.e. 

 
2 n m v

8 2
ω

ei
Eυ υ
π



  

where ω
e Ev
mω

 . 

Thus  
2

pe2 ;  for pe
ei ei

ω
υ υ ω ω υ υ

ω
                  (58) 

10.4 Landau Damping (The Wave-Particle Interaction) 
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(B) Landau Damping : 

Landau damping is also known as "collision-less damping".To understand the 
mechanism of Landau damping,  consider an electrostatic wave :  

E sin(kx- ωt). 

Most particles of the plasma are non-resonant i.e have velocity u much different 

than ω
k

. These particles simply oscillate in the field and experience no gain or loss 

in energy. In contrast resonant particles with ωv
k

 experience a nearly constant 

field and so can be efficiently accelerated or decelerated. These particles do 
exchange energy with the wave. The particle dynamics are determined by  

 sin( )qEx kx ωt
m

                   (59) 

We assume  0 1 2x x v t x x                    (60) 

where  tx0   represents free streaming of the particle in the absence of the 
electric field. 

 1x  represents first - order correction (  

 2x  represents second -order correction  2(  

In a similar way we represent the velocity  of the particle as 

 210                                        (61) 

The expansion parameter is xk , where x  is the charge between the free 
streaming position and its actual position. 

The equation (59) can be written as 

  sinqEv kx ωt
m

                                                (62) 

Now substituting (61) in the left hand side and (60) in  the right hand side of 
eq.(62) and equating the terms of the same order of smallness ,we obtain 

 1 0sin ΩqEv kx t
m

                    (63) 

where 0Ω ω kv   
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 2 1 0cos ΩqEv kx kx t
m

                  (64) 

Now integrating(63),we find 

   1 0 0cos Ω cos
Ω

qEv kx t kx
m

                   (65) 

Further integrating (65) 

     1 0 0 02 sin Ω sin Ω cos
Ω

qEx kx t kx t kx
m

                   (66) 

Now substituting (66) into (64) we obtain 

       
2 2

2 0 0 0 02 2 cos Ω sin Ω sin Ω cos
Ω

kq Ev kx t kx t kx t kx
m

          (67) 

We next compute the rate of the change of energy  δε of a set of particles with 
random initial positions. 

    m                  (68)  

where < > represents average over initial positions. 

To second order, we obtain 

    mm 22                (69) 

Substituting for 2  from (67) and   from (63) and carrying out the algebra, we 
obtain 

  



 





 

 tcosttsinktsin 
m2
Eq 

22

2              (70) 

Taking the long time limit and using the well known formula regarding the Dirac 
delta function viz: 

 sin ΩΩ lim
Ωt

tδ
π

                    (71) 

We obtain 

 



 


  k

m2
Eq 22

               (72) 

Now using the formula 

 1
0Ω ) ( )ωδ δ ω kν k δ ν

k


        
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we obtain 
2 2

2
πq E ωδε ν δ ν

mk ν k  


          
              (73) 

Lastly, we average the rate of the energy change over a distribution of initial 
velocities, )(f  , we find: 

     )(fd                   (74) 

where )(f  is the velocity distribution function .Substituting for   from (73), 
we obtain 

 
2 2

0.
ων
k

fπq E ωδε
k νm k




  

  
                 (75) 

By energy conservation, the rate of change in the energy of the particles must be 
balanced by a growth or damping of the wave: 

 
2

2 0
8
Eγ δε
π                      (76) 

where  is the rate at which the electric field grows or damps. Equation (76) gives 

 
2

2
8
Eγ
π


2 2

.
ων
k

πq E ω f
k νm k 


  

 

Specializing to the case of an electron plasma wave 

 
2

2
peωγ π ωf

ω k ν k
       

                (77) 

where .fnf   
For Maxwellian plasma 

 
2 2

2 23 3

 
exp

2
pe

thth

ω ωγ π ω
ω k Vk ν

 
       

               (78) 

Note that the Landau damping of an electron plasma wave is a strong function of 

its phase velocity. The damping becomes sizable whenever 3 th
ω ν
k

 , where th

is the electron thermal velocity . 

or 
2

2 9 Bω k T
k m

   
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or 
2

2

1 9 th

p

ν
k ω



   p( )ω ω  

 2
D2

1 9 λ
k

  

here D is Debye length th

p

ν
ω

 . Thus Landau- damping becomes important 

3
1 ~k D                    (79) 

Physical significance of Landau Damping : 

We conclude our discussion of linear Landau damping with a simple mechanical 

analogy. Consider a group of boxes translating along at a velocity equal to ω
k

. 

Inside the boxes are uniformly-distributed particles, some moving slightly slower 

than ω
k

, some moving slightly faster,  

 

 

 

 

 

 

 

 
Figure :4 

Those particle moving slower than ω
k

 are overtaken by the wall to their left and 

gain energy as they are bounced off. Likewise, those particles moving faster than 
ω
k

 overtake the right wall and lose energy as they are reflected. For a time less 

than the transit time of a particle through the box, the net energy change simply 

depends on whether more particles are initially moving faster or slower than ω
k

. 

 

k
  
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Ponderomotive force: 

• When waves travel in  a plasma, particularly when the wave amplitude is not 
homogeneous, the wave amplitude itself can effectively modify the plasma density 
profile through the "Ponderomotive force". 

• One of the consequences of this ponderomotive force is that a localized wave can 
effectively expel plasma from the vicinity of the wave amplitude maximum, and 
this may tend to make the wave even more localized, leading to a through in the 
plasma that is called a "Cavtion". 

• We give below a brief derivation of the ponderomotive force and its associated 
potential. 

• In an inhomogeneous, high frequency  field, the motion of an electron may be 
divided into two parts which describe the high frequency oscillation about an 
effective center of oscillation, and relatively slow motion of the oscillation center.  

• If we take the electric field to be given by 0( , ) ( )cosE x t E x ωt , and imagine 
that the amplitude is increasing in the positive x-direction, then as the electron 
moves into the stronger field, it will be accelerated more strongly back toward the 
oscillation center. 

• On the other hand, as it moves toward the weaker field as x goes negative, it 
receives a weaker restoring force. On the average, then, it will experience a slow 
drift toward the weaker field as if under the influence of a steady or slowly varying 
force, while at the same time experiencing the rapid oscillation at the high 
frequency. 

• In order to make this more quantitative, we examine the equation of motion of a 
charged particle in an inhomogeneous electric field: 

 0 ( )cosmr qE r ωt
                   (80) 

• We will separate this motion into a slow motion and a fast motion such that 

 10 rrr 
  where 0rr 

  is the average over the fast time scale, or 

over the period, πT
ω


 .      0r
  hence describes the oscillation center. 

1r
  describes the rapidly oscillating motion, and is determined by 

 1 0 cosmr qE ωt
                  (81) 
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where )r(EE 000


 . The solution is simply  

 0
1 2 cosqEr ωt

mω
 

  
 




.               (82) 

• For the slow variation, we will expand )r(E0


 about )r( 0
  such that the equation of 

motion becomes 

 0 1 0 1 0( ) ( . cosm r r q E r E ωt     
                    (83) 

and we wish to average this over a period such that  

 0 1 0cos .  mr q r ωt E   
                   (84) 

Using (82) for 1r
 , the average is simply 0

22
qE
mω




, so (5)becomes 

 
2 2

2
0 0 0 02 2.  ( )

2 4
q qmr E E E
mω mω

     
                 (85) 

The ponderomotive force and its associate ponderomotive potential, then are given 
by 

 
2

2
02 ( )

4p p
qF E ψ
mω

                    (86) 

 
2

2
024p

qψ E
mω

                  (87) 

If inhomogeneous magnetic fields are included, there is a drift of guiding center in 
addition to the motion from the ponderomotive force, but the ponderomotive force 
is unchanged. 
10.5 Self Learning Exercise 

Q.1.  What is collisional damping? show that a wave damps at a rate 
2

2
pe

ei

ω
ν ν

ω
 , 

where ei  represents electron-ion collision frequency. 

Q.2. What is Landau damping? Explain its physical significance. Show that a 
plasma wave will get damp is the condition 1Dkλ   is satisfied. 

10.6 Summary 
In this chapter we have learnt that in the presence of a magnetic field the plasma 
becomes anisotropic. This is because of the presence of a magnetic field a 

10.5 Self Learning Exercise 

10.6 Summary 



215 
 

preferred direction is provided to the plasma. Without the magnetic field, the 
plasma may be represented by a simple dielectric constant and the only wave 
solution is a simple electromagnetic wave that propagates above the plasma 

frequency ωpe .In the presence of the magnetic field the direction of the plasma 
becomes a tensor. We have discussed E.M. wave propagation parallel to 0 , 0B θ 


 

and also propagation perpendicular to 0B


.Finally we have discussed Faraday 
rotation of the electric field. 

10.7 Glossary  

Ponderomotive force: A force experienced by a charged particle which is 
proportional to the gradient of the amplitude of the wave field .The ponderomotive 
force is independent of the sign of the charge. 

Faraday Rotation: In case of parallel propagation of electromagnetic wave 
,parallel to magnetic field , in a plasma the R wave has a greater phase velocity 
than the L-wave. As a result ,the plane of polarization is rotated after these waves 
emerge out of the plasma and combine. 

Evanescent Wave: The wave unable to propagate through the plasma. The wave 
becomes damped or in other words evanescent.   

10.8 Exercise 
Q.1 What is ponderomotive force? Derive on expression for the ponderomotive 

force and ponderomotive potential. Give the physical significance of the 
ponderomotive force. Justify that the ponderomotive force leads to the 
expulsion of plasma from the high intensity region. 

Q.2 What is a "caviton"? 

Q.3  Derive an expression for the Landau damping rate of plasma wave: 

   
2 2

2 23

 
 exp 

2
pe

thth

ω ωγ π ω
ω k Vk V

 
       

 

Q.4  Explain the phenomenon of Faraday rotation of an electromagnetic wave 
where it passes through a magnetoactive media. How does it help in 
knowing the plasma density of a plasma medium. 

10.7 Glossary  

10.8 Exercise 
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Q.5 Explain the term "Cut-off" and "resonance". Derive the dispersion relation 
in the form 

   
2 2

2
2 2

( ) (n )tan
 n ) (n )

P n R Lθ
S RL P

 
 

  
 

 where the symbols have their own meaning. 
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11.5 Illustrative Examples 

11.6 Introduction to Parametric Instabilities 
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11.0 Objectives 
To learn 

(a) The two-stream instability. 

UNIT-11 
Beam- Plasma Interaction and 

Parametric Instabilities 

11.0 Objectives 
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(b) Growth rate of the instability of the beam- plasma system. 

(c) Common characteristics of parametric instabilities 

(d) Modulated harmonic oscillator model 

(e) Grow Rates and thresholds 

(f) Excitation of Coupled –mode oscillations  

11.1 Introduction 

In this chapter we shall discuss a typical instance of instability that is afforded by a 
directed beam of electrons passing through a plasma at rest (A.I. Abhiezer and 
Ya.B. Fainberg 1949, D. Bohm and E. P. Gross 1949). In plasmas near 
thermodynamic equilibria, the collective modes are stable elementary excitations. 
Those excitations suffer damping through resonant interactions with individual 
particles; their lifetimes are finite. 

However, When a plasma is away from thermodynamic equilibrium, collective 
modes may become unstable; amplitude of such an excitation tends to grow 
exponentially. Most of the plasmas in nature are significantly far from 
thermodynamic equilibrium. A current carrying plasma, for example, involves a 
relative drift motion between the electrons and ions. A beam-plasma system is 
unstable. In this chapter, we investigate the conditions under which the beam-
plasma system becomes unstable. The physical mechanism responsible for the 
onset of plasma instability may be thought in the excess of free energy due to a 
departure from thermodynamic equilibrium. Beam-plasma system is an example of 
a situation in which wave-particle interaction leads to a growing wave amplitude, 
at the expense of the kinetic energy of the plasma particles, we consider here the 
so- called two- stream instability. 

Parametric instabilities are not unique to plasmas, as they relate to any oscillatory 
system where one of the parameters (hence the name “parametric”) is modulated at 
an appropriate frequency.  

11.2 What is a beam ? 
Here we consider plasmas whose velocity distributors deviate strongly from a 
Maxwellian. In particular, we consider beam-plasma systems, where the 

11.1 Introduction 

11.2 What is a beam ? 
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distribution in the velocity of one of the plasma species- for example, the 
electrons- has two district components. These are a background, Maxwellian 
component, and an energetic component whose velocity in a particular direction 
greatly exceeds that of the background. The energetic component is referred to as 
“beam”, and it represents a source of free energy. 

11.3 Dispersion Relation of Beam Plasma System 

In order to examine how the free energy of streaming electrons (i.e. beam of 
electrons) may be released, we investigate the stability of the beam-plasma system. 
This requires the calculation of its response to small perturbation. 

For simplicity, we assume that the difference in velocity between the beam 
electrons and the background electrons greatly exceeds the spread in velocity of 
either population. That is, we consider a beam-plasma system which, to leading 
order, is cold. In this approximation, the initial electron velocity distribution 
function 0( )f v  is Zero everywhere except at 0v 

  or at z ov v , with xv and yv  
negligibly where ov  is the velocity of the beam, whose direction we choose to 
define the z- axis. 

 We shall consider electrostatic perturbations, and choose the wave k


 vector to 
lie along the z-axis, parallel to the beam. 

 Physically the suppression of xk and yk does not matter. The propagation of 
electrostatic waves in these directions is governed by the distribution of electron 
velocities in the x- and y directions. These distributions have no beam 
component, so that the cold plasma treatment will apply. Thus, we restrict 
attention to the only component of k


 for which the presence of the beam is 

significant. 

 We denote the fraction of electrons in the beam by ξ , So that the remaining 
fraction (1 )ξ  forms the background plasma. 

 The beam is assumed to be electrically compensated: the sum of the electron 
charge densities in the plasma and the beam is equal to the ion charge density in 
the plasma. The system is homogeneous and unbounded, i.e. both the beam and 

11.3 Dispersion Relation of Beam Plasma System 
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the plasma extend throughout space, and the directed velocity ov  of the beam is 
everywhere the same. We shall assume that 0v is non-relativistic. 

 In the electron oscillation frequency range, the longitudinal permittivity of the 
plasma-beam system has the form 

 ( , ) 1 (1 )ε k ω ξ   
 

2 2

22
0

pe peω ξ ω
ω ω kv




      (1) 

The first term on the right corresponds to the plasma at rest; the second 

Term is due to the beam electrons. In a frame of reference K  moving with the 

beam, the contribution of the beam electrons to 1ξ  is
2

peω
ω
 

  
where ' is the 

oscillation frequency in that frame, and  2 2
pe peω ξω  . 

On return to the original frame K, the frequency '  is replaced by 

 0'ω ω kv            (2) 

 The spectrum of the longitudinal oscillations of the cold beam-plasma system is 
given by 0),(  k  , i.e. 

 

2 2

2 2
0

( , ) 1 (1 ) 0
( )

pe peω ξω
ε k ω ξ

ω ω kv
    


           (3) 

 In the limit where the number of electrons in the beam tends to Zero, ξ  vanishes 

and eqn.(3) reduces to 
2

21 0peω
ω

  . We note also that 0ω kv  is the Doppler –

shifted wave frequency that is experienced in the rest frame of the beam 
electrons. It is clear from (3) that we may regard the background and beam 
populations as distinct plasmas, both with their own plasma frequency 
proportional to their density. We define 

 
2 2(1 )po peω ξ ω            (4) 

 
2 2
pb peω ξω          (5) 

Then eqn. (3) can be written as 

 

2 2

2 2( , ) 1 0po pbω ω
ε k ω

ω ω
            (6) 
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 This dispersion relation is approxianately satisfied under two conditions. 

 Either 2 2
poω ω            (7) 

So that 
2

2
poω
ω

1, cancelling the first term in the expression for ),(  k  : 

 or 2 2
0( ) pbω kv ω             (8) 

and eqn. (6) is again approximately satisfied. Thus, both the background and the 
beam components of the plasma support families of electrostatic waves, given by 
eqn. (7) and (8) respectively. 

 We note that we may write eqn. (6) in the form 

 
2 2 2 2 2 2

0( )[( ) ]po pb pb poω ω ω k v ω ω ω            (9) 

Using the binominal theorem, this becomes 

 
2 2( )( )( )( )po po o pb o pb pb poω ω ω ω ω kv ω ω kv ω ω ω                     (10) 

This is an alternative way of displaying the approximate roots of eqn. (6). 

 In general, the beam population is small, so that 

 1ξ                        (11) 

Then the right hand side of eqn. (10) is small compared to 4
poω ,  This restricts 

the magnitude of the left-hand ride, so that at least one among the four factors 
must also be small.  

Either  pbω ω                      (12) 

Corresponding to eqn. (7); or 

  o peω kv ω                      (13) 

corresponding to eqn. (8). 

11.4 Growth Rate of Beam- Plasma Instability 

 Now let us examine what happens when the two families of waves (described by 
eqns. (12) and (13)) overlap in frequency. 

 The condition for frequency overlap can be expressed in terms of the critical 
wave number ck , defined by 

11.4 Growth Rate of Beam- Plasma Instability 
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po
c

o

ω
k

v
                     (14) 

 When k  ck ,  eqn (13)  gives po pbω ω ω   for the beam –supported waves. 

But 2 2
pb poω ξω               and 1ξ    thus, pbω  is negligibly small in comparison 

to poω , hence when k = ck , poω ω , which is the characteristics frequency of 
background- supported waves. 

Thus,   k  ck ,                    (15) 

 is the condition for frequency resonances to be possible between waves form the 
two families. 

 We now seek solutions of eqn. (9) which have the form 

 poω ω η   , poη ω                     (16) 

For the case ckk  , substitution of eqns (16) and (14) into eqn. (9) yields: 

 
2 2 2 2 2 2( ){( ) }po o pb pb poω ω ω kv ω ω ω     

or   2 2 2 2( ){ } ( )po po po o pb pb poω ω ω ω ω η kv ω ω ω       

or 2 2
)(2 ){( ( )}po po o pb po o pb pb pbη ω ω η kv ω ω η kv ω ω ω        

or  2 2(2 ){( )( )}po pb pb pb poη ω η ω η ω ω ω    

where we have used 0po oω kv   

finally we obtain 

  
2

3 2

2
pb po

pb

ω ω
η ω η                   (17) 

If we assume pbη ω                  (18) 

 Which we shall check subsequently for consistency, we may neglect 2
pbω   

compared to 3  in eqn (17) leaving 
2 3

3

2 2
pb po peω ω ξω

η                   (19)  

 Now unity has three complex cube roots 2 41,exp ,exp
3 3
iπ iπ    

    
    

, and eqn 

(19) has three corresponding roots. These are 



223 
 

 

1
3

2o pe
ξη ω   

 
                 (20) 

 
1 0

1 3
2 2

iη η
 

   
 

                 (21) 

 
2 0

1 3
2 2

iη η
 

   
 

                 (22) 

 As we know that the amplitude of a perturbation with wave vector k


 in a 

homogeneous unbounded medium has the asymptotic from (as t  ) ( )iω k te


, 

where  ( )ω k


 is the frequency of waves propagating  in the medium . ( )ω k


are 

the roots of the equation ( , ) 0ε ω k 


. 

The frequency ( )ω k


are in general complex. If the imaginary part in 0ω  , the 
perturbation is damped in the course of the time. If, however in 0ω  , in some 
range of  k


, such perturbations grow: the medium is unstable an Imω   is then 

called the ‘instability growth rate’. 

 Now combining eqns (20) to (22) with (16), the first root has a real frequency. 
The effect of the linear frequency for this root is to introduce a small frequency 
shift 0  with respect to the background plasma frequency poω . 

The second and third roots include an imaginary term, which we write as iγ  
where 

 

1
3

0 4
3

3 3
2 2

peγ η ξ ω
 

  
 

                (23) 

 Following the earlier discussion, the root 2poω ω η   grows exponentially at 
the rate γ . 

It may be noted that at resonance the waves supported by the background and 
beam plasmas are indistinguishable, because their wave number  ck  and 
frequency 2poω η  are identical. 

 We have shown that this collective beam-plasma electrostatic oscillation can 
grow exponentially. 
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 Let us briefly confirm the consistency of our results, eqns (20) to (22) . First, 
using eqn (11) it is clear that poη ω as required at eqn (16) . Second, using 
(11) and (5), we are indeed consisted with (18). 

 The phenomenon that we have identified is known as the “two-stream 
instability”, the two streams being the beam  ( )z ov v  and the background 
plasma ( )zv o . 

It is a mechanism by which the beam and background components of the plasma 
may interact, mediated by resonance between the collective oscillations that they 
support. 

 The instability rests on linear frequency resonance which occurs when 

or   ckk   or po

o

ω
k

v
  or poω  = k ov . 

It results in the growth of the average electrostatic field energy that is associated 
with the resonant oscillation. 

There is only one possible source for this energy: the free kinetic associated with 
the directed motion of the beam electrons. 

11.5 Illustrative Examples 

Example 1. Show that the oscillation frequency of the background plasma ω  as 
seen by the beam electrons is given by  

' .ω ω k V 
 

, where V


 is the velocity of the beam electrons? 

Solution:  The law of transformation for the frequency is easily found by 
transforming the phase factor of the wave. The phase factor of the wave is  

 . .k r ωt
            (i) 

Now the position vector r  in the beam frame is given by  

  r r Vt  
           (ii) 

Substituting (ii) into (i), we obtain phase as seen by beam: 

.( )Phase k r Vt ωt  
   

 . ( . )k r ω k V t  
    

11.5 Illustrative Examples 
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 . ' 'k r ω t 
   

 Thus ' .ω ω k V 
 

 

11.6  Introduction to Parametric Instabilities 
1. As an example, consider a simple system of a child’s swing, whose period 

depends on the length of the swing from its support, and the parametric 
instability occurs when the child lengthens or shortens the effective length 
twice each period. 

2. This modulation at twice the natural frequency leads to growth of the 
fundamental oscillation, through what it called “pumping”. 

3. Quite generally, parametric excitations require a minimal set of common 
characteristics. 

11.7 Common Characteristics of Parametric Instabilities 

Parametric excitations satisfy the following characteristics in general. 

(A) Matching condition:The modulation and the natural oscillation should satisfy 
a phase matching condition, such as ωT nλ  .................2,1n where ω  is the 
natural frequency and T is the period of the modulation. The example above has 
n=l. 

(B) Threshold: Instability or amplification occurs only when the amplitude of the 
modulation exceeds a critical value. 

(C) Frequency Locking: The frequencies of the amplified oscillations are 
determined by the modulation frequency rather than the natural frequency. For the 

examples listed above for n=l, amplification is at frequency π
T

 (the natural 

frequency), but for n=2, amplification occurs at  2π
T

 (the natural frequency again) 

and at zero frequency. 

 The matching and frequency locking conditions follow form the intrinsic 
nonlinearity of the multiple frequency system, and can be viewed either as 
coming from.  

11.6  Introduction to Parametric Instabilities 

11.7 Common Characteristics of Parametric Instabilities 
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Conservation of energy and momentum or as coming from resonance conditions 
such that 

  o i s

o i s

ω ω ω
k k k

 

 
 

where the subscripts o, i ,s stand for pump, idler and signal, respectively. 

 The instability occurs when the pump exceeds a certain threshold and the idler 
and signal waves grow. 

 From the nonlinear nature of the coupling, it is apparent that energy can be 
drawn from the pump wave and diverted to the idler and signal waves, or 
daughter waves. 

This process can become so efficient that as a pump wave propagates, it loses 
energy to the daughter waves. Until it is depleted to the extent, it falls below 
threshold. 

 Among the various effects which limit this efficiency of coupling are: finite 
wavelength effects, where the phase matching conditions cannot be satisfied 
everywhere. 

In the following, we examine a few basic models that illustrate the fundamental 
phenomena. 

11.8 Modulated Harmonic Oscillator Model 

We consider first a damped oscillator described by  
2

2 2
2 2 (Ω ) 0o o

d x dxγ γ x
dtdt

                       (24) 

 which has the simple solution 

   0exp( Ω )x A i t γ t    if   and 0γ  are constants and represent the 
frequency and damping rate of the oscillator.  

 If, however, we take the frequency to be modulated at frequency oω ,  such that  

 
2 2Ω Ω (1 2 cos )o oε ω t                           (25) 

where 0  is the natural frequency and oω  and ε   the pump  frequency  and 

11.8 Modulated Harmonic Oscillator Model 
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amplitude of the modulation, respectively then the transformation ( ) ( )oγ tx t e y t    
brings  (24) into the form 

 

2
2

02 Ω (1 2 cos ) 0o
d y ε ω t y
dt

                    (26) 

This equation is known as the “Mathieu equation”.  

 All of the characteristics of the parametric instability are contained in the 
properties of Mathieu functions, but since these are neither trivial nor commonly 
known, it is more instructive to examine the properties of Eq (26) by a 

perturbational analysis assuming that the damping decrement 0

0Ω
γ  and 

modulational amplitude ε  are both small.  

Taking the Fourier transform of (24) leads to  

 
2
0 0 0( ) ( ) Ω [ ( ) ( )D ω x ω ε x ω ω x ω ω                         (27) 

where  2 2 2
0 0 0( ) 2 ΩD ω ω iωγ γ      

 We examine two special cases: 

Case I: 0 02Ωω   

If we choose 0 0Ωω  , then first term on the right of (27) represents the response at 

03Ω , so is far form resonant. The second term on the right gives a response at 
frequency 0 0Ω ,ω ω  so this term is nearly resonant. Keeping only the resonant 
term, we need 0( )x ω ω  which we obtain form (27) to be  

 
2

0 0 0( ) ( ) Ω ( )D ω ω x ω ω ε x ω                        (28)  

Then the dispersion relation becomes 

 2 4
0( ) ( ) ΩD ω D ω ω ε                                     (29)  

Making simple resonant approximations for the ( )D ω ,  

 0 0 0 0( ) ( Ω )( Ω )D ω ω i γ ω i γ       

 

0 0 0

0 0 0 0 0

( ) 2Ω ( Ω )
( ) 2Ω .( Ω )

D ω ω iγ
D ω ω ω ω iγ

  

   




 

 The dispersion relation may be written 
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2

0 0 0 0 0
1( Ω )( Ω Δ ) Ω 0
4

ω iγ ω iγ ε                       (30) 

where 0 0Δ 2Ωω   is the frequency mismatch. 

Then using the definition 

            Ω ,ω δ iγ    where    is the real frequency shift and γ  is the growth 
rate, separating the real and imaginary parts of (30) results in  

 
2 2

0 0
1( Δ) ( ) Ω 0
4

δ δ γ γ ε                         (31) 

 0(2 Δ)( ) 0,δ γ γ                                          (32) 

So there are two types of solutions form(32) :  

(i) Damped solution: 0γ γ   ,this describes damped oscillations with 
frequencies given by  

  2 2 2
0

1 (Δ Δ Ω )
2

δ ε    

which requires 2 2 2
0Δ Ωε  or that the frequency mismatch be sufficiently large or 

the modulation amplitude be sufficiently small. 

(ii) Locked solution:  
2


 , this describes frequency locked oscillations 

since Re  0
0Re

2
ωω δ ω   , so that the frequency is independent of the natural 

frequency. Then from (31), this root gives  

 
2 2 2

0 0
1 Ω Δ
2

γ γ ε                       (33) 

which is complementary to the other case in the sense that this case requires  

 
2 2 2

0Δ Ω ,ε  

The more weakly damped root of Eq. (33) becomes unstable when 

  2 2
0

2
0

Δ 42
Ω
γε 

                      (34) 

 So this is the parametric instability and (34) gives the threshold as a function of 
the mismatch. 

The maximum growth rate occurs when 0 , where the minimum threshold 
and maximum growth rate are given by 
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0

min
0

2
Ω
γε                         (35) 

 
min 0

02Ω
εγ γ                      (36) 

We note that in the limit as 00  , there is no threshold, so an infinitesimal 
excitation can drive the instability .  

Case II: 0 0Ωω   

For this case, we expect the coupling near 0ω  ,which is the difference frequency. 
The coupling from the symmetric forms of Eq. (28),  

 
2

0 0 0( ) ( ) Ω ( )D ω ω x ω ω ε x ω    

leads to the dispersion relation  

 

2 2
0

0 0

Ω 1 11
( ) ( ) ( )

ε
D ω D ω ω D ω ω

 
    

                (37) 

Using the approximation 0 0( ) 2Ω ( )D ω ω ω δ iγ   , 

where the frequency mismatch is given in this case by 0 0Δ Ωω  , and 
approximating ( )D ω by D(0), Eq. (37) simplifies to  

 

2 2
0Ω 1 11

2 Δ Δo o

ε
ω iγ ω iγ
 

      
                (38) 

Separating this into real and imaginary parts, with  rω ω iγ   

 
2 2 2 2

0 0Δ ( ) Ω Δrω γ γ ε                       (39) 

 0( ) 0rω γ γ                    (40) 

Thus, comparing these several results, we find that each case has a damped 
solution and a locked solution, and there is a threshold for the instability. In case I, 
the threshold is lower and the growth rate is higher than the corresponding case II. 

11.9 Stimulated Brillouin Scattering (SBS) and Stimulated 
Raman Scattering (SRS)   

 We have seen that two large waves can drive other waves at the beat frequency 
and wave number. If the beat wave is an eigenmode of the system, it will be 
driven to large amplitude. 

11.9 Stimulated Brillouin Scattering (SBS) and Stimulated 
Raman Scattering (SRS)   
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 In this case it is not necessary that both driving waves be large to obtain 
coupling. 

 The matching conditions (say 0 1 2 0 1 2, )ω ω ω k k k    require that the three 
waves, represented a vectors in  ,ω k  space, satisfy the rules of vector addition. 

 The requirement that the three waves be eigenmodes implies that the end points 
of these vectors be situated on dispersion curves. 

 
Fig.1(A) Parallelogram constructions showing the ω  and k matching 
conditions for electron decay instability. 

(B) Parametric decay instability of an electromagnetic wave into a plasma wave 
and ion sound wave. 

(C)Decay of an electromagnetic wave into an ion-acoustic wave and a back 
scattered electromagnetic wave(stimulated Brillouin back scattering). 

(D)Two Plasmon decay instability. 
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 An example for collinear waves in an unmagnetized plasma is shown is Fig.1. 

Here the pump wave is an electromagnetic wave, which decays into an ion 
acoustic wave and an other backward propagating electromagnetic wave. 

This process is called “stimulated Brillouin backscatter”.  

 A similar constructive can be made for an electromagnetic wave decaying into 
an electron plasma wave and a backward propagating electromagnetic wave, 
called “ Stimulated Raman backscatter”.  

From the constructions it is easy to see that an electromagnetic wave can not 
decay into two other electromagnetic waves, nor can an electron wave decay into 
two other electron waves. 

 An ion wave, however, if it is on the linear portion of the dispersion curve 

piω
k

c
 

 
 

 may decay into two ion waves. 

11.10 Physical Interpretation of The Backscatter Instabilities  

 The backscatter instabilities have a simple physical interpretation. Consider a 
light with wavelength 0λ  impinging on plasma with an electron density varying 

with a wavelength 0
1
2

λ λ .  

 This density perturbation forms a one-dimensional lattice, resulting in a partial 
reflection of the electromagnetic wave.  

 The reflected wave and incoming wave produce a standing wave component, 
whose intensity maxima are located at the minima of the electron density wave. 

 We know that the electrons will be expelled by the poderomotive force from 
regions where the field intensity is large. This enhances the density perturbation, 
leading to more backscattering and larger standing wave amplitudes and so on. 

 The effect is most pronounced when density perturbation corresponds to an 
eigenmode, viz, an electron or ion wave.  

 This is in agreement with Fig. 1, where the ion wave has roughly half the 
wavelength (twice the wave number) of the pump wave and the frequency of the 

11.10 Physical Interpretation of the Backscatter Instabilities  
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 backscattered wave  1 0 2sω ω c k   due to the Doppler shift.An electron plasma 
wave can backscatter on ion waves in the same manner. 

11.11 Self Learning Exercise 

Q.1. Derive dispersion relation of a beam-plasma system. Derive an expression 
for the growth rate of the beam- plasma instability. 

Q.2. Show that the beam-plasma dispersion relation can be written in the form.  
2 2( )poω ω  2 2 2 2

0[( ) ]pb pb poω kv ω ω ω    

Show that the roots of the dispersion relation are  

peω ω   and  0 peω k v ω   

Q.3. What are parametric instabilities? 

11.12 Summary 
Beam-plasma instability is the main mechanism of energy transfer of the beam into 
electromagnetic modes of the plasma. Almost all sources of electromagnetic 
radiations employ this mechanism. For the generation of high frequency radiations. 
We use an electron beam whose electrons are moving at relativistic speed. 
Important sources of electromagnetic waves e.g.  Free electron lasers, gyrations, 
backward wave oscillators etc. use relativistic electron beams propagating through 
plasma filled cavities. 

In this chapter we have seen that two large waves can derive other waves at the 
beat frequency and wavenumber .If the beat wave (i.e. a wave at different 
frequency) is an eigenmode of the system ,it will be driven to large amplitude. 

The matching conditions (say 0 0,i S L Sω ω ω k k k     ),require that the three 
waves ,when represented as vectors in ( , )ω k space ,satisfy the rules of vector 
addition. The requirement that the three waves be eigenmodes implies that the end 
points of these vectors be situated on dispersion curves.An example for collinear 
waves in an unmagnetized plasma is shown in figure1.Here the pump wave is an 
electromagnetic wave,which decays into an ion acoustic wave and an other 
backward propagating electromagnetic wave.This process is called “stimulated 
Brillouin backscatter”.A similar construction can be made for an electromagnetic 
wave decaying into an electron plasma wave and a backward propagating 

11.11 Self Learning Exercise 

11.12 Summary 
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electromagnetic wave,called “stimulated Raman Backscatter”.It may be noted that 
in the presence of damping , a finite threshold pump intensity is required for the 
onset of these instabilities. 

When combination frequency is an eigenmode(or close to it),excitation is strong.If 
a strong pump wave interacts with two small eigenmodes such that ( , )ω k
matching conditions are satisfied ,exponential growth of the small modes can 
result.We have explained these fundamental phenomena on the basis of modulated 
harmonic oscillator model.    

11.13  Glossary 

Parametric instabilities : they are not unique to plasmas, as they relate to any 
oscillatory system where one of the parameters (hence the name “parametric”) is 
modulated at an appropriate frequency.  

F.E.L. : Free electron lasers 

Stimulated Brillouin Scattering (SBS) : A pump wave ,which is an 
electromagnetic wave decays into an ion acoustic wave and an other backward 
propagating electromagnetic wave. 

Stimulated Raman Scattering (SRS) : An electromagnetic wave decays into an 
electron plasma wave and a backward propagating electromagnetic wave. 

Theshold of instability : Instability occurs only when the amplitude of the pump 
wave exceeds a critical value. 

11.14 Answers to Self Learning Exercise 

Ans.3: Parametric instabilities are related to any oscillatory system where one of 
the parameters of the system is modulated at an appropriate frequency. In such a 
case the system becomes unstable. 

11.15 Exercise 

Q.1.  What are the common  characteristics of parametric instabilities? 

Q.2 Explain stimulated Brillouin scattering. 

Q.3  Explain stimulated Raman scattering  

11.13  Glossary 

11.14 Answers to Self Learning Exercise 

11.15 Exercise 
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Q.4  What is the source of energy for the growth of the beam –plasma instability. 
Give physical explanation.  

11.16 Answers to Exercise 

Ans.1: Common  characteristics are:  

(i) Matching condition: the modulation and the natural oscillation should 
satisfy a phase matching condition: ,ωT nλ   1,2,...........n  ,  

(ii) Threshold: The instability or amplification occurs only when the 
amplitude of modulation exceeds a critical value. 

(iii) Frequency Locking : 

   0 2

0

s

i s

ω ω ω

k k k

 

 
    

Ans.2: Decay of a photon into an scattered photon and an ion acoustic wave.  

 Photon   photon + ion acoustic wave (phonon)  

Ans.3: Decay of a photon into an scattered photon + plasmon :  

 Photon   photon + plasmon.  

References and Suggested Readings 

1. Fundamentals of Plasma Physics by J.A. Bettencourt 

2. Theory of Plasma waves by T.H. Stix  
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UNIT-12 
Introduction to Laser Operation 

Structure of the Unit 

12.0  Objectives 

12.1  Introduction 

12.2  Introduction to Laser Operation 

12.3  Lasers in Laser Light 

12.4  Light in Cavities 

12.5  Light emission and absorption in Quantum theory 

12.6  Einstein Theory of Light - matter interaction 

12.7  Stimulated absorption and emission rates 

12.8  Illustrative examples 

12.9  Self learning exercise 

12.10  Summary 

12.11 Glossary 

12.12  Answers to Self learning exercise 

12.13  Exercise 

  References and Suggested Readings 

12.0 Objectives 

We know that the natural radioactive delay process is inherent in all excited states 
of all materials and is referred to as spontaneous emission. However, such 
emission is not always the dominant decay process. Excitation or de-excitation can 
also occur by the photons (light Particles) that have specific energies. The 
phenomenon of light producing excitation is called absorption. This process is also 
known as stimulated absorption since it requires electromagnetic energy to 
stimulate the electron and thereby produce the excitation. The inverse of this 
process was never considered by anyone until Einstein suggested the concept of 

UNIT-12 
Introduction to Laser Operation 

12.0 Objectives 
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stimulated emission in 1917. All the lasers are based on the amplification of light 
by means of stimulated radiation of atoms or molecules. In this unit, we will 
present an introduction to laser operation, lasers and laser light. We will also 
discuss light emission and absorption in quantum theory, Einstein Theory of light-
matter interaction, stimulated absorption and emission rates. 

12.1 Introduction 
The word LASER is stands for Light Amplification by Stimulated Emission of 
Radiation. Each laser contains material capable of amplifying radiation. This 
material is called the Gain or active medium because radiation gains energy 
passing through it. The physical principle responsible for this amplification is 
called stimulated emission and it was discovered by Albert Einstein in 1917. 
Lasers produce intense beams of light which are monochromatic, coherent and 
highly collimated. In 1952, Charles Townes, J. Gordon and H. Zeiger in U.S.A. 
and Nikolai Basov and Aleksander Prokhorov in USSR, independently suggested 
the principle of generating and amplifying microwave oscillation based on the 
concept of stimulated radiation. It leads to the invention of MASER (Microwave 
Amplification by Stimulated Emission of Radiation) in 1954. MASERS used a two 
level system. In 1955, Basov and Prokhonov suggested use of three level system. 
In 1958 C. Townes and A.L. Schawlow, and N. Basov and A. Prokhorov 
independently expressed their ideas about extending the maser concept to optical 
frequencies. They developed the concept of an optical amplifier surrounded by an 
optical mirror resonant cavity to allow for growth of the light beam. The 1964 
Nobel Prize in Physics was awarded to N. Basov and A. Prokhorov with C. 
Townes for their pioneering work the field of lasers and masers. A.L. Shawlow 
was also awarded a share of the 1981 Noble Prize in Physics for his research work 
on lasers. 

The first successful laser device was built by T.H. Maiman of Hughes Research 
laboratories in 1960 using a synthetic ruby rod. The helical flash lamp surrounded 
a rod shaped ruby crystal and the optical cavity was formed by coating the 
flattened ends of the ruby rod with a highly reflecting material. An intense red 
beam was observed to emerge from the end of the rod when the flash lamp was 
fired. In 1961, the first gas laser was developed by A. Javan, W. Bennett and D. 
Harriott of Bell Laboratories using a mixture o helium and neon gases. At the same 

12.1 Introduction 
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laboratories, I.F. Johnson and K. Nassau demonstrated the first neodymium laser, 
which has become one of the most reliable lasers available. In 1962 R. Hall 
demonstrated first semiconductor laser at the General Electric Research 
Laboratories. 

12.2 Introduction to Laser Operation 
There are three basic elements of laser operation. 

(i)  Lasing or amplifying material amplifies a light signal   directed through 
(Crystal, gas, Semi conductor, dye etc.  

(ii)  Pump source to add energy to the lasing material. 

(iii)  Optical or resonator cavity consisting of reflectors to act as the feedback 
mechanism for light amplification. 

 

Fig. 12.1 Schematic diagram of a basic laser 

The basic theory of laser action is as follows: The lasing medium is pumped 
continuous through pumping source to create a population inversion i.e. large 
number of atoms in the higher energy level than the lower energy level. As the 
excited atoms start to decay, they emit photons spontaneously in all directions. 
Some of the photons travel along the axis of the lasing medium, but most of the 
photons are directed out the sides. The photons traveling along the axis have an 
opportunity to simulate atoms when they encounter to them and emit photons. 
These simulated photons travel in phase at the same wavelength and in the same 

12.2 Introduction to Laser Operation 
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direction as incident photon. If the direction is parallel to the optical axis, the 
emitted photons travel back and forth in the optical cavity through the lasing 
material between the totally reflecting mirror and the partially reflecting mirror. 
The light energy is amplified in this manner until sufficient energy is built up for a 
burst of laser light to be transmitted through the partially reflecting mirror. The 
important requirement to the laser action is that there should be more atoms in the 
excited state than in the lower (ground) state. This phenomenon is known as 
population inversion. To occur population inversion, a lasing medium must have a 
longer lived state known as meta stable state. The average lifetime before 
spontaneous emission occurs for a meta-stable state is in the order of a 10-3 second, 
which is quite lengthy period of time on the atomic timescale (10-9 sec) as shown in 
fig. 12.2. 

 

Fig. 12.2 Three level laser energy diagram 

In this case, excited atoms can produce significant amounts of stimulated emission. 
The most common approach for producing a population inversion in a lasing 
medium is to add energy to the system in order to excite atoms into higher energy 
levels. The ratio of the number of atoms at two energy levels (1 and 2) under 
thermodynamic equilibrium is given by the following equation: 

 N2/ N1 = exp[− (ܧଶ  −  [ܶ݇ / (ଵܧ 

where N1 and N2 are the number of atoms in level 1 and 2, E1 and E2 are the 
energies of the two levels, k is Boltzmann constant and T is the temperature in 
Kelvin.  
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Resonator Cavity and Shaping of a Beam (Operation of Laser) 

In a laser, the active system is enclosed in an optical cavity, usually made in the 
form of a rod or a tube. The ends of the laser material are closed by accurately 
parallel reflectors, one of which is perfect reflector and the other has 90% 
reflectivity (or 10% transmission). The cavity makes the energy density large, 
when stimulated emission dominates over the spontaneous emission. The multiple 
reflection also makes the stimulated emission more coherent. This process is called 
shaping of the beam. Fig 12.3 schematically shows how the beam shapes with 
time. The hollow circles here represent the unexcited atoms and black dots 
represent the excited atoms. The left end mirror represents the full reflector and the 
right end mirror the partial reflector. The description stage wise is as follows 

(1) Almost all atoms are initially in the unexcited state. An outside agent (such as 
an electrical discharge for example) excites atoms inside the laser as shown in 
figure 12.3 (a).  

(2) When pumping radiation falls on the active material, the atoms start reaching 
the excited state. (Population inversion not yet reached, black dots less than 
hollow circles)as shown in figure 12.3 (b).  

(3) Pumping radiation continues. The majority of certain atoms in the active 
material area excited to the metastable states in which the excited atoms 
remain for an appreciable time. Population inversion is reached at this stage. 
The dominant radiations initially are the spontaneous ones. Two cases of 
coherent (stimulated) emission are shown (multiple-line arrows) one along the 
axis, another at slant angle as shown in figure 12.3 (c).  

(4) One excited atom falls to a lower state and emits a photon. This photon wave 
travels past the other excited atoms and triggers them to fall to the lower state. 
In doing so, they emit photons with waves in step with the original photon 
wave. The beam travels back and forth again and again due to multiple 
reflection on the end faces. On each trip, it causes more excited atoms to emit 
waves in phase with it. Spontaneous component of emissions is still not 
negligible as shown in figure 12.3 (d). 

(5) Only those waves that travel accurately along the axis of the tube will remain 
in the tube after many trips up and down it. Therefore, the beam is almost 
entirely composed of waves going in exactly the same direction. Its rays are 
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accurately parallel. Thus radiations that are mutually coherent go on becoming 
dominant at successive stages. Spontaneous component of emission is now 
very weak as shown in figure 12.3 (e). 

 

Fig 12.3 Shaping of laser beam 
(6)  Almost the entire emission becomes coherent. The wave-shapes shown at the 

exit on the right show phase agreement of waves. This is called the laser beam 
as shown in figure 12.3 (f). 

12.3 Lasers and Laser Light 
Lasers are devices that produce intense beams of light which are monochromatic, 
coherent and highly collimated. Laser light is available in all colors from red to 
violet and also for outside these conventional limits of the optical spectrum. Laser 
light produced by dye lasers has the property of emitting light of any wavelength 
chosen within a range of wavelength, i.e. laser light is also tunable. Laser light has 
very low divergence. It can travel over great distances or can be focused to a very 
small spot with a brightness which exceeds that of the sun. The wavelength and the 
area A of the laser output aperture determine the order of magnitude of the beam’s 

solid angle ∆Ω and vertex angle ∆ߠ of divergence through the following relation 

∆Ω ≈
ଶ

ܣ
 ≈  ଶ(ߠ∆)

12.3 Lasers and Laser Light 
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Fig. 12.4 Sketch at a laser cavity showing angular beam divergence ∆ࣂat the 
output 

It is well known that lasers produce very pure colours. The laser light would be 
fully monochromatic if a laser produces exactly one wavelength. This is not 
possible in principle as well as for practical reasons. Since lasers have definite 
bandwidth around 100 Hz. The bandwidth of sun is very broad~10ଵସݖܪ. 
Therefore, the relative spectral purity of a laser beam is quite impressive. Hence 
the wavelength achieved by the laser light is much closer approach to 
monochromatic light when compared to other sources of light. The existence of a 

finite bandwidth(∆) means that the different frequencies present in a laser beam 
can eventually get out of phase with each other. The time required for two 

oscillations differing in frequency by(∆) to get out of phase by a full cycle is 
ଵ
∆

. 

After this amount of time, the different frequency components in the beam can 

begin to interfere destructively and the beam loses coherence. Thus ∆ = ଵ
∆

  is 

called the beam’s coherence time. The extremely small values possible for ∆ in 
laser light make the coherence times of laser light extraordinarily long. The 
ܮ∆ =   distance is called the beam’s coherence length. Only portions of the∆ܥ
same beam that are separated by less than ∆ܮ are capable of interfering 
constructively with each other. 

12.4 Light in Cavities 
The optical cavity or resonators is an important component of laser. Here we will 
consider only a simplify theory of resonators. This simplification allows us to 
introduce the concept of cavity modes and to infer certain features of cavity modes 
that remain valid in more general circumstances. If we consider three dimensional 

12.4 Light in Cavities 
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reflecting cavity, then the number of available modes grows extremely rapidly as a 
function of frequency. For example, a cubical three dimensionally reflecting cavity 
of 1cm on a side has about 400 million resonant frequencies within the useful gain 
band of a He-Ne laser. This will eliminate any possibility of achieving the 
important narrow-band (nearly monochromatic character) of laser light since lasing 
action occurs across the whole band.  The solution of this multimode dilemma was 
suggested independently in 1958 by Townes and Schawlow, Dicke and Prokhorov. 
They recognized that a one dimensional rather than a three dimensional cavity was 
desirable and this could be achieved with open resonator consisting of two parallel 
mirrors as shown in fig. 12.5. 

 

Fig. 12.5 One dimensional cavity 

If we consider one dimensional (X-axis) cavity of length L, then the cavity electric 
field component can be written as  

E=E0 Sinkx 

The electric field should vanish at both ends of the cavity. It will do so if we fit 
exactly an integer number of half wavelength into cavity along its axis. This means 
that along the x axis is determined by the relation  

= ܮ   ݊ (ఒ
ଶ
)  

where n = 1,2,3....... is a positive known as the mode order and L is the cavity 
length. Hence, 

ߣ            =
ܮ2
݊

 =
ܿ


           ∴  =
cn
2L

 

The electric field should vanish as both ends of the cavity. It will do so if we fit 
exactly an integer number of half wavelength into cavity along its axis. 

Therefore, frequency separation between any two adjacent modes n and n+1 is 
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given by ∆ = ୬ାଵ − ୬ = େ(୬ାଵ)
ଶଶ

− ୡ୬
ଶ୐

 = ୡ
ଶ୐

. This gives the separation 

in frequency of adjacent resonator modes for 10 cm long cavity the separation in 

frequency of adjacent modes is ∆= ଷ×ଵ଴ఴ

ଶ×ଶ଴×ଵ଴షమ
=  If laser has. ݖܪܯ 750

1500 MHz gain curve, then the number of possible modes that can lase is 2 as 
shown in fig. 12.6. 

 

Fig. 12.6 Mode frequencies separated by 1500 MHz corresponding to a 20 cm 
long one dimensional cavity 

12.5 Light Emission and Absorption in Quantum Theory 

In 1900, Max Planck proposed that light consists of discrete bundles of energy. 

The amount of energy of bundle is hυ. These bundles of radiant energy are called 
Quanta. In 1905, Einstein refined the quantum hypothesis of Planck and provided 
theoretical justification for the features of photoelectric effect. He gave the name 
photon to the quanta of light energy. Einstein assumed the difference in energy of 

the electron before and after its photo ejection to be equal to the energy h of the 
photon absorbed in the process. This picture of light absorption was extended in 
two ways by Bohr in his model (1) an electron can go from its ground state (lowest 
energy orbit) to a higher (excited) state or (2) it can decay from a higher state of 
lover state, but it cannot remain between these states. These allowed energy states 
are called Quantum jump and the amount of energy involved in a quantum jump 
depends on the quantum system. Atoms usually absorb and emit photons in or near 
the optical region of the spectrum when they have quantum jumps whose energies 

12.5 Light Emission and Absorption in Quantum Theory 
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are typically in the range of 1-6 eV. Quantum jumps by inner shell atomic 
electrons usually require much more energy and are associated with X-Ray 
photons. On the other hands, quantum jumps among the so-called Rydberg energy 
level, those outer level electrons lying far from the ground level and near to the 
ionization limit involve only a small amount of energy and are associated with far-
infrared or even microwave photons. Molecules have vibrational and rotational 
degrees of freedom whose quantum jumps are much smaller than the quantum 
jumps in free atoms. Many crystals are transparent in the optical region which 
means that they do not absorb or emit optical photons because they do not have 
quantum energy levels that permit jumps in the optical range. However, colored 
crystals like ruby have impurities that do absorb and emit optical photons. These 
impurities are frequently atomic ions and they have both discrete energy levels and 
broad bands of levels that allow optical quantum jumps. Ruby crystal is a good 
absorber of green photons and so appears red. 

12.6 Einstein Theory of Light-Matter Interactions  
Einstein predicted the phenomenon of stimulated emission in 1917. In a Laser, 
each atom of gain medium jump to a higher orbit when the electron receives an 
amount of energy equal to the difference of energy of the ground state and one of 
the excited state (higher orbit) as a result of pumping process and converts it into 
light  energy (photon) when it jumps to a lower orbit. At the same time, each atom 
must deal with the photons that have been emitted earlier and reflected back by the 
mirrors. The photons already channeled along the cavity axis are responsible for 
stimulated emission of subsequent photons. 

Therefore, three quantum mechanical processes may occur when radiation is 
incident on a medium. 

(a) Stimulated absorption - The atom or molecule absorbs a photon of energy 

H=E2-E1 and goes from a Lower energy level 1 to the higher level 2. 

 

12.6 Einstein Theory of Light-Matter Interactions  
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(b) Spontaneous emission - The atom or molecule jumps down from higher 

level 2 to the lower level 1 and emit a photon of energy h = E2-E1. The process 
occurs spontaneously without any external influence. 

 
(c) Stimulated Emission - When the incoming photon energy matches the 
energy level difference, the photon can stimulate a transition to a lower energy 
level. This energy difference is released as another photon. Hence the process is 
induced or stimulated by the incident photon. The emitted photon has the same 
characteristics (frequency, polarization and phase) as the incoming one. 

 
All these processes occur in the gain medium of a laser. Lasers are often classified 
according to the nature of the pumping process, which is the source of energy for 
the output laser beam. In electric discharge lasers, the pumping occurs as a result 
of collisions of electrons in a gaseous discharge with the atoms or molecules of the 
gain medium. In an optically pumped laser, the pumping photons are supplied by a 
lamp or another laser. In a diode laser, an electric current at the junction of two 
different semiconductors produces electrons in excited energy states from which 
they can jump into lower energy states and emit photons. 

12.7 Stimulated Absorptions and Emission Rates 

An atom residing in the lower energy level E1 may absorb the incident photon and 
jump to the excited state E2. This transition is known as stimulated absorption or 
simply as absorption. This process may be represented as 

12.7 Stimulated Absorptions and Emission Rates 
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A+h       A* 

where A denotes an atom in the lower state and A* an excited atom. 

The number of atoms per unit volume that makes upward transitions from the 
lower level to the upper level per second is called the rate of absorption. It is 
represented by 

          ܴ௔௕௦ = −dN1/dt 

where - ve sign stands for the rate of decrease of population at the lower level. 

The rate of absorption will be proportional to the population in the lower level (N1) 
and the number of photons per unit volume (energy density) in the incident beam 
i.e. 

1
12 1( )  

dN B ρ N
dt

 

where B12 is a constant of proportionality and ߩ()  is the energy density of 
incident light. 

The process of emission of photons by an excited atom through a forced transition 
occurring under the influence of an external photon is called stimulated emission. 
The process may be represented as ܣ∗ + ℎ → ܣ + 2ℎ   In this case, the 
number of atoms per unit volume that makes downward transitions from the higher 
level to the lower level per second is called the rate of stimulated emission. It is 
represented by 

2 st 
dNR
dt

 

The rate is negative since the population is decreasing in higher level. The rate of 
stimulated emission is proportion to the population of the higher level N2 and the 
energy density of incident light i.e. 

           
݀ ଶܰ

ݐ݀
= (ݒ)ߩ ଶଵܤ− ଶܰ 

where B21 is a constant of proportionality 

12.8 Illustrative examples 

Example 12.1 Determine the coherence time and coherence length for white light 

(λ =  4000Ȧ to 7000 Ȧ). 

12.8 Illustrative Examples 
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Sol. Frequency band width ∆ = violet−red 

    = ௖
ఒ௩
− ௖

ఒ௥
 

    = ଷ×ଵ଴ఴ

ସ×ଵ଴షళ
− ଷ×ଵ଴ఴ

଻×ଵ଴షళ
 

    = 7.5 × 10ସ – 4.28 × 10ଵସ 

= ݒ∆        3.22 × 10ଵସ Hz 

 Coherence time       = ଵ
∆௩

 

=  
1

3.22 × 10ଵସ
=

10
3.22

× 10ିଵହ 

      = 3.10 × 10ିଵହ Sec          Ans. 

Coherence length ܮ =  ܥ
   = 3 × 10଼ × 3.10 × 10ିଵହ 

= ܮ          9.30 × 10ି଻݉     Ans. 

Example 12.2 Calculate the order of magnitude of the vertex angle of divergence 

when wavelength (λ) is 500 nm and the area (A) of the laser output aperture is 5X5 
mm2. 

Sol.  (∆ߠ)ଶ = ఒమ

஺
 

  where d = 500 mm =5 × 10ି଻݉ ܽ݊݀ ܣ = 25 × 10ି଺݉ 

ଶ(ߠ∆)  =  ଶହ×ଵ଴షభర

ଶହ×ଵ଴షల
   

     =  10ି଼ 

= ߠ∆                     10ିସ =
10ିଷ

10
 ݀ܽݎ

ߠ∆         =  ଵ
ଵ଴

 mrad.                      Ans. 

Example 12.3 A pulsed laser is constructed with a ruby crystal as the active 

element. The ruby rod contains typically a total of 3 × 10ଵଽcrାଷ ions. If the laser 

emits light at 6943 Ȧ wavelength find (a) the energy of one emitted photon (in e) 
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and (b) the total energy available per laser pulse(assuming total  population 
inversion). 

Sol.   (a) The photon energy in eV is given by 

= ܧ            
12400
(Ȧ)ߣ

݁V 

             =  ଵଶସ଴଴
଺ଽସଷ

   

ܧ            = 1.78 ݁VAns. 

       (b) Energy per pulse = Energy of one photon  Total number of photons 

 Energy of one photon  Total number of atoms in the   
excited state 

                  = 1.75 × 1.6 × 10−19 × 3 × 1019 

௧ܧ                                     =  .Ans                                                                  ݈݁ݑ݋ܬ 8.54

Example 12.4 Find the intensity of laser beam of power 30 mw and diameter 2 
mm.  Assume that intensity is uniform throughout the beam. 

Sol. Given ܲ = 30 ܹ݉ = 30 × 10ିଷܹ 

and ݀ = 2 ݉݉ 

 ∴ = ݎ 1݉݉ = 1 × 10ିଷ݉ 

           Intensity is given by ܫ =  ௉
஺

 

   =  ଷ଴×ଵ଴షయ

ଷ.ଵସ×(ଵ×ଵ଴షయ)మ
 

   =  ଷ଴
ଷ.ଵସ

× 10ଷ 

   = 9.55 × 10ଷW/݉ଶ 

= ܫ           9.55 KW/݉ଶ     Ans. 

12.9 Self Learning Exercise 

Q.1  LASER stands for................................................. 

Q. 2  What are the characteristics of a laser beam. 

12.9 Self Learning Exercise 
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Q.3  What is pumping. 

Q.4  The photons emitted by stimulated emission are................. . 

Q. 5  Why a Laser requires optical cavity. 

Q. 6  What is the order of ratio of the life times of meta-stable state and the 
excited state. 

Q. 7  The higher energy state having a longer mean life is 
called............................... 

Q. 8  The active or gain medium in a laser can be............................... 

Q. 9  The life time of the atom in excited state is the order of............................. 

Q. 10  Why the number of laser photons changes in the cavity. 

Q.11  Write the formula for the mode frequency spacing. 

12.10 Summary 

This chapter undertakes a superficial introduction to lasers. It presents an overview 
of the properties of laser light with the goal of understanding what a laser is, in the 
simplest terms. The chapter introduces the theory of light in cavities, cavity modes 
and describes an elementary theory of laser action. Every stage of laser operation 
from the injection of energy into the amplifying medium to the extraction of light 
from the cavity is an opportunity for energy loss and energy gain. This chapter 
provides a brief overview of these properties. This chapter also discusses Einstein 
theory of light-matter interaction. In the end of unit, some examples on above 
topics are given. 

12.11 Glossary 

Coherence :  If the phase difference between the waves from two sources reaching 
any point in space does not change with time, then these sources of light are known 
as ‘coherent sources of light’. This property of the waves is known as coherence. 
Laser :  It stands for Light Amplification by Stimulated Emission of Radiation. It 
produces intense beam of light which is monochromatic, coherent and highly 
directional. 
Metastable states :  There are certain energy levels in an atom from which 
transitions to the ground state are forbidden by the selections rules. Such states re 

12.10 Summary 

12.11 Glossary 
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called ‘Metastable states. The mean life time of metastable state  3~ 10 sec  is 

much longer than the mean life time of excited states  8~ 10 sec . 

Population inversion : If the number of atoms in excited states is greater than the 
number of atoms in ground state, then it is called population inversion.  
Pumping : The methods used to achieve population inversion are called pumping. 
Active Medium : A medium in which population inversion is to be achieved is 
called an active medium. 
Quanta : In 1900, Max Planck proposed that light consists of discrete bundles of 

energy. The amount of energy of bundle is hν. These bundles of radiant energy are 
called Quanta. 
Stimulated Emission : The process of emission of photons by an excited atom 
through a forced transition occurring under the influence of an external photon is 
called stimulated emission. 

12.12 Answers of Self Learning Exercise 

Ans.1: Light Amplification by stimulated Emission of Radiation 

Ans.2:  There are four main characteristics of a laser beam. 

(i) Coherence    

(ii) Monochromaticity 

(iii) Directionality and   

(iv) Higher Intensity. 

Ans.3:   It is mechanism which can be used to create population inversion in active 
medium. 

Ans.4:  Coherent 

Ans.5:   To provide the optical feedback. 

Ans.6:  106 

Ans.7:  Meta stable state with 10-3 sec. 

Ans.8:  Solids, gases and liquids. 

Ans.9:  10-9 sec. 

Ans.10:  There are two main reasons for the same.  

12.12 Answers of Self Learning Exercise 
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(i) Laser photons are continually being added because of stimulated 
emission. 

(ii) Laser photons are continually being lost because of mirror 
transmission, scattering or absorption at the mirrors. 

Ans.11:  ∆ = ஼
ଶ௅

 

12.13 Exercise 
Section A : Very Short Answer Type Questions 

Q.1  Define the terms “active medium for laser”. 

Q.2  What is the order of life time of meta-stable state? 

Q.3  What are the basic components of a laser? 

Q.4   What is the principle of laser action? 

Q.5 Why the selection of laser medium is important in the lasers. 

Section B : Short Answer Type Questions 

Q.6   Define the phenomenon of stimulated emission and absorption. 

Q.7 What is population inversion how can write the relative population between 
two energy states with energy values E1 and E2.  

{Hint: - N2 = N1 e –(E2-E1)/KT} 

Q.8 A laser beam of 10 mw has a wavelength 650 mm. Calculate the number of 
photons emitted per second. [3.27X1016] 

Q.9 Define coherence time and coherence length. 

Q.10 How can get the pumping process in electric discharge lasers.    

Section C : Long Answer Type Questions 

Q.11 Describe the key elements of laser operation. 

Q.12 Explain the role of optical resonator and meta-stable state in laser action. 

Q.13 Explain the Einstein theory of light-matter interactions. 

Q.14 What are the essential requirements of a laser? Explain how these 
requirements are achieved. 

Q.15 Give the reasons for the following basic properties of a laser  

12.13 Exercise 



252 
 

(i) Directionality   

(ii) Monochromaticity 

(iii) Coherency and   

(iv) High intensity. 
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UNIT-13 
Laser Oscillation: Population  

Rate Equations, Gain and Threshold Gain 

Structure of the Unit 

13.0  Objectives 

13.1  Introduction 

13.2  Population rate equations 

13.3 Einstein A and B coefficients 

13.4 Relations among A and B coefficients 

13.5 Laser oscillation: Gain and Threshold Gain 

13.6 Illustrative examples 

13.7 Self learning exercise 

13.8  Summary 

13.9  Glossary 

13.10  Answer to self-learning exercise 

13.11  Exercise 

 References and Suggested Readings 

13.0 Objectives 
In the previous chapter, we learnt that light energy cannot take arbitrary values but 

must be multiples of Photon energy ℎߥ. It was similarly established that the 
electrons in an atom cannot have arbitrary amounts of energy but they take only 
discrete energies. This is a consequence of the Bohr’s postulate of permitted orbits 
the passing of an electron from one energy level to another energy level within the 
atom occurs in a jump which is called a quantum transition. The electron 
transitions may be induced by a variety of ways. Interaction with light photons is 
one of the possible way of supplying energy to orbital electrons which causes 
upward electron transitions and sends the atom into its excited state. 

UNIT-13 
Laser Oscillation: Population  

Rate Equations, Gain and Threshold Gain 

13.0 Objectives 
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In this chapter, we will discuss about the population rate equation Einstein 
coefficients, relation among these coefficients and laser oscillation with gain and 
threshold gain. 

13.1 Introduction 
Einstein predicated in 1917 that the photons in the light field induce or stimulate 
the excited atoms to fall to lover energy state and give up their excess energy in the 
form of photons. He called this type of emission as stimulated emission. When 
photons are incident on a medium, three quantum mechanical processes occur in 
the medium namely (I)stimulated absorption (ii) spontaneous emission, and 
(iii)stimulated emission. 

In the process of stimulated emission, photons are multiplied and their 
characteristics are related to each other. 

Hence, amplification of light take place. This process is made to dominate in the 
laser light source. A medium amplifies light only when the following three 
conditions are fulfilled 

1.  The population at excited level should be greater than that at the lower 
energy level. 

2.  The ratio 21

21

B
A

should be large and  

3.  A very high density of radiation should be present in the medium. 

13.2 Population Rate Equations 
The population of energy levels of the lasing medium change under the action of 
radiation. These changes can be described conveniently by means of population 
rate equations. The upper and lower level population densities 2N  and 1N change in 
time due to absorption, spontaneous emission, stimulated emission and collisions. 
These collisions are inelastic collisions. The effects of the these processes on the 
rate equations for 2N  and 1N  are given by the following equations  

 2
2 2 2 1 21 2

( ) Γ     dN N I N N A N
dt h

   
 


        (13.1a) 

and  1
1 1 2 1 21 2

( ) Γ     dN N I N N A N
dt h

  
 


        (13.1b) 

13.1 Introduction 

13.2 Population Rate Equations 
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The first term on the right of these equations represents populations. 

Changing due to inelastic collision and rest terms represent population changing 
due to three processes(absorption, spontaneous and simulated emission). 

Since stimulated emission rate 

 =  
2

21  
8

A S number



of incident photons/ area-time          (13.2) 

Therefore quality  
2

21 ( )
8

A S


  


has the dimension of an area. It is the cross 

section for stimulated emission(and absorption). The relation (13.2) identifies the 
cross section as an effective area associated with the atomic transition, such that 
every photon intercepted by this area would induce an atom to undergo stimulated 
emission or absorption. There is no actual geometric object associated with this 
area. The cross-section is nothing more than a conventional measure of the 
absorption strength of a transition. It depends not only on the transition wavelength 
and spontaneous emission rate, but also on the line shape function ( )S  .We must 
also account for the pumping process that produces the positive population 
inversion  2 1N N .  

For this, we add a term K to the population equations and call it the pumping rate 
into the upper level. Therefore, we have the following set of coupled equations for 
the light and the atoms in the laser cavity. 

1
1 1 21 2 νΓ N  A N  g(ν)dN

dt
               (13.3a) 

  2
1 21 2 ν(Γ A )N  g νdN K

dt
              (13.3b) 

 ν
ν 1 2 ν

C g ν (1 r r )
2L

d Cl
dt L

   


           (13.3c) 

Here we have used νI h  (where ν is the Photon flux)and gain coefficient

    2
2 1

1

 ( )gg N N
g

    (where 2g & 1g  are degeneracies of levels 2 and 1, 

respectively).Here, we have assumed that degeneracies of levels are equal i.e. 

21g g . The term 1 2(1 )
2
C r r
L

  represents the rate at which intensity is lost to the 
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 imperfect reflectivity of the mirrors of a laser resonator. 

Eqs. (13.3)  rewrite in terms to absolute numbers rather than densities of atoms and 
photons. The total number of atoms in level 2 is 2 2 , gn N V  where gV is the 
volume of the gain medium is. Similarly the total number of atoms in the lower 
level of the laser transition is 1 1 .gn N V The electromagnetic energy density.  vU
in the cavity is related to intensity vI  and photon flux v  by 

 v
v v

I hvu
C C

   
 

              (13.4) 

Butu  is related to photon number by 

 v
v

hu vq
V

               (13.5) 

Where V is the cavity volume and ݍ௩  is the number of photons in the laser cavity. 
These relations assume a uniform distribution of intensity within the cavity and a 

refractive index ݊ ≈ 1. Thus from eqs. (13.4)and (13.5), we get 

v
v

cq
V

               (13.6) 

Hence Eqs. (13.3) may be written as 

 1
1 1 21 2 Γ  ( ) v

dn Cln A n g v q
dt L

             (13.7a) 

   2
2 21 2 Γ v

dn ClA n g v q p
dt L

             (13.7b) 

  1 2  (1 )
2

v
v v

dq Cl Cg v q rr q
dt L L

                        (13.7c) 

where we have used the valuations 

 gV l
V L

 and KVg = p               (13.8) 

Eqs. (13.7) imply that  

   2 2 21 2 1 2 Γ n (1 v v )q
2v v

d Cn q A p
dt L

               (13.9) 

The interpretation of this equation is as follows:- 
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The left hand side is the rate of change of the total number of excitation i.e., the 
number of atoms in the upper level 2 of the lasing transition plus the number of 
photons in the cavity. The first term on the right is the rate of decrease in the 
number of these excitations as a result of inelastic collisions and spontaneous 
emission from level 2. The second term is the rate of change associated with 
pumping of level 2.The last term is the rate at which excitation in the form of 
photons is lost from the cavity. In this equation, contributions from stimulated 
emissions or absorption do not appear because they have canceled out. Since an 

increase in q௩ is always accompanied by an equal decrease in 2n . 
13.3 Einstein A and B Coefficients 
Let us consider two energy levels in a particular atom. The lower level is 
designated as 1 and upper level as 2 as shown in Fig. 13.1. If the atom is initially in 
the state 1, it can be raised to state2 by absorbing a photon of light whose 
frequency is 

2 1


E Ev
h

             (13.10) 

This process of absorption is called induced or stimulated absorption. 

 
Fig 13.1 Transitions between two energy levels in an atom can occur by 
stimulated absorption, spontaneous emission and stimulated emission 

The possibility that the atom will actually undergo this transition is proportional to 

1E

2E

1

2

Spontaneous
emission

Stimulated
emission

Stimulated
absorption

hv

12B
21B

21A

hv

hv

hv

hv

13.3 Einstein A and B Coefficients 
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the rate at which the photons of frequency ݒfall on it and therefore to the spectral 
energy density ( )u v . The transition probability also depends on the properties of 
state 1 and 2, but we can include this dependence in some constant of 
proportionality 12B  and it is known as the Einstein’s Coefficient for Stimulated 

absorption. Hence if we shine light of frequency υ and energy density (ݒ)ݑ on 
theatom when it is in the lower state 1, and the probability for it to goto higher 
state 2 is 

1 2 12 ( )P B u v    (Stimulated Absorption)                (13.11) 

If the atom is initially in the upper state 2 two processes can occur: 

1. The atom has a small life time (mean lifetime  10-8sec) in the excited state so 
that it can spontaneously drop to the state 1 by emitting a photon of frequency 

 This is called spontaneous emission as mentioned in fig. 13.1. The probability.ݒ
of such a process will, of course, depend on the two energy level but it will be 
independent of the presence of any photon incident on the atom. Let us express 
this probability by the coefficient 21A  and it is known as the Einstein’s 
Coefficient for spontaneous emission. 

2 1 21P A       (Spontaneous emission)                 (13.12) 

2. While discussing the interaction of radiation with matter, Einstein proposed that 
if a photon of right frequency is present, it is not essential that it may always be 
absorbed, it can also interact with an atom in excited state and induce that atom 
to emit a new photon as shown in fig. 13.1. Such a process of emission is known 
as induced or simulated emission. The probability of induced emission will thus 
be proportional to the spectral energy density  ( )u v and we can write 

2 1 21 ( )P  B u v     (Stimulated emission)      (13.13) 

Where 21B  is the Einstein’s Coefficient for stimulated emission. The total 
probability for an atom in state 2 to fall to the lower state 1 is therefore 

   2 1 21 21P A  B u v      (Emission)        (13.14) 

13.4 Relation among A and B coefficients 
Now we consider an assembly of N1 atoms in the state 1 and N2 atoms in the state 

2, all in thermal equilibrium at the temperature T with light of frequency ݒ and 

13.4 Relation among A and B Coefficients 
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energy density (ݒ)ݑ. The number of atoms in state 1 that absorb a photon and go 
the state 2 per second, i.e., the rate of transition is given by 

  12 1 1 2 1 12R N P N B u              (13.15) 

The number of atoms that go from 2 to 1 per second will have two components 

(a) Due to spontaneous emission 

 21 2 2 1 2 21spentaneousR N P N A    

(b) Due to stimulated emission 

   21 2 2 1 2 21stimulated
R N P N B u    

Thus, the total rate of transition from state 2 to state 1 will be 

 21 2 2 1 2 21 21R N P N A B u                (13.16) 

In thermal equilibrium, the number of atoms going from state 1 to state 2 per 
second must be equal to the number going from state 2 to 1. This is in accordance 
with statistical principle of detailed balancing. Hence from Eqs. (13.15) and 
(13.16). 

 1 1 2 2 2 1N P N P   

     1 12 2 21 21N B u N A B u                 (13.17) 

Dividing both sides of this equation by 2 21N B , we get 

    1 12 21

2 21 21

N B Au u
N B B

  
     

  
 

Solving for  u  , we get 

   21 21

1 12

2 21

A / Bu
N B 1
N B

 
  

  
  

           (13.18) 

Now, in thermal equilibrium, by Maxwell-Boltzmann distribution law 

 B1
1 0

E /k tN N e , the ratio between the populations of states 1 and 2 is given by  

 
 2 1

1

2

/
E E

hv kTkTN e e
N



             (13.19) 
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With this result, we have 

   21 21

12

21

/

/

1h kT

A Bu
B e
B


 

 
 


            (13.20) 

Eq. (13.20) is a formula for the energy density of photons of frequency   in 
equilibrium at the temperature T with atoms whose possible energies are 1E and 

2E . This formula can be compared with the Planck’s radiation law, according to 
which 

  
3 3

/
8 /

1hv kT
h cu d d

e



               (13.21) 

The comparison yields 

 12 21B B              (13.22) 

and 
3

21
3

21

A 8 h
B c

 
              (13.23) 

Equations (13.22) and (13.23) are known as the Einstein’s relations. Equation 
(13.23) gives the relationship between the A and B coefficients. The first relation 
show that the probability of induced or stimulated emission per incident photon is 
equal to the probability of absorption per incident photon. i.e., in the presence of an 
incident photon absorption and induced emission are equally probable. 

The second relation shows that the ratio of coefficients of spontaneous emission to 
stimulated emission is proportional to the third power of frequency of the radiation. 
That is why it is difficult to achieve laser action in higher frequency ranges such as 
X-rays. 

The net absorption rate 12R  is usually much more than the net stimulated emission 
rate  21 stimulatedR  because of large difference in the population in the two states. Let 

us now compare the probability of spontaneous emission to that of stimulated 
emission. 

 
 
   

 

 
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


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  

   
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    / 1h kTe          (13.23 a) 

(i) If ,h kT  the spontaneous emission will be much more probable than 
induced (stimulated) emission (which can even be considered negligible). This 
is ordinarily true for electronic transition in atoms and molecules and in 
radiative transitions in nuclei. 

(ii) If ,hv kT  then 

 / 1h kT he
kT

  
 

So that 
 
 

21 spontaneuos

21 stimulated

P h
P kT


  

In such a case the stimulated emission is no more negligible and in even 
predominates over the spontaneous emission. Such a situation can be achieved 
for radiation in microwave region. 

Principle of Laser 

The population of atoms in different energy states is governed by Maxwell-
Boltzmann distribution law. Further, according to the process of detailed balancing 
the total emission and absorption rates, in thermal equilibrium, remain equal. In the 
presence of incident radiation the equilibrium is distributed and the ratio of 
emission rates is given by- 

  
 

21 21 221

12 12 1

Rate of emission
Rate of absorption

A B u NR
R B u N


 




 

    
 

21 2

21 1

1 A N
B u N

 
  
 

       (13.23 b) 

For Laser Actions: 

(a) The emission rate must be greater than the absorption rate and 
(b) The probability of spontaneous emission (which produces incoherent 

radiations) must much smaller than the probability of stimulated emission. 

Thus, with the second condition i.e.,  21 21 ,A B u   we have 

 2

1

Rate of emission
Rate of absorption

N
N

  
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Under normal conditions the number 2N  in the upper energy state 2 is always 
smaller than the number 1N  in the lower energy state. If, by some means, 2N  is 
made greater than 1N , the emission rate will become larger than the absorption 
rate and consequently amplification will take place. 

To achieve the basic requirement, i.e.,  21 21 ,A B u   the following possibilities 
can be used. 

(i) ,h kT such a situation exists at microwave frequencies. Ammonia 
maser is based on this principle. MASER stands for Microwave Amplification by 
Stimulated Emission of Radiation. 
(ii) Metastable States: There are certain energy levels in an atom from which 
transitions to the ground state are forbidden by the selection rules. Such states are 
called ‘Metastable States’. The atom can, however, go from the metastable state to 
the ground state either by giving up the appropriate amount of energy to another 
atom during a collision process or it may absorb radiation and go to a higher 
energy state (to which transitions are not forbidden) and from there it may return to 
normal state a metastable state  3~ 10 sec  to be much longer than the mean life 

time of other excited states  8~ 10 sec . Thus, if certain atoms are excited to the 

metastable state, the probability of spontaneous emission will be quite negligible. 
However, induced transitions, being a sort of forced oscillations can take place. 

There are several mechanisms which can be used to invert the normal population 
density of the energy levels. This process of population inversion is called 
pumping. The commonly used methods are 

(i) Optical pumping 
(ii) Electron impact 
(iii) Inelastic atom-atom collision 
(iv) Chemical pumping 
(v) Gas dynamic pumping 

13.5 Laser Oscillation: Gain and Threshold Gain 
Consider the propagation of narrowband radiation in a medium of atoms that have 
a transition frequency equal or nearly equal to the frequency of radiation as shown 
in fig 13.2. 

13.5 Laser Oscillation: Gain and Threshold Gain 
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21h

 
Fig 13.2 Propagation of radiation of frequency   in a medium of atoms with a 
transition frequency 21  

If there are more atoms in the upper level of the transition than the lower, 
stimulated emission will be more than absorption and the radiation can be 
amplified as it propagates. In such a case, we can say that there is a gain at the 
resonant frequency. 

The growth rate of the number of laser photons in the cavity is described by the 
gain coefficient. 

The gain coefficient is given by  

     2
2 1

1

gg N N
g

 
     

 
 

    
2

21 2
2 1

1

A gg N N S
8 g

 
      

          (13.24) 

The sign of population invention 2
2 1

1

gN N
g

 
 

 
 should be positive for amplifying 

media. Here, 2g and 1g  are the degeneracies for upper and lower level, 
respectively. This expression for the gain coefficient may be generalized to include 
the refractive index of the host medium i.e., 

    
2

21 2
2 12

1

A gg N N S
8 n g

 
      

          (13.25) 

where n is the refractive index at the frequency v. This modification is signified in 
solid state lasers, where n may differ appreciably from unity. 

Here    = Wavelength of radiation  

Incident
radition
of frequency

2

121 
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21A  = Einstein’s coefficient for spontaneous on the 2 1 transition  

2 1N , N Number of atoms per unit volume in levels 2 and 1  

and   S  Line-shape function 

Threshold Gain 

In a laser, there is not only an increase in the number of cavity photons due to 
stimulated emission but also a decrease in the number of photons due to scattering, 
absorption of radiation at the mirrors and output coupling of radiation in the form 
of the usable laser beam. To sustain laser oscillation, the stimulated amplification 
must be sufficient to overcome these losses. This sets a lower limit on the gain 
coefficient  g  , below which laser oscillation does not occur. The condition that 
the gain coefficient is greater than or equal to this lower limit is called the 
threshold condition for laser oscillation. 

In general, the scattering and absorption of radiation within the gain medium of 
active atoms is quite small compared to the loss occurring at the mirrors of the 
laser. Therefore, we will consider in detail only the losses associated with the 
mirrors. 

 
Fig. 13.3 Two oppositely propagating beams in a laser resonator 

This figure shows an empty space bounded on two sides by highly reflecting 
mirrors, i.e., laser resonator. A beam of intensity I incident upon one of these 

 1 1 1, ,r t s  2 2 2, ,r t s

0z z L
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mirrors is transformed into a reflected beam of intensity rI, where r is the reflection 
coefficient of the mirror. A beam of intensity tI (where t is the transmission 
coefficient) passes through the mirror. Therefore, from the law of conservation of 
energy 

 r + t =1             (13.26) 

Actually, some of the incident beam may be absorbed by the mirror or scattered 
away from the mirror surface because it is not perfectly smooth. Thus, the law of 
conservation of energy takes the form 

 r + t + s = 1             (13.27) 

where r = the fraction of power reflected 

 t  = the fraction of power transmitted 

and s = the fraction of power that is absorbed or scattered by the mirror. 

Each of the mirrors of laser resonator is characterized by a set of coefficients r, t 
and s. For the mirror at z = L, we have 

    2I L r I L 
            (13.28 a) 

And for the mirror at z = 0 

    1I 0 r I 0 
           (13.28 b) 

Equations (13.28) are boundary conditions that must be satisfied by the solution of 
the equations describing the propagation of intensity inside the laser cavity. 

Now we will write the equations describing the propagation of intensity inside the 
laser cavity. Here we are interested only in steady state or continuous wave laser 
oscillations. The intra-cavity intensity is very small near the threshold of laser 
oscillations. Therefore, the equation for light propagating in the positive z-
direction may be written as 

  dI g I
dz



           (13.29 a) 

where g may be taken to be constant. Similarly, the equation for light propagating 
in the negative z direction in the same gain medium is  

  dI g I
dz



            (13.29 b) 
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The solutions of these equations are 

      g zI z I 0 e 
 

          (13.30 a) 

and       I z I L exp g L z 
              (13.30 b) 

Thus, from eq. (13.30a) the right going beam intensity at the right mirror (Z=L) is 

      g LI L I 0 e 
 

             (13.31) 

and the left going beam intensity at the left mirror(z=0) is 

      g LI 0 I L e 
 

             (13.32) 

In steady state, the left going beam has a fraction 1r  of itself reflected at the left 
mirror (z=0) and this fraction is just the right x going beam at z=0. A similar 
consideration applies at the right mirror. Thus, we get by using eqs. (13.28), 
(13.31) and (13.32) 

            1 1 1 2
g L g LI 0 r I 0 r e I L r e r I L   

   
           

            L 2 Lg L
1 2 1 2

g gI 0 r r e I 0 e r r e I 0  
  

                (13.33) 

Similar manipulations applied to any of the quantities  I L
 ,  I L

  and  I 0


lead to the same result. Therefore If  I 0
  is not zero, then at steady state we must 

have   

 2gL
1 2r r e 1              (13.34) 

The steady state value of gain that allows equation (13.34) to be satisfied is also 
the value at which laser action begins. There is net attenuation of I  in the cavity 
for smaller values. Thus the value of g that satisfies equation (13.34) is marked tg  
and called the threshold gain, i.e., 

  2
1 2ln 0tg Lr r e   

   1 2ln 2 0tr r g L   

   1 2
1 ln

2tg r r
L

              (13.35) 

For high reflectivities 1 2r r 1 , then we define 1 2 1r r x   or 1 21x r r   and use 

the first term in the Taylor series expansion  ln 1 x x    when x 1 . Thus 
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equations (13.35) becomes  

  1 2
1 1

2tg r r
L

              (13.36) 

The derivation of equation (13.34) assumes that the gain medium fills the entire 
distance L between the mirrors. This assumption is valid for many solid state lasers 
in which the ends of the gain medium are polished and coated with reflecting 
material. However, in gas and liquid lasers, the gain medium is usually contained 
in a cell of length l < L as shown in fig. 13.4. 

 
Fig 13.4 Gain medium between the mirrors 

In this case, the threshold conditions is 

    1 2 1 2
1 1ln 1
2 2tg r r r r
l l

    for high reflectivities       (13.37) 

This threshold condition assumes that losses occur only at the mirrors. These losses 
are associated with transmission through mirrors, absorption by the mirrors and 
scattering off the mirrors into non-lasing modes. Absorption and scattering are 
minimized as much as possible by using mirrors of high optical quality.  

If we count other losses arise due to scattering and absorption within gain medium, 
then the threshold condition is modified as follows:- 

  1 2
1 ln
2tg r r a
l

              (13.38) 

0z z L

Gain Cell
l

L
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where a is the effective loss per unit length associated with these additional losses. 
Such losses are usually small, but they are not difficult to account for in the 
threshold condition. 

13.6 Illustrative Examples 

Example 13.1  The wavelength of emission is 6000 0A  and the lifetime  sp  is 
610  sec. Determine the coefficient for the stimulated emission. 

Sol. The coefficient for stimulated emission is given by  
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21 38
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C AB
h 
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  

 
3
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.
 
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J S

       Ans. 

Example 13.2 The length of a laser tube is 15 cm and the gain factor of the laser 
material is 0.0005 /cm. If one of the cavity mirrors reflects 100%light that is 
incident on it, what is the required reflectance of the other cavity mirror? 

Sol. The gain factor 

 
1 2

1 1ln
2

tg
L r r

 

 2 2 2 15 0.0005
1

1 1
1   
tLgr

er e
 

 2 0.958r  

It means the second mirror should have a reflectance of 98.5%.  Ans. 

Example 13.3 A typical He-Ne laser of wavelength 632.8 nm have a gain cell of 
length l=50 cm and mirrors with reflectivities and . Calculate 1 0.998r 2 0.980r

13.6 Illustrative Examples 
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the value of threshold gain. 

Sol. Given 632.8 nm , 50l cm , 1 0.998r  and 2 0.980r  

The threshold gain is 

  1 2
1 ln
2

 tg r r
l

 

   1 ln 0.998 0.980
2 50

 


 

 4 12.2 10  gt cm        Ans. 

13.7 Self-Learning Exercise 
Q.1 The upper and lower level population densities change in time due to 

……………. 

Q.2 Write the Einstein’s coefficient for stimulated absorption. 

Q.3 If the atom is initially in the upper state, how many processes can occur. 

Q.4 The probability of stimulated emission is proportional to………………. 

Q.5 How can distinguish amplifying media from absorbing media? 

Q.6 What is the threshold gain for high reflectivities? 

Q.7 Why not laser action can achieve in higher frequency ranges? 

Q.8 The intra-cavity field is spatially uniform when……………………. 

Q.9 How can minimized the absorption and scattering losses as much as 
possible. 

Q.10 What is relation between electromagnetic energy density  u  and photon 
flux   . 

13.8 Summary 

In this chapter, we have introduced some fundamental concepts such as gain and 
threshold. By giving the these concepts, the population rate equations for our 
understanding of lasers are discussed in detail. These equations generally include 
stimulated emission, absorption spontaneous emission and collisions. Einstein’s 
coefficients and relations among these coefficients have also been derived in this 
unit. In the end of unit, some examples on above topics are given. 

13.7 Self-Learning Exercise 

13.8 Summary 
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13.9 Glossary 

Non Radiative Decay : When the energy difference between two energy level 

 2 1E E  is delivered in some form of energy other than EM radiation (photon) 
i.e.,  it may go into the kinetic or internal energy of the surrounding atoms or 
molecules, then the phenomena is called non radiative decay. 

Population of the Level : The number of atoms or molecules per unit volume 
occupy a given energy level. 

Amplifier Material – When population inversion is positive, then the material 
behaves as an amplifier. 

Laser Amplifier: If the transition frequency falls in the optical region, the 
amplifier is called a laser amplifier. 

Laser Oscillation : Laser oscillation begins when the gain of the active material 
compensates the losses in the laser. 

Population Rate Equations : The populations of energy levels of the lasing 
medium change under the action of radiation. These changes can be described by 
population rate equations. 

Threshold Gain : It is a lower limit of gain, below which laser oscillations does 
not occur. 

Inelastic Collision : An inelastic collision is a collision in which kinetic energy is 
not conserved due to the action of internal friction. In collisions of macroscopic 
bodies, all kinetic energy is turned into vibrational energy of the atoms, causing a 
heating effect, and the bodies are deformed. 

Degeneracy : Two or more different states of a quantum mechanical system are 
said to be degenerate if they give the same value of energy upon measurement. 

Spectral Energy Density: It is the amount of energy (Photons) stored in a given 
system or region of space per unit volume. 

Laser (Optical) Cavity : It is an arrangement of mirrors that forms a standing 
wave cavity resonator for light waves. Optical cavities are a major component of 
lasers, surrounding the gain medium and providing feedback of the laser light. 

 

13.9 Glossary 
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13.10 Answers To Self-Learning Exercise 

Ans.1: Stimulated emission, absorption, spontaneous emission and collisions. 

Ans.2: 12B  

Ans.3: Two (i) Spontaneous emission and (ii) Stimulated emission. 

Ans.4: The spectral energy density  u  . 

Ans.5: From the sign of population inversion. 

Ans.6:  1 2
1 1
2

 tg r r
l

 

Ans.7: The ratio of coefficients of spontaneous emission of stimulated emission 
is proportional to the third power of frequency of the radiation. That’s 
why it is difficult to achieve laser action in higher frequency ranges. 

Ans.8:  1 21 r r  is small, i.e., mirrors are highly reflecting. 

Ans.9: Using mirrors of high optical quantity. 

Ans.10: 
hu
c 
   

13.11 Exercise 
Section A: Very Short Answer Type Questions 

Q.1 What do you mean by the population rate equations? 

Q.2 What is the probability of stimulated emission? 

Q.3 What will be threshold condition for gain in the case of distributed losses? 

Q.4 Write the formula of gain coefficients. 

Q.5 Write the rate at which intensity is lost due to the imperfect reflectivity of 
the mirrors. 

Section B: Short Answer Type Questions 

Q.6 Write  short note on the gain at the resonant frequency. 

Q.7 Define the Einstein’s coefficients and write relation among these 
coefficients. 

Q.8 What do you mean by the threshold condition for laser? 

13.10 Answers To Self-Learning Exercise 

13.11  Exercise 
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Q.9 Give the brief explanation about the relationship between the Einstein’s 
coefficients A and B. 

Q.10 Give the interpretation of following equation. 

      2 2 21 2 1 21
2

       
d cn q A n p r r q
dt L   

Section C: Long Answer Type Questions 

Q.11 Derive the relation between Einstein’s coefficients and discuss the result. 

Q.12 Derive the population rate equations for lasers. 

Q.13 What is the threshold condition of gain for laser oscillations and derive it’s 
formula. 
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UNIT-14 
Laser Oscillation: Three & Four Level 
Laser Schemes Spatial Hole Burning 

Structure of the Unit 

14.0 Objectives 

14.1 Introduction 

14.2 Feedback 

14.3 Threshold 

14.4 Rate equations for photons and populations 

14.5 Three level laser scheme 

14.6 Four level laser scheme 

14.7 Small signal gain and gain Saturation 

14.8 Spatial hole burning 

14.9 Illustrative examples 

14.10 Self learning exercise 

14.11 Summary 

14.12 Glossary 

14.13 Answer to self-learning exercise 

14.14 Exercises 

 References and Suggested Readings 

14.0 Objectives 

In the 13 unit, we introduced certain concepts related to laser oscillation, gain and 
population rate equations, and indicated their importance in our understanding of 
lasers. We have also derived the relations between Einsten’s Coefficients. These 
relations state that the probability of stimulated emission is equal to the probability 
of the absorption and the ratio of coefficients of spontaneous emission to 

UNIT-14 
Laser Oscillation: Three & Four Level 
Laser Schemes Spatial Hole Burning 

14.0 Objectives 
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stimulated emission is proportional to the third power of frequency of the incident 
radiation. These relations help to achieve the basic conditions for laser action. 

In this unit, we will briefly discuss the concept of feedback and threshold for a 
laser action. We will also obtain an expression for rate equations for photons and 
populations. This is followed by a discussion of three-level-laser scheme and four-
level-laser schemes using the rate equation approach. Finally, we will explain 
about the small signal gain and gain saturetion, and spatial hole buring. 

14.1 Introduction  
Laser is a physical system of atoms or molecules (lasing or active medium) 
between two mirrors. Some of these atoms are promoted to excited states due to 
pumping process. The excited atoms begin radiating spontaneously like an 
ordinary fluorescent lamp. A spontaneously emitted photon can induce an excited 
atom to emit another photon of the same frequency and direction as the first. The 
more such photons are produced by stimulated emission, because the stimulated 
emission rate is proportional to the flux of photons already in the stimulating field. 
The mirrors of laser keep photons from escaping completely, so that they can be 
redirected into the active laser medium to stimulate the emission of more photons. 
By making one of the mirror partially reflector (90% reflection or 10% 
transmission) bunch of photons are allowed to escape to constitute the output laser 
beam. The intensity of the output laser beam is determined by the rate of 
production of excited atoms, the reflectivities of the mirrors and certain properties 
of the active medium.  

14.2 Feedback 

Consider two arbitrary energy levels 1 and 2 of a given material with 1g -Fold and 

2g -Fold degenerate, respectively. Also let 1N  and 2N  be their respective 

population. The material behaves as an amplifier if 2 1
2

1

g NN
g

 . In this case we 

say that there exists a population inversion in the material. A material in which this 
population inversion is produced is referred to as an active medium. If the 
transition frequency falls in the optical region, the amplifier is called a laser 
amplifier. 

14.2 Feedback 

14.1 Introduction  
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To make an oscillator from an amplifier, it is necessary to introduce suitable 
positive feedback. In the case of a laser, feedback is often obtained by placing the 
active material between two highly reflecting mirrors. In this case, a plane EM 
wave (photon) traveling in a direction perpendicular to the mirrors bounced back 
and forth between the two mirrors, and is amplified on each passage through the 
active material. If one of the two mirrors is partially transparent, a useful output 
beam is obtained from that mirror. 

14.3 Threshold 
In order to generate radiation or photon, the amplifying medium is placed in an 
optical resonator, which consists of a pair of mirrors facing each other. Radiation, 
which bounced back and forth between the mirrors is amplified by the amplifying 
medium and also suffers losses due to the finite reflectivity of the mirrors, output 
coupling and other scattering and diffraction losses. If the oscillations have to be 
sustained in the laser cavity, then the losses must be exactly compensated by the 
gain. This condition is known as the threshold condition for laser oscillation. 

The gain at threshold value is given by  

 1 1 2
1 ln r r
2d

     

where    gain coefficient 

 1   Attenuation coefficient due to all loss mechanism other than the 
finite reflectivity. 

 d= Length of resonator cavity 

 1 2r & r   Reflectivities of the mirror of resonator cavity. 

14.4 Rate Equations For Photons and Populations 
The equations describing the propagation of the light inside the laser cavity for 
continuous wave laser oscillations in positive and negative z directions are as 
follows:- 

  dI g I
dz




             (14.1 a) 

14.3 Threshold 

14.4 Rate Equations For Photons and Populations 
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 reflectivity

and  dI g I
dz




                 (14.1 b) 

We must include the time derivative 
I
t



 in the propagation equation to describe 

time-dependent phenomena. Therefore equation (14.1) can be written as 

  rI 1 I g I
z c t

 




 
  

 
           (14.2 a) 

And  I 1 I g I
z c t

 
 



 
   
 

           (14.2 b) 

Addition of equations (14.2 a) and (14.2 b) gives 

    1I I I I g I I
z c t

     
     

              
         (14.3) 

Sine in many lasers, there is very small variation of  I I 
   with z. Therefore 

equation (14.3) may be written as 

  d I I cg I I
dt

   
                        (14.4) 

If the gain medium does not completely fill the resonator (i.e. l<L) as shown in 
figure 14.1, then  g 0   outside it.  

   

 
 

 

Gain  Medium

1r

z Lz 0

2r

l
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Fig. 14.1 A laser in which gain medium does not completely fill the resonator. 

In this case, equations (14.4) can be written as 

  d clI I g I I
dt L

   
                        (14.5) 

Since the number of photons inside the cavity is proportional due to the total 
intensity. Therefore equation (14.5) may write as 

  dq cl g q
dt L


                (14.6) 

Where q  is the number of cavity photon associated with the frequency  . 

Equation (14.6) describes the growth in time of the number of cavity photons as a 
result of the absorption and stimulated emission of photons by the gain medium. 

The factor 
 cg l
L


 is the growth rate. 

Now we consider the loss associated with the output coupling of laser radiation 
from the cavity. In this case, radiation reflected from the mirror z=L has an 
intensity that is 2r  times the incident intensity. After it is reflected from the mirror 

at z=0, it has an intensity 1 2r r  times its intensity before the round trip inside the 
resonator. In other words, a fraction  1 21 r r  of intensity is lost. Since the time it 

takes to make a round trip is 
2L
c

, the rate at which intensity is lost due to the 

imperfect reflectivity of the mirrors is  1 2c 1 r r / 2L . In terms of photons, this 
loss rate is 

  1 21
2output coupling

dq c rr q
dt L




     
 

           (14.7) 

Therefore, the total rate at which the number of cavity photons changes is 

 
gain output coupling

dq dq dq
dt dt dt

         
   

 

    1 21
2

cl cg q rr q
L L      
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   t
dq cl clg q g q
dt L L


                (14.8) 

where  g    gain coefficient =  
2

2
2 1

1

A gN N S
8 g

 
    

 

and tg = threshold gain  1 2
1 1
2

rr
l

   

Equation (14.8) gives the rate of change with time of the number of cavity photons. 
This equation may write in term of the total intensity inside the cavity. 

   t
dI cl clg I g I
dt L L 


               (14.9) 

If we assume equal upper and lower level degeneracies are equal, i.e., 1 2g g , 
then we may write equation (14.9) as 

      
2

2 1 2 21
8 2

dI cl A cN N S I r r I
dt L L


 


    


       (14.10) 

14.5 Three-Level Laser Scheme 

It is not possible to achieve steady state population inversion in two-level-laser 
scheme. The mechanism we use in two level laser, scheme to excite atoms to level 
2 can also de-excite them, i.e., if we try to pump atoms from level 1 (ground level) 
to level 2 (excited level) by irradiating the medium, the radiation will induce both 
upward transitions 12 (due to absorption) and downward transitions 21 (due 
to stimulated emission). This optical pumping process produces nearby equal 
number of atoms in level 2 as in level 1. Therefore, we cannot obtain a positive 
steady-state population inversion using only two atomic levels in the pumping 
process. Thus, in order to produce a steady state population inversion, one makes 
use of either a three-level-level or a four-level laser scheme. In this section, we 
shall discuss a three level laser scheme.  

We consider a three-level scheme consisting of energy levels 1 2E ,E  and 3E  all of 
which are assumed to be nondegenerate. Let 1 2N , N  and 3N  represent the 
population densities of the three levels as shown in Figure 14.2. 

14.5 Three-Level Laser Scheme 
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Fig 14.2 A three-level laser scheme 

In such a laser, pumping process acts between level 1 and level 3. Due to this 
pumping, atoms lift from level 1 to level 3, from which they decay rapidly to level 
2 through some non-radiative process. Thus, the key to the three-level inversion 
scheme is to have atoms in the pumping level 3 drop very rapidly to the upper laser 
level 2. This accomplishes two purposes: 

(i) The pumping from level 1 is directly from level 1 to the upper laser level 2. 
Because every atom finding itself in level 3 converts quickly to an atom in 
level 2 and 

(ii) The rapid depletion of level 3 does not give the pumping process much chance 
to act in reverse and repopulate the ground level 1. 

Now we will write the rate equations describing the rate of change of 1 2N , N  
and 3N . 

The rate of the population 1N  of atoms per cubic centimeter in level 1 due to 
pumping is 

 1
1

pumping

dN PN
dt

    
 

           (14.11) 

Since the pumping takes atoms from level 1  to level 3 and level 3 is assumed to 
decay very rapidly to level 2, we may also write the rate of change of population of 
level 2 due to pumping 

 2 3 1
1

pumping pumping pumping

dN dN dN PN
dt dt dt

             
     

       (14.12) 

 

1E 1N

2E 2N

3N3E

Rapid decay
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Now we assume that level 2 decays only into level 1 by spontaneous emission of 
via collisions and we will denote the rate by 21 . Then the population changes 
associated with the decay of level 2 is 

 2 1
21 2 21 2

decay decay

dN dNN , N
dt dt

         
   

        (14.13) 

Therefore total rates of changes of the population of levels 1 and 2 are 

  1
1 21 2 2 1

dN PN N N N
dt              (14.14 a) 

  2
1 21 2 2 1

dN PN N N N
dt            (14.14 b) 

The last terms in eq. (14.14) is due to stimulated emission. 

    1 2
d N N 0
dt

   

   1 2 TN N N constant             (14.15) 

Here we are assuming that each active atom of the gain medium must be either in 
level 1 or level 2 since level 3 decays practically instantaneously into level 2. 
Therefore the conserved quantity TN  is simply the total number of active atoms 
per unit volume. 

Using equation (14.14), we can determine the threshold pumping rate necessary to 
achieve a population inversion, together with the threshold power expended in the 
process. 

In the steady state, 1N  and 2N  are not changing in time, i.e., 1 2dN dN 0
dt dt

   

and denoted steady state values by 1N  and 2N . The number of cavity photon 

   near threshold is small enough that stimulated emission may be omitted from 

eq. (14.14). Therefore for steady state eq. (14.14) becomes 

 2 1
21

PN N


             (14.16) 

Since (14.15) must hold for all possible values of 1N  and 2N  including the steady 

state values 1N  and 2N , we also have 
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 1 2 TN N N              (14.17) 

From eqs. (14.16) and (14.17), we get 

 21
1 T

21

N N
P



 

         (14.18 a) 

and 2 T
21

PN N
P


 

         (14.18 b) 

Therefore steady state threshold region population inversion is  

 21
2 1 T

21

PN N N
P


 
 

           (14.19) 

To have a positive steady-state population inversion, i.e., a positive gain, we must 
have 
 21P                (14.20) 

Which simply says that the pumping rate into the upper laser level must exceed the 
decay rate. The greater the pumping rate with respect to the decay rate, the greater 
the population inversion and gain. 

The pumping of an atom from level 1 to level 3 requires an energy 

 3 1 31E E h               (14.21) 

Therefore, the power per unit volume delivered to the active atoms in the pumping 
process is 

 31 1
Power h PN

V
              (14.22) 

Put the value of 1N  from eq. (14.18 a) to (14.22), we get  

 31 21
T

21

Power hv P N
V P




 
           (14.23) 

where V is the volume of the active medium. 

For the minimum pumping rate necessary to reach positive gain, eq. (14.20) may 
write 
 min 21P                (14.24) 

Substituting minP  for P  in equation (14.23), we obtain 
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 21 T 31
min

Power 1 N h
V 2

     
 

          (14.25) 

It is minimum power per unit volume that must be exceeded to produce a positive 
gain. With this amount of pumping power delivered to the active medium, half the 
active atoms are in the lower level of the laser transition and half are in the upper 
level [see from eq. 14.18(a) and (b)]. A pumping power density greater than 

(14.25) makes 2 1N N . 

14.6 Four-Level Laser Scheme 
This scheme is also useful model for achieving population inversion. In three-level 
laser scheme, the lower level has the inversion. In three-level laser scheme, the 
lower level was the ground level and one has to lift more than 50% of the atoms in 
the ground level in order to obtain population inversion. This problem can be 
overcome by using another level of the atomic system and having the lower laser 
level also as an excited level. This type scheme is four-level laser scheme as  

shown in figure 14.3.  

 
Fig. 14.3 A four-level laser scheme 

Level 0 is the ground level and levels 1, 2 and 3 are excited levels of scheme. 
Atoms from level 0 are pumped to level 3 from where they make a fast non-
radiative relaxation to level 2. Level 2, which corresponds to the upper laser level 
is usually a metastable level having a long lifetime. The transmission from level 2 
to level 1 forms the laser transition. In order that atoms do not accumulate in level 
1 and hence destroy the population inversion between levels 2 and 1, level 1 must 

 3E

2E

1E

0E 0N

1N

2N

3N

Pumping

Fast nonradiative transition

Laser transition

Fast decay

 Lower laser level

 Ground level

14.6 Four-Level Laser Scheme 
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have a very small lifetime so that atoms from level 1 are quickly removed to level 
0 ready for pumping to level 3. If the relaxation rate of atoms from level 1 to level 
0 is faster than the rate of arrival of atoms to level 1, then one can obtain 
population inversion between levels 2 and 1 even for very small pump powers. 
Level 3 is not a laser level, it can be a collection of a large number of levels or a 
broad level. In such a case, an optical pump source emitting over a broad range of 
frequencies can be used to pump atoms from level 0 to level 3 effectively. In 
addition, level 1 required to be sufficiently above the ground level so that level 1 is 
almost unpopulated at ordinary temperatures. 

Now we shall write the rate equations corresponding to the populations of the four 
levels. The decay from level 3 to level 2 is extremely rapid or instantaneous. Thus 
we may take 3N 0  and the population rate equations for the four-level laser take 
the form 

 0
0 10 1

dN PN N
dt

            (14.26 a) 

   1
10 1 21 2 2 1

dN N N N N
dt               (14.26 b) 

   2
0 21 2 2 1

dN PN N N N
dt               (14.26 c) 

Where P is the pumping rate out of the ground Level 0 and 0PN  is the upper level 

pumping rate. 21  and 10  are the rates for the decay processes 21 and 10, 
respectively. 

    0 1 2
d N N N 0
dt

    

   0 1 2N N N  =constant.          (14.27) 

If the stimulated emission rate is very small compared to the pumping and decay 
rates then it may be omitted from eq. (14.26). In the steady state condition  

0 1 2dN dN dN 0
dt dt dt

    denoted by 0 1N , N


 and 2N .  Thus  steady state 

populations from equations (14.26) and (14.27). 

 10 21
0 T

10 21 10 21

N N
P P

 

     

       (14.28 a) 
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 21
1 T

10 21 10 21

PN N
P P



     

        (14.28 b) 

 10
2 T

10 21 10 21

PN N
P P



     

       (14.28 c) 

Therefore, the steady state population inversion of the laser transition is 

 
 10 21 T

2 1

10 21 10 21

P N
N N

P P
 

 
     

          (14.29) 

Thus, the pumped  P 0  four level scheme will always have a steady state 

population inversion when 

 10 21                (14.30) 
i.e., when the lower laser level decays more rapidly than the upper laser level. 

14.7 Small Signal Gain And Gain Saturation 

Equation (14.19) gives the steady-state population inversion for a three-level laser, 
when the stimulated emission rate is negligible. In general, the stimulated emission 
rate is not negligible. In this case, the steady-state population inversion [using eqs. 
(14.14 a) & (14.14 b)] is  

 21 T
2 1

21

P N
N N

P 2 

 
 

   
           (14.31) 

Here   is the steady state (time independent) cavity photon flux. Therefore 
steady state gain coefficient for a three level laser is 

     
 

21 T

21

P N
g

P 2 

  
 

     
    

 (Assuming 1 2g g ) 

 
  

 
21 T

21

21

P N 1
P 2

1
P



  


     
    

 

      0 0g g
g I1 sat 1 satI

 

 

 
  

 

         (14.32) 

14.7 Small Signal Gain and Gain Saturation 
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where  0g    small signal gain = 
  21 T

21

P N
P

   


 
       (14.33) 

and sat
   saturation flux = 

 
21P

2
 
 

          (14.34) 

The corresponding expressions for the saturation intensity and photon number are  

 
 

 
sat sat 21h P

I h
2 

  
  

 
          (14.35) 

and 
 

sat sat 21V Pq V
c 2c 

 
  

 
           (14.36) 

For satI I  , eq. (14.32) becomes 

    0g g               (14.37) 

Therefore  0g   is called the small signal gain coefficients. The maximum gain 

is  0 0g   i.e., the gain when satI I   and the field frequency matches the line 

center frequency 0 , where  0   has its maximum value. When the line-shape 

is Lorentzian with HWHM width 0 , we have 

    
   0

0 0 2 2 sat
0 0

1g g
/ 1 / 

  
       

        (14.38) 

The cavity frequencies at which there is small-signal gain sufficient to overcome 
loss in a laser are generally those within about 0  of line center  0  , 0  

can be called the small signal gain band width. 

In the case of a four level laser, we can get a similar expression for gain with the 
flux dependence (14.32), but with a saturation flux twice that given by (14.34). The 
gain-saturation formulas (14.32) and (14.38) are applicable to a wide variety of 
actual lasers. 

14.8 Spatial Hole Burning 
Spatial hole burning occurs as result of the standing wave nature of the optical 
modes. Since in most lasers, we have standing waves rather than traveling waves.  

The gain saturation formulas derived in last section are written with   assumed to 

14.8 Spatial Hole Burning 
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be sum of the fluxes of the two traveling waves. 

  
                     (14.39) 

This is not quite correct, because it ignores the interference of the two traveling 
waves, the electromagnetic energy density u is proportional to the square at the 
electric field, i.e., 

  2 2 2 2
0 0 0u E r.t E cos t sin kz    


         (14.40) 

We replace 2cos t  by 
1
2

, its average value over times long compared to an 

optical period 142 10 sec   
 i.e., equation (14.40) becomes 

 2 2
0 0

1u E sin kz
2

                       (14.41) 

A cavity standing wave field is the sum of two oppositely propagating traveling 
wave fields, i.e. 

      0 0
1E z, t E cos t sin kz E sin kz t sin kz t
2

         

    E z, t E z, t              (14.42) 

 E


 in (+)ve direction + E


(-)ve direction 

where    0
1E z, t E sin kz t
2             (14.43) 

The time averaged square of the electric field (14.43) gives a field energy density 

u u u    where 

 20
0u E

8
 
              (14.44) 

    2
0 0

12 u u E
2

               (14.45) 

From equations (1441) and (14.45), we get 

   2u 2 u u sin kz              (14.46) 

Therefore 2C c cu 2 u u sin kz
h h

 


        
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  22 sin kz 
                    (14.47) 

In terms of the intensity I h    

 2I 2 I I sin kz 
                 (14.48) 

Thus, it is not correct to use equation (14.39) as the flux in the gain saturation 
formulas given by equations (14.32) and (14.38). We should use eq. (14.47), which 
accounts properly for the interference of the two traveling wave fields. Then the 
gain saturation formula for a homogeneously broadened transition is  

    
 

0
sat 2

g
g

1 2 / sin kz 
  


 

      
                  (14.49) 

This is saturation formula when the standing wave nature of cavity field is properly 

accounted. The 2sin kz  term in equation (14.49) is called spatial hole burning in 
the gain coefficient  g  . At point z for which 2sin kz 0 ,  g   takes its 

maximum value called the small signal value  0g  . When 2sin kz 1 ,  g   
has its minimum value, i.e., it is most strongly saturated (a hole is burned in the 
curve of  g   vs. Z as shown in figure 14.4. These holes are separated by 

z
k 2
    . 

 
Fig. 8.4 Spatial hole burning in the gain curve 
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Thus, spatial hole burning is a distortion of the gain shape in a laser medium 
caused by saturation effects of a standing wave. 

14.9 Illustrative Examples 

Example 1 Calculate the required pump power for a 5-cm long ruby rod of radius 
2 mm with following parameter. 

 3 19 3
21 T

1 10 sec,N 1.6 10 cm
2

       and h 2.25 eV   

Sol. The pumping power density necessary for laser oscillation 

 21 T
min

Power 1 N h
V 2

     
 

 

    3 19 191 1 10 1.6 10 2.25 1.6 10
2 2

      
 

 

 3
3

Joule1.44 10
S cm

 


 

 3
3

min

Power W1.44 10
V cm

    
 

 

Therefore the required pump power is  

  3Power 1.44 10 V   

    231.44 10 0.2 5     

 Power 904.32 W       Ans. 

Example 2 Estimate the population inversion necessary for a 5 cm long ruby laser 

of transition 694.3 nm. It has a Lorentzian line shape of width (HWHM) 0 =170 

GHz and coefficient for spontaneous emission (A) is 230 1s . We also assume a 
resonator with mirror reflectivities 1r =1.0 and 2r = 0.96, and a scattering loss of 
3% per round trip pass through the gain cell. 

Sol. Given   694.3 nm, 0 = 170 GHz, A= 1230 S ,
1r =1, 2r =0.96, a= 3%, 

n=1.76 (for ruby) and l = 5 cm. 

The line center cross section for stimulated emission is 

14.9 Illustrative Examples 
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2

2
0

A 1
8 n

 
     

 

 
 

 

27

2 9
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 


    
 

 232669.3 10   

 20 22.66 10 cm    

The threshold gain for laser oscillation is  t
1 0.03g ln 0.96

2 5 2 5
  

 
 

 3 1
tg 7.1 10 cm    

Therefore threshold population inversion is  

 
3

t
t 20

g 7.1 10N
2.66 10






  

 
 

 17 3
tN 2.66 10 cm         Ans. 

Example 3 Calculate the threshold population inversion necessary to achieve 
lasing in a typical 632.8 nm He-Ne laser with following parameters: 

 4 1
tg 2.2 10 cm   , 6 1A 1.4 10 s    and   10s 6.3 10 s    

Solution: The threshold population inversion is given by 

 
 

2 t
t 2 1 2

1 t

g 8 gN N N
g As

  
       

 

 
    

4

t 27 6 10

8 3.14 2.2 10N
632.8 10 1.4 10 6.3 10



 

  
 

  
 

 
4

13

55.26 10
35.31 10









 

 9 3
tN 1.5 10 atoms / cm        Ans. 

14.10 Self Learning Exercise 

Q.1 Why feedback is required in laser device. 

14.10  Self Learning Exercise 
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Q.2 Define the term Intensity. 

Q.3 What is condition to have a positive steady state population inversion in 
three-level laser scheme. 

Q.4 Write the formula for minimum power per unit volume in case of three-level 
laser. 

Q.5 To achieve Laser oscillation a gain should be greater than the 
………………….. 

Q.6 Write the condition to have a steady-state population in four-level Laser. 

Q.7 The larger the decay rates, the ……………… the saturation flux. 

Q.8 When a medium is said to be bleached. 

Q.9 The saturation flux is ………………….. to the Einstein coefficient for 
stimulated emission B. 

14.11 Summary 

In this unit, we have introduced the concepts of feedback and threshold. The rate 
equations for photons and populations have been derived. We have used such 
equations to discuss three and four level lasers. We have also discussed the concept 
of saturation which is a major consideration in determining how much output 
power can be obtained with a given laser. In the end of unit, the concept of spatial 
hole burning is given. It occurs as result of the standing wave nature of the optical 
modes. 

14.12 Glossary 

Feedback : To make an oscillator from an amplifier, it is necessary to introduce 
suitable positive feedback. In the case of a laser, feedback is often obtained by 
placing the active material between two highly reflecting mirrors. 

Threshold : In order to generate radiation or photon, the amplifying medium is 
placed in an optical resonator, which consists of a pair of mirrors facing each other. 
Radiation, which bounced back and forth between the mirrors is amplified by the 
amplifying medium and also suffers losses due to the finite reflectivity of the 
mirrors, output coupling and other scattering and diffraction losses. If the 
oscillations have to be sustained in the laser cavity, then the losses must be exactly 

14.11 Summary 

14.12 Glossary 
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compensated by the gain. This condition is known as the threshold condition for 
laser oscillation. 

Small Signal Gain Bandwidth : The cavity frequencies at which there is small-
signal gain sufficient to overcome loss in a laser are generally those within about 
of line center,   can be called the small signal gain band width. 

Spatial Hole Burning : Spatial hole burning occurs as result of the standing wave 
nature of the optical modes or spatial hole burning is a distortion of the gain shape 
in a laser medium caused by saturation effects of a standing wave. 

Intensity : Intensity refers to the electromagnetic energy flow per unit area per unit 
time. 

14.13 Answer To Self-Learning Exercise 

Ans.1:  To increase the photon yield. 

Ans.2: Intensity refers to the electromagnetic energy flow per unit area per unit 
time. 

Ans.3: The pumping rate into the upper laser level must exceed the decay rate. 

Ans.4: 21 T 31
min

Power 1 N h
V 2

     
 

 

Ans.5: Threshold value 

Ans.6: The decay rate for 10 should be greater than the decay rate for 21. 

Ans.7: Larger 

Ans.8: When the absorption coefficient is very small. 

Ans.9: Inversely proportional 

14.14 Exercise  

Section A: Very Short Answer Type Questions 

Q.1 How can achieve feedback in a laser? 

Q.2 Write the condition for a material to behave as an amplifier. 

Q.3 What is gain at threshold value? 

Q.4 Write the expressions for the saturation intensity and photon number. 

14.13 Answer to Self-Learning Exercise 

14.14 Exercise 
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Q.5 What is the order of optical time period?  

Section B :  Short Answer Type Questions 

Q.6 What do you mean by threshold. 

Q.7 Is it possible to achieve steady state population inversion in two level laser 
scheme. Explain. 

Q.8 What is advantage of four-level laser over three-level laser. 

Q.9 What do you mean by spatial hole burning. 

Q.10 Why we use three and four level laser schemes. 

Section C: Long Answer Type Questions 

Q.11 Derive the expression of rate equation for photons and populations. 

Q.12 Determine the steady state values of the three level population. 

Q.13 Derive the formula of steady state gain coefficient for a three-level laser 
and write the expression for the saturation intensity. 

Q.14 Derive the formula of population inversion for four-level laser scheme. 

Q.15 Derive the expression for spatial hole burning. 
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15.0 Objectives 

A laser is a device that emits highly coherent light through a process of optical 
amplification based on the stimulated emission of radiation. Under continuous 
wave (cw) operation, a laser is continuously pumped and emits light continuously. 
In this case, the population inversion is fixed at its threshold value when oscillation 
starts. Even under pulsed operating conditions, the population inversion is seen to 
exceed the threshold value by only a relatively small amount due to the onset of 
simulated emission and get the output of 1msec long burst of spikes. Hence, there 
is a need to develop the special laser cavities for the production of short laser 
pulses and high-peak power with the same laser gain medium. In this chapter, we 
will discuss Q-switching, methods of producing Q-switching, pulsed-locked 
oscillators and mode locking. 

15.1 Introduction 
A type of laser resonator that can provide useful laser output with a reasonable 
beam quality without meeting the criteria for stability is known as an unstable 
resonator. These resonators have been developed to obtain High power output in a 
nearly Gaussian-shaped beam. This beam is a concentrated spatial and spectral 
beam of light. It is also possible to qualify the beam as a temporal concentration by 
considering that the emitted photons are condensed into short energetic pulses. As 
we know that, the probability of obtaining stimulated emission increases with the 
number of atoms in excited state and incident photons. Therefore, there are two 
ways to favour stimulated emission either by raising the number of atoms in 
excited state or by raising the number of incident photons. The first method to 
achieve a temporal concentration is to trigger the stimulated emission only when 
there is a large number of an atom in upper level. This method is referred to as Q-
switching. In the second method, the photons in the optical cavity are condensed 
into a packet or pulse that will bounce back and forth between the mirrors. This 
method is referred to as mode-locking. Phased-locked oscillator is a simple model 
of a mode-locked laser. The laser flux associated with a stable resonator and an 
unstable resonator is shown in fig. 15.1. 

15.0 Objectives 

15.1 Introduction 
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Figure 15.1 Laser flux associated with (a) a stable resonator and (b) an unstable 
resonator  

15.2 Q-Switching  
It was first discovered and demonstrated in 1962 by R.W. Hellwarth and F.J. 
Meclung using electrically switched Kerr cell shutter in a ruby laser. 

Q-switching is technique to obtain energetic short pulses (10-9 seconds) from a 
laser by modulating the intra-cavity losses. Since laser is an oscillator, its resonator 

cavity is characterized by the quality factor (Q), which is defined as 2π times the 
ratio of the energy stored in the system to the energy losses per cycle, i.e. 

ܳ = ߨ2
Energy stored in the resonator

Energy loss per cycle
 

Therefore, a high (࣫) factor corresponds to low resonate losses and vice versa. 

15.2.1 Principle of Q-Switching  

Consider a laser cavity in which a shutter is introduced in front of one of the 
mirrors. If the active medium is continuously pumped keeping the shutter closed 
(Q is low) the laser action is prevented and the population inversion will go on 
increasing and far exceeds the threshold population holding when the shutter is 
absent. The principle of Q-switching is shown in fig. 15.2. 

 
Fig. 15.2 Principle of Q-Switching 

15.2 Q-Switching  
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 If the shutter is now suddenly opened (Q is changed from low to high), then 
the existing population inversion will correspond to a value much above the 
threshold value for oscillations and the laser will exhibit a gain that greatly exceeds 
the losses.  

Therefore, the radiation in the cavity mode will build up very rapidly. This rapid 
increase in the intensity will deplete the population inversion which will go below 
threshold. The stored energy may then be released in the form of a short and 
intense light pulse. Since this operation involves switching the cavity Q factor, 
value changes from low to high. Therefore, this technique is known as Q-
switching. If the shutter is opened in a time much shorter than the time required for 
the building of laser oscillation, the output would be a series of pulses having 
smaller peak power. 

15.2.2 Evolution of a Q-Switched Laser Pulse 

The following four requirements must be satisfied to produce the necessary 
inversion density required for Q-switching. 

(1) The life time of the upper energy level must be longer than the cavity build  up 
time (when gain equals losses), so that the upper level can store the extra 
energy pumped into it over the extended pumping time. 

(2) The pumping flux duration must be longer than cavity build up time and 
preferably at least as long as the upper level life time. 

(3) The initial cavity losses must be large during the pumping duration to prevent 
beam growth and oscillations. 

(4) After Q-switching, the cavity losses must be reduced almost  instantaneously, 
so that the beam could evolve and extract the extra energy  from the upper 
level of the gain (active) medium. 

 Satisfying these requirements would produce a giant pulse laser output. Fig. 
15.3 shows a high initial cavity loss during the intense pumping and consequent 
gain build up over the life time of upper level. The cavity loss is rapidly reduced 
producing a pulse output within a time of the order of cavity build up time after the 
cavity Q is changed. 
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Fig. 15.3 Evolution of a Q-switched laser pulse 
 
15.3 Methods of producing Q-Switching  
There are two types of methods to produce Q-switching. 

(a) Active Q-switching and (b) Passive Q- switching 

(a)Active Q-switching 

In this switching, the external devices are used to control Q-factor of cavity. The 
rotating mirror, electro-optic shutter (Kerr and Pockels effects) and acousto-optic 
shutter are the examples of active Q-switching. To understand the concept of Q-
switching, the working of these methods is given below in detail. 

15.3 Methods of producing Q-Switching  
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15.3.1 Rotating Mirrors  

This was the first method used for Q-switching laser. It consists of mounting 
hexagonal- shaped mirror assembly on a rotating shaft and aligning the facets of 
the mirror with the laser cavity such that, for every sixth of a rotation of the shaft, a 
mirror would be aligned with the laser cavity as shown in figure 15.4. 

 
Fig. 15.4 Q-switching with rotating mirror as a shutter 

This rotating mirror would serve as the rear mirror of the laser cavity, and an 
output mirror would be located at the other end of cavity. The mirror rotates at 
frequency related to upper laser level lifetime. There are two problems with this 
technique (i) size of the hexagonal mirror should be reasonably small to get high 
rotation speed without developing vibration problems and (ii) obtaining the ideal 
mirror alignment for each facet. 

15.3.2 Electro-optic shutter 

In this method, a shutter typically an electro-optic crystal that becomes birefringent 
when an electrical field is applied across the crystal. Since these shutters operate 
by rotating the polarization of beam, the laser must have a polarizing element 
within the cavity like Brewster angle windows. In this case, Brewster angle 
windows allow a low-loss beam to transit the cavity polarized in the plane of the 
paper. When the voltage is on, the shutter rotates the plane of polarization of the 
beam by 45º as it passes through the cell. The beam reflects from the mirrors and 
returns through the cavity, travelling in the opposite direction where after its plane 
is rotated by an additional 45º by the shutter. It thus arrives back at the laser 
amplifier with a polarization of 90º with respect to that when it left the amplifier. 
This 90º polarized beam is rejected by the Brewster window and directed out of the 
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cavity. In such a position, the losses in the cavity would be large. When the voltage 
is turned off, the cell losses its birefringence and the cell does not rotate the plane 
of polarization. In this position, the losses are small and correspond to an open 
shutter. Two types of electro-optic shutters that can be used for Q-switching are the 
Kerr cell and the Pockels cell. The Pokels cell is generally preferred over the Kerr 
cell because of the lower voltage needed to produce the desired effect. The Q-
switching with an electro-optic shutter is shown in fig.15.5. 

 
Fig. 15.5 Q-switching with an electro-optic shutter 

POCKELS CELL: - The Pockels effect is produced when an electric field is 
applied to certain kinds of birefringent crystals KDP (potassium dihydrogen 
phosphate), CDA (cesium dihydrogen arsenate) to after the indices of refraction of 
the crystals. This effectively provides a rotation of the beam that is proportional to 
the thickness of the cell and the magnitude of the field. The field is applied in the 
direction of the optic axis of the crystal and in the direction of the optical beam. 
The pockels effect is directly proportional to the magnitude of the applied electric 
field.    

KERR CELL: - A Kerr cell uses the Kerr electro-optic effect to rotate the laser 
beam. This effect is produced when an electric field is applied across a normally 
isotropic liquid comprising asymmetric module such as liquid nitrobenzenl to 
make it doubly refracting (birefringence) by aligning the molecules of the liquid. 
The field is applied in a direction transverse to that of optical beam. This electric 
field induced birefringence in isotropic liquids is called the Kerr effect. The 
birefringence is proportional to the square of the applied voltage, i.e. in Kerr effect, 
the change in refractive index is proportional to the square of the electric intensity 
of the electric field. 

15.3.3 Acousto-Optic Shutter 

An acousto-optic shutter typically uses a quartz crystal installed within the cavity,     
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either at Brewster’s angle or with low-loss antireflection coatings on the optical 
surfaces of the crystal, as shown in figure 15.6. The quartz crystal has a 
piezoelectric transducer attached to the crystal that propagates strong acoustic 
waves within the crystal when the RF (radio-frequency) signal is applied to the 
transducer. When this field is applied during the time the amplifier is being 
pumped, the laser beam is deflected out of the laser cavity by an effective 
diffraction grating that is established by the acoustic waves propagating because of 
the RF single. When the signal is turned off, the beam passes through the cavity 
un-deflected and the Q-switched pulse develops in the cavity. The typical RF range 
is from 25 to 50 MHz. 

 
RF on – Beam deflected out of cavity yielding high loss. 

RF off – Beam transits the cavity with low loss 

Fig. 15.6 Q-switching with an acousto-optic shutter 

(b) Passive Q-switching  

In this switching, the losses inside the cavity are automatically modulated with a 
saturable absorber. Therefore, it is also known as self Q-switching. Saturable 
absorber is a material whose transmission increases when the intensity of light 
exceeds some threshold. The material may be an ion-doped crystal, a bleachable 
dye or a passive semiconductor device. 

15.3.4 Saturable Absorber  

It can be used as a passive Q-switching element by placing it within the laser 
cavity. The operation of such a device may be understood as follows Because of 
the small transmittance of the saturable absorber, laser oscillation can not start until 
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the attainment of a large population inversion. As the power level inside the cavity 
goes on increasing, the dye begins to be bleached. This bleaching result in a larger 
transmittance which in turn increases, the power level inside the cavity. The 
increased power becomes almost transparent. Since in this condition, the inversion 
is much more than the threshold inversion, the gain is much more than the losses 
and thus a giant pulse is produced. The Q-switching with saturable absorber is 
shown in fig.15.7.  

 
Fig. 15.7 Q-switching with saturable absorber 

A good saturable absorber can be determined by ensuring that (the laser intensity at 
the time arrives at the absorber) × (the absorption cross section of the absorber) 
exceeds (the intensity of the laser as it arrives at the gain medium)×(the stimulated 
emission cross section of the gain medium). A liquid dye solution such as DODCI 
is typically used for such a Q-switching element. A thin film coating on one of the 
mirrors, in the form of a quantum well, can serve as a solid-state saturable 
absorber. The exact choice of saturable absorber is determined by the laser 
wavelength and also the gain of the laser medium. 

15.4 Phased-Locked Oscillators  
The phased locked oscillator (PLO) is a simple model of Mode locked laser. In a 
Q-switched laser, the light pulse must make several passes through the active 
medium after the cavity Q is switched. Therefore, feed-back is necessary in order 
to build up a large field amplitude by stimulated emission. There are some 
applications where it is desirable to have pulses of light even shorter than the 
pulses achieved by Q-switching. Such ultrashort and powerful pulses of light can 
be obtained by the technique called mode locking. 

15.4 Phased-Locked Oscillators  
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Q-switching may involve either a single mode or many modes but mode locking is 
a fundamentally multimode phenomenon. In mode locking, there is a phase locking 
among many longitudinal modes of cavity. The purpose of this topic is to consider 
a simple analog of a mode locked laser. 

Let us consider the addition of the displacement of N harmonic oscillators with 
equally spaced frequencies, which is given by   
(ݐ)௡ݔ    = ଴ݔ sin(߱௡ݐ + ∅଴),                                                                               (15.4.1)                                                                                        
where 

߱௡ = ߱଴ + ݊∆,           ݊ = ேିଵ
ଶ

,    − ேିଵ
ଶ

+ 1,− ேିଵ
ଶ

+ 2, … , ௡ିଵ
ଶ

            (15.4.2) 

i.e. the amplitudes ݔ଴ and phase ∅଴of the oscillators are identical, and their 
frequencies ߱௡are equally spaced by  and centered at߱଴, as shown in Fig. 15.8. 
The sum of the displacement is 

(ݐ)ܺ = ∑ (ݐ)௡ݔ = −∑ ݐ଴sin (߱௡ݔ + ∅଴)ேିଵ/ଶ
ேିଵ/ଶ௡                                                 (15.4.3) 

 
Figure 15.8 A collection of N frequencies running from ߱଴ −

ଵ
ଶ

(ܰ − 1)∆ to 

߱଴ + ଵ
ଶ

(ܰ − 1)∆ as in eq. (15.4.2) 

Since sin x is the imaginary part of ݁௜௫, we may write this as 

(ݐ)ܺ = ∑଴Im൫ݔ ݁௜(ఠబ௧ା∅బା௡∆௧)
௡ ൯ = ଴Im൫(݁௜(ఠబ௧ା∅బ)ݔ ∑ ݁௜௡∆௧௡ ൯   (15.4.4) 

The general identity 

   ∑ ݁௜௡௬ ୀ ౩౟౤ (ಿ೤/మ)
౩౟౤ (೤/మ)  (ேିଵ)/ଶ

ି(ேିଵ)/ଶ            (15.4.5) 

We prove (15.4.5) as follows. Let the sum be denoted byܵே. For convenience, we 
will first evaluate 

∑௡ାଵ ୀݏ                                      ݁௜௡௬ାே/ଶ
௡ୀ ିே/ଶ                                                             (15.4.6) 

The first step is to shift the summation label by introducing 

                                ݉ = ݊ + ே
ଶ

                  (15.4.7) 

So that 

௡ାଵ ୀݏ ∑ ݁௜ቀ௠ିಿమቁ௬ ୀ ௘ష೔ಿ೤/మ ே
௠ୀ଴ ∑ ݁௜௠௬ே

௠ୀ଴ =  ݁ି௜ே௬/ଶ∑ (݁௜௬)௠ே
௠ୀ଴                       (15.4.8) 
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The second step is to make use of the identity 

                                    ∑ ௠ ேݔ
௠ୀ଴ =  ଵି௫

ಿశభ

ଵି௫
                                                                        (15.4.9) 

Then we can write 

ܵேାଵ = ݁ି௜ே௬/ଶ ଵି௘೔
(ಿశభ)೤

ଵି௘೔೤
 

= ݁ି௜ே௬/ଶ ௘೔
(ಿశభ)೤/మ

௘೔೤/మ
௘ష೔(ಿశభ)೤/మି௘೔(ಿశభ)೤/మ

௘ష೔೤/మି௘೔೤/మ = ୱ୧୬(ேାଵ)௬/ଶ
ୱ୧୬௬/ଶ

      (15.4.10) 

and so we have proved that 

                                            ܵேୀ ౩౟౤ಿ೤/మ
౩౟౤೤/మ

                                                                            (15.4.11) 

Thus, equation (15.4.4) can be written as 

(ݐ)ܺ = ଴Imݔ ቎݁௜(ఠబ௧ା∅బ)
sin (ܰ∆2ݐ )
sin (∆2/ݐ)

቏ = ଴sin (߱଴௧ݔ + ∅଴) ቎
sin (ܰ∆2ݐ )

sin (∆2ݐ )
቏ 

                                     = ଴ݔ(ݐ)ேܣ sin(߱଴ݐ + ∅଴)                            (15.4.12) 

The function ܣே(ݐ) is plotted in Fig. 15.9 for ܰ = 3and ܰ = 7. In general ܣே(ݐ)has 
equal maxima  ܣே(ݐ)୫ୟ୶ = ܰ                                                                      (15.4.13) 

 

Figure 15.9 The function ܣே(ݐ) =
ୱ୧୬ቀభమே∆௧ቁ

ୱ୧୬ቀభమ∆௧ቁ
 vs. ∆ߨ/ݐ 

At values of ݐ given by 

௠ݐ = ݉ቀଶగ
∆
ቁ = ݉ܶ,  ݉ = 0, ±1, ±2,…….              (15.4.14) 
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As ܰ increases, the maxima of ܣே(ݐ) becomes larger. They also become more 
sharply peaked. A measure of their width is the time interval ߬ே indicated in Fig. 
15.9 for ܰ = 7. 

                                      ߬ே = ଶగ
ே∆

= ்
ே

           (15.4.15) 

we have thus shown that the addition of ܰ oscillators of equal amplitudes and 
phases, and equally spaced frequencies (15.4.2), gives maximum total oscillation 
amplitudes equal to ܰ times the amplitude of a single oscillator. These maximum 
amplitudes occur at intervals of time ܶ[Eq. 15.4.14]. For large ܰ we have, loosely 
speaking, a series of large amplitude “spikes.” The smaller the frequency spacing  
between the individual oscillators, the larger the time interval ܶ =  between ∆/ߨ2
spikes, and conversely. The temporal duration of each spike is ߬ே = ்

ே
, so the spikes 

get sharper as ܰ is increased. 

We have assumed for simplicity that each oscillator has the same phase ∅଴[Eq. 
(15.4.1)]. A more general kind of phase locking occurs when the phase differences 
of the oscillators are constant but not necessarily zero: 

∅௡ = ∅଴ +  ,ߙ݊
or                                            ∅௡ାଵ − ∅௡ =  (15.4.16)                       ,ߙ

In this case the sum of the oscillator displacements (15.4.3) is replaced by 

X(t) = ∑ x଴  Sin(ω଴t +  ∅) = x଴୬ Im ቀe୧(னబ୲ା∅బ)∑ e୧୬(∆୲ା஑)(୒ିଵ)/ଶ
ି(୒ିଵ)/ଶ ቁ      

                        (15.4.17) 
and this may be evaluated to give the total displacement 

(ݐ)ܺ   = ଴ݔ sin(߱଴ݐ + ∅଴) ൤ௌ௜௡ே(∆௧ା௔)/ଶ
ୱ୧୬ (∆௧ାഀమ)

൨          (15.4.18) 

having basically the same properties as (15.4.12) obtained with ߙ = 0. 

 It is a simple model of a mode- locked laser. The individual oscillators in 
the model play the role of individual longitudinal mode fields, while their 

frequency spacing  represents the mode (angular) frequency separation 

= ݒ∆ ߨ2 ߨ2 ቀ ௖
ଶ௖
ቁ =  గ௖

௅
 . The assumption of equal oscillator phase difference 

(Phase locking) in the model corresponds to the locking together of the phases of 
the different cavity modes. 
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This oscillator model suggests that if there are N longitudinal modes of a laser 

phase locked together with a frequency separation , then the output light of the 
laser will consist of a train of pulses separated in time by ܶ = ଶగ

∆
 = ଶ௅

஼
The temporal 

duration of each pulse in the train will be   =  ்
ே

 =  ଶ௅
஼ே

 . The larger the number N of 
phase locked modes, greater the amplitude and shorter the duration of each 
individual pulse in the train. 

  Mode locking 

Mode locking is a technique for producing periodic, high power and extremely 
short duration (10-12 second to 10-15 second) laser pulses. Since a laser usually 
oscillates in a large number of longitudinal modes and under ordinary 
circumstances, the modes do not oscillate at the same time and their phases have 
random values. Therefore, it would be interesting to see what would happen if the 
modes of the resonant cavity are forced to oscillate together with their phases 
locked Laser. This operation is known as mode locking and then laser is said to be 
phase-locked or mode locked laser. Interference between these modes causes the 
laser light to be produced as a train of pulses of very short duration. 

15.5.1 Longitudinal Modes of the Laser Cavity 

Laser light is not a single pure frequency light but produces light over some natural 
bandwidth or range of frequencies as shown in fig. 15.10. Therefore the range of 
frequencies that a laser may operate over is known as the gain bandwidth. 

We know that the resonant cavity of the laser consists of two plane mirror facing 
each other and active medium. Since light is a wave, when bouncing between the 
mirrors of the cavity the light will constructively and destructively interfere with 
itself leading to the formation of standing waves between the mirrors. These 
standing waves form a discrete set of frequencies, known as the longitudinal modes 
of the cavity as shown in fig. 15.10. These modes are due to constructive 
interference. 

For simple plane mirror cavity, the allowed modes are those for which the 
separation distance of the mirrors L is an exact multiple of half the wavelength of 

light  i.e. If  be the refractive index of laser medium then the length of optical 
path is given by  
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 L =
௡஛
ଶ

                   (15.5.1) 

where ݊ is an integer known as the mode order. From Eq. (4.21) 

 λ = ଶ௅
௡

= ௖
௩

 

ݒ           = ௖௡
ଶ௅

               (15.5.2) 

Therefore, frequency separation between any two adjacent modes n and n+1 is 
given by 

ݒߜ          = ௖
ଶ௅

     (15.5.3) 

and the pulse separation time or pulse repetition rate is 

߬ = ଵ
ఋ௩

= ଶ௅
௖

                                (15.5.4) 

                     ηܮ=
௡஛
ଶ

                  (15.5.5) 

Thus, frequency separation between any two adjacent mode ݒߜ = ௖
ଶ௅ఎ

and pulse 

separation time= ଶ௅ఎ
௖

 

 
Fig. 15.10 Laser output spectrum 
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15.5.2 Mode Locking Theory 

To achieve the mode locking, a number of distinct longitudinal modes of a laser 
having slightly different frequencies are combined in phase. The comparison 
between non-mode locked and mode locked laser output for three different 

frequencies , 2  and 3ω is shown in Fig. 15.11. 

 In a simple laser, amplitudes and phases of various longitudinal modes 
(frequencies) are randomly distributed and these produce randomly varying total 
field amplitude and intensity (Fig.15.11 (a)). When these three frequencies (modes) 
are added in phase, then they combine to produce a total field amplitude and 
intensity output in the form of repetitive pulse of high intensity (Fig. 15.11 (b)). 
These pulses are called mode locked pulses. 

In mode locked laser, the intensity is periodic, i.e., in the time interval ߬ = ଵ
ఋ௩

=
ଶ௅
௖

, which is time taken for the light to make a complete round trip of the cavity, 

i.e., the pulse separation time or pulse repetition rate is 

  ߬ = ଵ
ఋ௩

= ଶ௅
௖

             (15.5.6) 

The duration of width of each pulse of light is determined by the number of modes 
which are oscillating in phase. If there are N modes locked with a frequency 

separationݒߜ, the overall mode locked bandwidth is Nݒߜ. Therefore pulse 

duration or width is ݐ௣ = ଵ
ேఋ௩

= ଵ
∆୴

             (15.5.7) 

௣ݐ                                                = ଶ௅
௖ே

                                          (15.5.8) 

From equations (15.5.6) and (15.5.8), it is clear that the ratio of the pulse spacing 
to the pulse width is approximately equal to the number of modes (N). Thus, to 
obtain high power short duration pulse there should be a large number of modes. 
This requires a board laser transition and a long laser cavity. 

The methods of mode locking can be divided into two categories:- (i) Active mode 
locking, in which the mode locking element is driven by an external source and (ii) 
Passive mode locking, in which the element that induces mode locking is not 
driven externally but instead exploits some nonlinear optical effect such as 
saturation of a saturable absorber. 



308 
 

 
(a)Non-mode Locked (Simple laser) output 

 

 
(b)Mode Locked output (Mode locked laser) 

Fig.15.11 Comparison of non-mode locked and mode locked laser output 
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15.6 Illustrative Examples 

Example 15.1  The transition responsible for ruby laser emission is spread over an 
energy resulting in wavelength spread of 0.65 nm around 694.3 nm. If the length of 
the ruby rod is 3 cm and refractive index is 1.75, how many longitudinal cavity 
modes would be ruby laser emission contain? 

Solution: -  Given  ∆ߣ = 0.65 = 0.65 × 10ିଽm, ߣ = 694 × 10ିଽm 

= ܮ 3ܿ݉ = 3 × 10ିଶm and ߟ = 1.75 

Mode separation =  ௖
ఎ௅

=  ଷ×ଵ଴ఴ

ଵ.଻ହ ×ଷ ×ଵ଴షమ
= 5.71  10ଽHz 

 Frequency spread of laser emission 

= ݒ∆  
ߣ∆ܿ
ଶߣ

=
3 × 10଼ × 0.65 × 10ିଽ

(694.3 × 10ିଽ)ଶ
 

= 404.52 × 10ଽݖܪ 

 Number of cavity mode (N) =  ∆௩
௠௢ௗ௘ ௦௘௣௔௥௔௧௜௢௡

 

N=  ସ଴ସ.ହଶ×ଵ଴శవ

ହ.଻ଵ×ଵ଴వ
= 70.84  71                                 Ans 

Example 15.2  Calculate the number of modes, pulse separation and pulse duration 
in a mode locked Nd : YAG laser where the fluorescent line width is 1.1 ×
10ଵଵHz and the laser rod is 0.1 m long. 

Solution:- Given that the line width  ൬ ଵ
௧೛
൰ = ቀ௖ே

ଶ௅
ቁ  = 1.1 × 10ଵଵ Hz  and 

= ܮ 0.1 ݉ 

As we know that the pulse duration is  

௣ݐ  = ଶ௅
௖ே

= ଵ
ଵ.ଵ×ଵ଴భభ

sec. 
The pulse separation time is 

 ߬ =  ଶ௅
௖

 = ଶ×଴.ଵ
ଷ×ଵ଴ఴ

= 0.66 × 10ିଽ =  .Ans  ݏ݊ 0.66

No. of modes (N) = ୔୳୪ୱୣ ୱ୮ୟୡ୧୬୥
୮୳୪ୱୣ ୢ୳୰ୟ୲୧୭୬

 

 = ଴.଺଺×ଵ଴షవ

ଽ.଴ଽ×ଵ଴షభమ
  = 0.7333 × 102  = 73.33 

15.6 Illustrative Examples 
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Example15.3 A continuous laser of wavelength ߣ = 5000Ȧ is Q-switched into 0.6 
ns pulses. Compute its coherent length, bandwidth and line width. 

Solution: Given that ∆߬ = ݏ0.6݊ = 6 × 10ିଵ଴ S and ߣ = 5000Ȧ = 5 ×
10ି଻m 

The coherence length ܮ = ܿ∆Band width ∆ݒ = ଵ
∆

= ଵ
଺×ଵ଴షభబ

 = 3 × 108 ×

6 × 10−10= 0.18 m 

 Band width ∆ݒ = ଵ
∆

= ଵ
଺×ଵ଴షభబ

=1.66 109Hz                                                          

            Line width ∆λ = ஛మ

ୡ
Δݒ 

                = (ହ×ଵ଴షళ)మ×ଵ.଺଺×ଵ଴వ

ଷ×ଵ଴ఴ
 =0.013×10-10m 

= ߣ∆   0.013Ȧ           Ans. 

Example 15.4 Calculate the pulse width produced by a mode locked Nd : glass 
laser assuming that the laser cavity is 10 cm long and there are 2500 participating 
longitudinal modes. What is the time separation of the pulse? 

Solution:  Given L= 10 cm = 0.1 m and N = 2500 modes 

            Pulse width =  
ଶ௅
஼ே

  = ଶ×଴.ଵ
ଷ×ଵ଴ఴ ×ଶହ଴଴

   = 0.26 × 10-12 s = 0.26 ps 

Pulseseparationtime= ଶ௅
௖

= ଶ×଴.ଵ
ଷ×ଵ଴ఴ

=0.66×10-9 = 0.66 ns Ans.                       

15.7 Self Learning Exercise    

Q.1  What is continuous wave operation of laser? 

Q.2  What are the pulse duration in Q-switching and mode locking, respectively? 

Q.3  Define unstable resonator. 

Q.4  What do you mean by Q-switching? 

Q.5  Define the Kerr effect. 

Q.6  What do you mean by passive Q-switching? 

Q.7  What is difference between active and passive Q-switching. 

Q.8  What do you mean by mode locking? 

Q.9  What is phased locked oscillator? 

15.7 Self Learning Exercise 



311 
 

Q.10 Why we get a train of pulses of very short duration in mode locking. 

15.8 Summary 
This unit starts with the introduction of some special laser cavities for the 
production of short laser pulse and high peak power with the same laser gain 
medium. The chapter introduces the principal of Q-switching and mode-locking. It 
also describes the methods of production of Q-switching and phased-locked 
oscillator. In the end, some examples on above concepts are given. 

15.9 Glossary 
(CW) Operation: continuous wave (cw) operation 
RF :(radio-frequency) 

15.10 Answer of Self-Learning Exercise 

Ans.1:In this operation, light is continuously pumped and emits light continuously. 

Ans.2:10-9 seconds and 10-12 to 10-15 second, respectively. 

Ans.3:It is a laser resonator that can provide useful laser output with a reasonable 
beam quality without meeting the criteria for stability is known as an unstable 
resonator. 

Ans.4:The production of a short and intense light pulse involves switching the 
cavity Q factor value from low to high. Therefore this technique is known as Q-
switching. 

Ans.5:The electric field induced birefringence in isotropic liquids is called the 
Kerr effect. 

Ans.6:In the passive Q-switching, the losses inside the cavity are automatically 
modulated with a saturable absorber. 

Ans.7:In an active Q-switching, some external active medium operation must be 
applied to the device to produce Q-switching. In a passive Q-switching, the 
switching operation is automatically produced by the optical nonlinearity of the 
element used. 

Ans.8:Since laser has a large number of longitudinal modes. The process by which 

these modes are made to adopt a definite phase relation is called mode locking. 

15.8 Summary 

15.9 Glossary 

15.10 Answer of Self-Learning Exercise 
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Ans.9:It is a simple model of a mode-locked laser. 

Ans.10:The interference between longitudinal modes of laser causes light to be 
produced as a train of pulses of very short duration. 
15.11Exercise 

 Section-A (Very Short Answer Type Questions) 
Q.1    Write the fundamental mode of laser cavity 

Q.2    Write down an example of unstable resonator. 

Q.3    Define the Q-factor of resonator cavity. 

Q.4     What is the pulse duration in Q-switching? 

Q.5     What is the pulse duration in mode-locking? 

            Section-B (Short Answer Type Questions) 

Q.6    What are the active optical devices and when these devices are used. 

Q.7    Why a laser with an unstable resonator cavity supports the fundamental   
 mode only. 

Q.8   What do you mean by the longitudinal and the transverse modes. 

Q.9   What are the important devices used for Q-switching. 

Q.10   What are the pulse separation time and pulse duration in made locking. 

Q.11   Explain the concept of mode locking in detail. 

Section C- Long Answer Type Questions 

Q.12   What do you mean by Q-switching? Describe different type of Q-switches. 

Q.13   Describe various methods of producing Q-switching. How it is helpful in  
 generating laser pulse. 

Q.14   Discuss the construction and working of phase locked oscillator. 

Q.15   Discuss a technique for obtaining powerful pulses of short duration for laser  
 source of low power. 

15.12 Answers to Exercise 
Ans.1:  TEM00 

Ans.2:  Confocal telescopic resonator. 

15.11Exercise 

15.12 Answers to Exercise 
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Ans.3:   ܳ = ߨ2 ா௡௘௥௚௬ ௦௧௢௥௘ௗ ௜௡ ௧௛௘ ௥௘௦௢௡௔௧௢௥
ா௡௘௥௚௬ ௟௢௦௧ ௜௡ ௔ ௖௬௖௟௘

 

Ans.4:  10-9 second 

Ans.5: 10-12 to 10-15 second 

Ans.6:  Rotating mirrors and optical modulators are called active optical devices   
which do different things to light at different times. These devices are used when it 
is required to concentrate light energy into short time intervals. 

Ans.7: The unstable resonators exhibit high diffraction losses leading to 
suppression of high-order transverse mode. Thus, a laser with an unstable cavity 
supports only the fundamental mode. 

Ans.8: The laser modes governed by the axial dimension of the resonant cavity are 
called longitudinal or axial modes. The laser modes determined by the cross-
sectional dimension of the optical cavity are called the transverse modes. 

Ans.9: Rotating mirrors, electro-optic shutter, acousto-optic shutter and saturable 
absorbers are important devices used for Q-switching. 

Ans.10: Pulse separation time ( )= ଶఎ௅
େ

  and Pulse duration tp= ଶఎ௅
େ୒

 

 Where ߟ= Refractive index of laser medium 

  L= Distance between the mirrors of cavity, c= velocity of light 

and N= Number of modes which are oscillating in phase 
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16.0 Objectives  
         Different types of lasers can be classified into solid, liquid, gas and 
semiconductor lasers. This classification is based on the laser medium that is 
chosen. In this unit, we will briefly survey the different types of lasers available 
today. We will attempt discussing each of them, in detail, in this unit. The main 
objective of this chapter is to study all the lasers, which are used today in our life.                         

16.1 Introduction 
               The solid laser, a representative of which is the ruby laser, was the first 
one to be designed. This laser was immediately followed by the gas laser, a 
representative of which is He-Ne laser. Then come Nd-YAG and glass, argon ion, 
carbon dioxide and the dye lasers. Certain other varieties of lasers such as chemical 
lasers, excimer laser and gas dynamic lasers also assumed importance owing to 
their characteristics in terms of wavelengths, method of excitation, tunability and 
power levels etc.                

 There are some special types of laser which consists of Solid, Liquid, Gas 
and Semiconductor lasers. All these lasers are having different properties.   

16.0 Objectives  

16.1 Introduction 
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16.2 Pumping Mechanism    
           It is a process by which population inversion can be produce known as 
pumping. The population inversion can be achieved by exciting the medium with 
suitable form of energy. 

           There are many methods of pumping a Laser and producing population 
inversion necessary for occurrence of stimulated emission. Some of the commonly 
used methods are given below:  

(1) Optical pumping, 

(2) Electric discharge, 

(3) Inelastic atom-atom collision, 

(4) Direct conversion, 

(5) Chemical Reactions. 

      Production of population inversion by above given method is follow as given 
description: 

16.2.1 Optical Pumping 

          If luminous energy is supplied to medium for causing population inversion, 
then the pumping is called the optical pumping. In optical pumping, the luminous 
energy usually comes from a light source in the form of short flashes of light. This 
method was first used in Ruby Laser by ࢔ࢇ࢓࢔࢏ࢇࡹ and is now a days used in 
solid state lasers. The laser material is simply placed inside a helical xenon flash 
lamp of the same type as used in photography. 

            
                                       Figure 16.1 

16.2 Pumping Mechanism    
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        Let us consider a material whose atoms can reside in three different states as 
shown in fig 16.1. Atoms in ground state are pumped to state are  state ܧଷ by 
photons of energy equal to ܧଷ − ݊݋݊ ଵ. The excited atoms then undergoܧ −
 transitions with a transfer of energy to the lattice thermal motion, to the ݁ݒ݅ݐܽ݅݀ܽݎ
level ܧଶ. They remain in this ݈ܾ݉݁݁ܽݐݏܽݐ energy state for a comparatively longer 
time. 

         Hence, there will be more atoms in the higher ݈ܾ݉݁݁ܽݐݏܽݐ energy state ܧଶ 
than in the ground state ܧଵ, i.e., we have a “݊݋݅ݏݎ݁ݒ݊݅ ݊݋݅ݐ݈ܽݑ݌݋݌”. Atoms in the 
metastable state ܧଶ are now bombarded by photons of energy ℎߥ = ଶܧ −  ,ଵܧ
resulting in a stimulated emission giving an intense, coherent beam in the direction 
of the incident photons. This is the method used in the ruby laser. This is show in 
figure 16.2. 

                        
                                              Figure 16.2 

16.2.2 Electric Discharge 

       The pumping by the method of electric discharge is preferred in gaseous-ion 
lasers for example Argon-ion laser. In discharge tube, when a potential difference 
is applied between cathode and anode; the electrons emitted from cathode are 
accelerated towards anode. Some of these electrons collide with atoms of the active 
medium, ionize the medium and raise it to the higher level. This produces the 
required population inversion. This mean is also called direct-electron excitation. 

16.2.3 Inelastic Atom-Atom Collisions 

           In electric discharge, one type of atoms is raised to their excited states. 
These atoms collide ݈݅݊݁ܽݕ݈݈ܽܿ݅ݐݏ with another type of atoms. It is these latter 
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atoms which provide the population inversion needed for Laser emission. The 
example is helium neon laser. 

16.2.4 Direct Conversion 

          In this type of method, a direct conversion of electrical energy into radiant 
energy occurs in Light Emitting Diodes (ݏܦܧܮ). The example of population 
inversion by direction by the method of direct collision occurs in semiconductor 
lasers. 

16.2.5 Chemical Conversion 

       This method follows in only Chemical Laser. In chemical Laser, energy comes 
from a chemical reaction without any need for other energy sources. For example, 
hydrogen can combine with fluorine to form hydrogen-fluoride 

ଶܪ + ଶܨ ⟶  ܨܪ2

       This above given reaction is used to pump a ܱܥଶ laser to achieve population 
inversion. 

16.3 Solid-State Rare Earth Ion Laser    
      It is the first one to come into the laser world. Solid state lasers are part of the 
laser systems involving high-density gain media. For the action of Laser the 
material should have following features: 

(a) It should have strong absorption bands. 

(b)The material must have a high degree of quantum efficiency for fluorescent 
transits. 

         Crystals or glasses, which have these characteristics, are doped with small 
amounts of ݀ݏݐ݊ܽ݌݋. Such materials have optical transition between inner, in 
complete electron orbits. 

 :Materials having these characteristics are mainly ݐ݊ܽ݌݋ܦ      

(a) Metals such as transition elements. Example ݎܥଷା. 

(b) Rare earths ion. Example ܰ݀ଷା.     

(c) Actinide Series. Example ܷଷା.  

       Host materials of solid state nature can be categorized into crystalline solids 
and glasses. The host material should have the following properties: 

16.3 Solid-State Rare Earth Ion Laser    
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(a) It should possess excellent optical, mechanical and thermal properties. 

(b) The material should have sufficient hardness. 

(c) The material should be chemically inert. 

(d) There should be no internal strain, voids or impurities. 

(e) There should be no variation in the refractive index, throughout the material. 

(f) The material should be resistant to damage due to radiation.  

(g) The material should be in such a state that it is easy to fabricate the system with 
it. 

          When compared to hosts of glasses, crystalline materials have clearer and 
sharper emission of fluorescence. This is due to the fact that the corresponding 

transitions are akin to the transitions of free ion. An example of this ܰ݀ doping in 

the crystal of ܻܩܣ or glass. The threshold of lacing action gets lowered by 
sharper fluorescent lines. Crystalline hosts have better thermal conductivity. 

16.3.1 Neodymium Lasers 

           It is a type of solid-state rare-earth ion laser, which falls into the group of 

lasers having narrow line-width. In this laser, the rare earth ܰ݀ଷା ion is doped in 
different host materials. Neodymium is considered to be the most useful laser 
material so far. It is most commonly doped in YAG or glass hosts. 

16.3.1.1 Nd-YAG Lasers 

          The energy level diagram of  ܰ݀ଷା doped in the host material YAG is 

shown in figure 16.3. Here, the laser levels are slightly less for ܰ݀ଷା doped in 
glass than that in YAG.  

For the further discussion of ND-YAG laser now we will see another simplified 
energy diagram which is shown in figure 16.4. 

          Fluorescence effect can be seen between 4ܨଷ/ଶ to the four ݉ݏݐ݈݁݌݅ݐ݈ݑ 

of levels to the ground state. It is important to note here that the ܨ ⟶  transition ܫ

is not permitted in the dipole approximation due to the fact that the orbital quantum 

numbers get changed by 3. As a result, ܨ levels are ݈ܾ݉݁݁ܽݐݏܽݐ. 
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     Figure 16.3: Energy level diagram of neodymium YAG laser  

 

 
      Figure 16.4: Simplified energy level diagram of ࢊࡺ૜ା in YAG 

The transition probability to the level 4ܫଵଵ/ଶhas an order of magnitude, which is 

higher than the probability of transition to other ݉ݏݐ݈݁݌݅ݐ݈ݑ. The level 4ܫଵଵ/ଶ 
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has an order of magnitude, which is higher than the probability of transition to the 

other ݉ݏݐ݈݁݌݅ݐ݈ݑ. The level 4ܫଵଵ/ଶ, as can be seen in figure 16.4 is about 

2000 ܿ݉ିଵ (݂ = 6 × 10ଵଷ) above the ground state. Hence, at ambient 

temperature, ћ݂ is much greater than ݇ܶ. Therefore, in a state of thermal 

equilibrium, the 4ܫଵଵ/ଶ level is practically empty. Therefore, in a state of thermal 

equilibrium, the 4ܫଵଵ/ଶ level is practically empty. A population in level 4ܨଷ/ଶ 
will initiate a process of inversion. 

           Transition from 4ܫଵଵ/ଶ to the lowest level occurs through ݊݊݋ −
 decay in a very rapid pace. The corresponding wavelength λ of the ݁ݒ݅ݐܽ݅݀ܽݎ

transition 4ܨଷ/ଶ ⟶  At ambient temperature, this can be .݉ ߤଵଵ/ଶ is 1.06ܫ4

seen with a ݊ܽ݅ݖݐ݊݁ݎ݋ܮ line-shape at 195 ݂ߜ) ݖܪܩ = 6.5ିଵ).  The 

upper level lifetime is 0.23 × 10ିଷ ݏ݀݊݋ܿ݁ݏ. 

            The lower lasers level 4ܫଵଵ/ଶ decays with a lifetime of approximately 30 
ns. However, this radiation is strongly absorbed by the lattice of the host and the 
resultant energy is converted into heat. Since YAG has excellent thermal 

conductivity, the heat energy is removed by conduction. The ܰ݀ −  system ܩܣܻ

can be worked either in pulsed or in ܹܥ mode. It can also be operated in mode-

locked ܳ −  .ℎ݁݀ conditionܿݐ݅ݓݏ

       ܰ݀ −  ,laser is a four-level system. Because of the narrow line-width ܩܣܻ
the cross section of stimulated emission is large and the threshold of pumping is 
low. But the absorption bands are also narrow. Hence, the excellent radiation 
emitted by the flash lamp is not fully utilized. As a result, attempts have been made 
to use gases like krypton in the pumping lamp, which matches the emission bands. 

        A recent development in ܰ݀ −  system is by using semiconductor ܩܣܻ

laser output to pump the 4ܨଷ/ଶ level directly. The ability of semiconductor lasers 
to convert electrical energy to photons is quite high. As such, YAG laser can be 
pumped with simple power supplies-even torch batteries. 

      The wavelength of the output can be converted to green (ߣ଴ = 532 ݊݉) 

with a ܶܯܧ଴଴ mode, which is limited by the diffraction of the output, by 
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adopting frequency-doubling techniques. The system is so compact and portable 
that it can be even contained in a very small box one forth the size of a brief case. 

       In several commercial operations, the emission in the infrared region of the 

ܰ݀ −  laser is frequency-doubled, to bring it to the visible region, using a ܩܣܻ
non-linear interaction in the YAG Crystal. 

   :Glass Laser-ࢊࡺ 16.3.1.2

      Glass has been under study from ancient times and has found application in 
many fields. Glass is smooth, sufficiently strong and can be made in any shape. It 
can be polished to very fine surface finish. 

      The materials of glass consist of a mixture similar to molasses, frozen to solid 
form. This leaves various small areas of the material oriented in slightly varying 
directions. As such, different levels of energy, which are dependent on the strains 
that are reposed upon them in the matrix that is frozen. The different areas having 
different energy levels in the excited state result in different radiating frequencies 
in the different areas. The emission line consists of the sum total of all the 
individual lines. Therefore, a much broader emission spectrum is obtained which is 
more than that could be achieved, from one single crystalline structure. 

 
      Figure 16.5: Comparison of emission line widths of radiating ࢊࡺ−
−ࢊࡺ ࢊ࢔ࢇ ࡳ࡭ࢅ   .materials ࢙࢙ࢇ࢒ࢍ

              The emission schemes such as ܰ݀ −  is broader ܩܣܻ

݅݊ℎݕ݈ݏݑ݋݁݊݁݃݋݉݋ having a Gaussian shape and is generally much broader 
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than the emission line in a crystalline material such ܰ݀ −  where the ܩܣܻ

broadening takes place homogeneously giving a ݊ܽ݅ݖݐ݊݁ݎ݋ܮ form. As a result, 

ܰ݀ doped in glass gives a  ݂ߜ = 7.5 × 10ଵଶ ݖܪ, as compared to ܰ݀ doped 

in crystalline matrix such as ܰ݀ − ߥߜ which gives a broadening ܩܣܻ =
1.2 × 10ଵଵ ݖܪ. Hence, if we consider the same concentration of doping, the 

maximum emission that occurs at the centre frequency of ܰ݀ −  is much ܩܣܻ

larger than that of ܰ݀ −  This is due to the fact that there are the same .ݏݏ݈ܽ݃

numbers of radiating species and the ݁ݒ݅ݐܽ݅݀ܽݎ rates from the upper laser 
levels are similar. However, they are not really identical since the upper level 

lifetimes are different. This comparison between ܰ݀ − ݀ܰ and ܩܣܻ −
 .is shown in given figure 16.5 ݏݏ݈ܽ݃

        There is large use of ܰ݀ doped glass as a laser medium for Pulsed lasers. 

ܰ݀ − ݀ܰ And ݏݏ݈ܽ݃ − ݂) oscillate at almost the same frequency ܩܣܻ =
2.83 × 10ଵସ ݖܪ). However, while ܰ݀ −  laser can be utilised ܩܣܻ

in ݁݀݋݉ ܹܥ, due to low thermal conductivity of glass, its utilisation in 
continuous oscillation is limited and hence it is usually worked in single pulses. 

       There are many types of glasses used in Lasers and all the glasses are different 
in properties with each other. For example Phosphate Glass, Silica Glass, Borate 
Glass etc. 

       The main characteristics of glass laser are as follows: 

 (a)Glass rods having good quality can be made with almost any diameter starting 
from fibres to conventional rods. Hence, we can have high level of powers with 
comparatively low power density. It is rather easy to fabricate glass in various 
forms with good optical quality. Therefore, glass has become a more common 
candidate for lasers. 

(b)Glass does not absorb the emission of laser. 

(c)Glass is better than crystalline systems since the latter develops problems 
mainly due to the fact that during laser operations the crystals get distorted due to 
excessive heating, which cannot be avoided. However, neodymium-glass lasers are 
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tough and highly resistant to damage from high power densities. This is due to the 
fact that glass can be made totally free of internal strain and stress. 

(d)Glass is optically homogeneous and hence it van be doped in high level of 
concentration of impurities. 

(e)ܰ݀ −  lasers produce high-energy outputs, per unit volume, of the ݏݏ݈ܽ݃
material. Thousands of joules per millisecond can be achieved with larger sizes of 
glass rods.   

(f) ܰ݀ଷା doped in glass has the broad ݈݅݊݁ݐ݀݅ݓℎ of laser transition, which is 

of the order of 30 to 40 nm. This broadening happens because of the ݊݊݋ −
ℎݕݐ݅݊݁݃݋݉݋ of the ion environment. Therefore, this laser usually does not 
operate in a single spectral mode. 

     The importance of ܰ݀ −  are that, glass has isotropic properties and ݏݏ݈ܽ݃

can be doped in high concentration (ܾܽ3 ݐݑ݋%) and can be made in large sizes 

with good optical quality as mentioned earlier. In fact, ܰ݀ −  laser was ݏݏ݈ܽ݃

made even before ܰ݀ −  .laser ܩܣܻ

     The laser transition occurs at about 1.06 microns and the transition varies from 
one type of glass to another type of glass, which also depends upon the constitution 

and structure of the glass. Different glass hosts are available and the ݀ݐ݊ܽ݌݋ 

concentration also can be changed. The glass doped in ܰ݀ is also a four-level 

system. The line-width of fluorescence ranges about 300ܿ݉ିଵ and is 

approximately 50 times larger than that of ܰ݀ −  This is because of the .ܩܣܻ
amorphous structure of glass. Because of wider line-width, there will be higher 

threshold of laser action. The upper laser level lifetime depends on the ܰ݀ଷା  
concentration and type of the host glass. 

      A large number of glasses have been in use. Some of them are mentioned 
below: 

ܩܮ (ܣ) − 60 of Schott (Germany). 

ܦܧ (ܤ) − 2 of Owen Illinois (USA). 

ܳ (ܥ) − 88 of ݁ݎ݃݅ܭ (USA). 
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ܩܪܮ (ܦ) − 5 And ܩܥܮ − 11 of Hoya (Japan). 

ܩܮ                        − ܦܧ,60 − ܩܥܮ ݀݊ܽ 2 − 11  are Silicate glasses. ܩܪܮ −
5 ܽ݊݀ ܳ − 88 are phosphate glasses. The gain coefficient of a phosphate glass is 
higher than that of a silicate glass due to its line-width, which is narrower. 

      The CGCRI has developed an indigenous glass, which is found to be as 
efficient as the ܦܧ − 2 glass. This glass is reported to have given a fluorescence 
decay time of 240 ± 20 microseconds at 1/݁ point. In two studies carried out, 
emission of the order 8 × 3 × 10ିଶ଴ܿ݉ଶ and 3.2 × 10ିଶ଴ܿ݉ଶ have been reported. 

      Silicate glasses have the less importance of less thermal expansion, lower 
refractive index and hence smaller non-linear effects and better chemical stability, 
which means, resistance to etching action by water, as compared to phosphate 
glasses. But phosphate glasses is have the importance of narrower fluorescent 
band, higher gain and larger lifetime in excited state, which gives better output and 
better pumping efficiency as compared to silicate glasses. Phosphate glasses have 
the problem of getting etched by water. In order to prevent this, water is mixed 
with about 50% ethylene glycol. 

    Fluorophosphates glasses are now being made which produce a high gain with 
lower non-linear refractive index. It may be recalled that the non-linearity is 

connected with refractive index μ and it is larger for larger refractive indices. If we 
take, for example, a high power cascaded chain of oscillator/amplifier, we can do a 
matching of wavelengths of ܰ݀ −  oscillator with the wavelength of ݏݏ݈ܽ݃
ܰ݀ −  amplifier. Higher level of concentration of doping is the main concern ܩܣܻ
in systems with high power. 

    Flash lamps are beset with the problem of intense radiation of ultraviolet lights 
emitted by them. These radiations enter the rod, used in the laser. This is known in 
the laser parlance as solarisation. It is essential to get this effect reduced. There are 
different methods and techniques to get the solarisation minimized. 

     We are used a method in laser, or flash lamp which method is to shroud the rod, 
with a tube having a material, which can absorb the ultraviolet rays. An example is 
a glass doped with samarium. We can also use a filter of glass, which is coloured. 
This filter cuts off the unwanted ultraviolet rays. However, it permits the radiation 
in the normal band of pumping. Another method is by exploiting the spectral 
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properties of the coolant in the pumping cavity and then getting the absorption of 
the ultraviolet rays improved using potassium dichromate in the coolant. In yet 
another method, use of fluorescent in the required band for useful pumping action 
6G can be used. The dependence pattern for thermal energy in case of ruby, YAG 
and glass lasers indicate that a ruby laser is highly dependent on temperature due to 
high level of changes in line-width with temperature. ܰ݀ −  also is ܩܣܻ
temperature dependent but as compare to the ruby laser not much, it is much less; 
whereas ܰ݀ −  .is not sensitive to thermal energy ݏݏ݈ܽ݃

     Apart from having smaller line-width, crystalline materials have the advantage 
over glass that they have better thermal conductivity. However, crystals have the 
limitation of being and cannot be grown into large dimensions. Owing to 
comparatively poor conductivity in glass, the pulse repetition rate is limited as 
compared to YAG. Moreover, the line-width of fluorescence of ܰ݀ in glass is quite 
sensitive to variation in temperature. Glasses find more suitable application in high 
energy pulsed operations because of larger line-width. Formulations of glass could 
be improved by dense suspension of tiny crystallites, which can be embedded in 
the matrix of glass. 

        We saw that one of the major problems in solid state lasers is the distortions 
in the laser rods, which are thermally induced. This result is variation in refractive 
index within the laser medium. The thermally induced distortion also leads to 
alteration of effective cavity dimensions. These distortions in turn create distortion 
of the mode structure of the laser and the wave front. Therefore, it is necessary to 
cool the system in high power solid state lasers. For cooling, either air is forced 
into the system or a liquid coolant is circulated in the scheme.  

     One important requirement of an optical amplifier is the storage of energy in the 
inversion of population. As mentioned earlier, glass lasers have a very high figure 
of merit. Amplification of very short pulses is possible due to wide bandwidth over 
which gain is prevalent. 

     Glass, cut into discs, is used in high power chain amplifiers to study the features 
of fusion. These discs are placed at Brewster’s angle in the beam, which reduces 
reflection loss and increases pumping efficiency, by a better pump illumination. 
Laser radiation with high intensity at power densities of the order of many 
 ,causes cracks in the glass. This is due to heating and absorption ݏݐݐܽݓܽ݃݅݃
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inclusions and self-focusing of the laser beam by non-linear effects. By using 
discs, self-focusing of laser radiation can be avoided. 

16.4 Dye Lasers              
16.4.1 General Characteristics         

       These lasers are produced in an organic liquid media. These lasers have unique 
characteristics that they do not have ݅݊ℎݏ݁݅ݐ݅݁݊݁݃݋݉݋ as solid lasers. They also do 
sustain permanent damage. The emission spectra and gain of dyes are very broad, 
which offers tunability and mode locked short pulses at output. The laser gain 
medium consists of strongly emitting and absorbing organic dyes which are 
dissolved in a solvent. 

          The molecules of the organic dyes are very complex belonging to one of 
several classes which are given below: 

  ,This radiates in the visible region from 500 to 700 nm :ݏ݁ݕ݀ ℎ݁݊݁ݐ݊ܽܺ

 This emits in the red or near infrared region at 700 to 1500 :ݏ݁ݕ݀ ℎ݅݊݁ݐ݁݉ݕ݈݋ܲ
nm, 

 This radiates in the green and blue region at 400 to 500 nm :ݏ݁ݕ݀ ݊݅ݎܽ݉ݑ݋ܥ

  .This radiates in the ultraviolet region at 320 to 400 nm :ݏ݁ݕ݀ ݎ݋ݐ݈݈ܽ݅ݐ݊݅ܿܵ

     For making a laser medium, organic dyes are dissolved in solvents like ethylene 
glycol, methyl and ethyl alcohol and water. In these solvents, the concentration of 
the molecules of the dye is of order of one in ten thousand. Therefore, the dye 
molecules are quite apart from one another and because of this, each molecule is 
surrounded only by molecules of the solvent.  

        A specific dye laser operates over a range of wavelengths between 30 to 40 
nm. The region of gain is narrower than the bandwidth of emission due to 
absorption at ground state. There are more than 200 dye lasers. When these are 
used in a sequential manner, they can produce ݈ܾ݁ܽ݊ݑݐ laser beams over a range of 
wavelength between 320 and 1200nm. 

16.4.2 Types of Dye Lasers 

        There are three types of dye Lasers, which are given below:  

(a)Pulsed dye lasers, 

16.4 Dye Lasers              
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(b)Continuous Wave (CW) lasers, 

(c)Mode-locked dye lasers. 

        When pumped with other lasers such as frequency multiplied ܰ݀ −  ,ܩܣܻ
nitrogen or ݁ݎ݁݉݅ܿݔ, pulsed dye lasers can produce output pulses up to tens of 
 in 10 nm pulses. The diameter of the beam will be a few mm and the ݏ݈݁ݑ݋݆݈݈݅݅݉
pulse repetition rate, up to 1 KHz. Dye lasers pumped by flash lamp can produce 

up to 400 Joules of output in 10μm pulses. Continuous wave dye lasers produce 
power outputs up to 2 watts. These lasers can be made to have a very thin 
 have been produced by ݏ݂ ℎ of emission of less than 1 KHz. Pulses of 200ݐ݀݅ݓ݈݁݊݅
mode-locked dye lasers, without having to introduce gratings or dispersive prisms 
in the cavity. The pulses can be as short as 6 ݂ݏ. Dye lasers have been made in 
sizes ranging from small (of the order of 10 cm in length) to massive mode-locked 
systems, which would extend too many optical tables. 

16.4.3 Geometry of Dye Lasers 

              There are four types of lasers which are given below: 

(a) Pulsed dye lasers pumped by flash lamps. 

(b) Tunable pulsed dye lasers pumped by other lasers. 

(c) Tunable continuous wave lasers. 

(d) Mode-locked dye lasers. 

16.4.3.1 Pulsed Dye Lasers Pumped By Flash Lamps 

 A pulsed dye lasers, pumped by flash lamp, is shown in figure 16.6, given below: 

 
           Figure 16.6: Pulsed dye laser pumped by a flash lamp    

       The dye laser cell is surrounded by a coaxial cylindrical flash lamp. Between 
the flash lamp and the dye cell, there is a provision for water-cooling. The reflector 
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around the flash lamp redirects its output to dye cell. This laser can produce pulses 
of 5 joules in pulses duration of 1.5 ݏߤ and a peak power of more than 3 megawatts 
per pulse. The input power of the laser is 1000 joules and the pulse repetition rate 
is 0.5 Hz. The dye used is ݎℎ6 ݁݊݅݉ܽ݀݋ G. The laser can be tuned and operated 
at a wavelength of 585 nm. 

16.4.3.2 Tunable Pulsed Lasers Pumped By Other Lasers 

        This category of dye lasers produces ݈ܾ݁ܽ݊ݑݐ pulsed laser outputs of 
extremely narrow frequency of the order from 190 nm to 4.5 ݉ߤ. The system of a 
basic dye laser is given below in figure 16.7. 

 
Figure 16.7: Arrangement of a tunable dye laser pumped with another laser.  

        It covers a frequency range of the order of 380 to 900 nm, in which pumping 
is done either by a ݁ݎ݁݉݅ܿݔ laser or ܰ݀ −  laser, whose frequency is doubled ܩܣܻ
or tripled. in this type of laser scheme, the extended frequencies at both the longer 
and shorter  wavelengths are produced by the sum and difference  frequency 
mixing of the basic range of wavelengths. This  is done by another optical 
component which is not indicated in the above given figure. 

     The energies of the output pulse range from tens to hundreds of millions joules, 
over pulse duration of the order of 10ns. And this depends upon the wavelength. 
The pump beam, either ݁ݎ݁݉݅ܿݔ or frequency doubled or tripled ܰ݀ −  gets ,ܩܣܻ
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divided into several separate beams as shown in figure 16.7. One of the beams 
pumps a ݈ܾ݁ܽ݊ݑݐ oscillator, with narrow frequency output. The ݈ܾ݁ܽ݊ݑݐ oscillator 
contains a beam grating, an etalon and beam-expanding unit. The other beams are 
used for end pumping or side pumping of several dye amplifiers. The output laser 
of the dye can be very narrow-as narrow as 10 GHz. If we use an air-spaced etalon, 
it cam further gat reduced to 1.5 GHz. 

16.4.3.3 Tunable Continuous Wave Dye Lasers 

           These types of lasers are usually pumped by other CW lasers like the Argon 
ion laser. The arrangement of this type of lasers is given below in figure 16.8: 

 
               Figure 16.8: CW tunable dye laser-laser pumped. 

          Here, the cavity consists of 3 reflectors. Two of these reflectors focus the 
beam into the jet stream, which is the thin following dye region. The jet stream is 
oriented at Brewster angle. The flow of the dye is in a direction normal to the plane 
of this page. The end-pumping method is used to pump the dye. The pumping is 
usually at a small angle to the jet stream with an additional reflector. The operation 
can also be done by pumping directly through the third reflector. Tuning can be 
done by inserting a prism and rotating the laser reflector located beyond the prism 
as shown in figure 16.9. 
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                          Figure 16.9: Tuning of dye laser using prisms 

       The pump beam enters the cavity through the prism since it is at a shorter 
wavelength as compared to output of the dye. Hence, it enters the prism at a 
different angle then the laser beam. 

16.4.3.4 Mode Locked Ring Dye Laser 

          The schematic arrangement in a passively mode-locked ring dye laser is 
shown in below given figure 16.10. 

 
Figure 16.10: Schematic arrangement of a mode-locked ring dye laser 
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           Here, we see the production of a laser pulse of ݂݁݉݀݊݋ܿ݁ݏ݋ݐ duration. The 
design of the cavity is such that, within the cavity, there are odd numbers of beam 
waists are formed by the five concave mirrors, which ensures uniformity in the 
spectral distribution of the laser bandwidth within the resonator. The optical path-
length between the two jet streams is one fourth of the optical paths surrounding 
the ring. 

         There are two counter-propagating pulses inside the cavity. As a result, both 
pulses have identical characteristics. This happens by making the time required for 
recovery of gain to be the same for each pulse. Maintaining the critical dimensions 
or geometry of such a cavity is extremely important. Then only we will get the 
shortest pulse. 

16.5 He-Ne Lasers  
        It is gaseous laser beam. Solid state laser (Ruby laser) does not generate a 
continuous laser beam. For this difficulty in solid state laser, 
 gave a gas laser, which emits continuous laser beam ݐ݋݅ݎݎܽܪ ݀݊ܽ ݐݐ݁݊݊݁ܤ,݊ܽݒܽܬ
rather than in pulses. It uses a mixture of helium (He) and neon (Ne) gases. Its 
operation involves four energy levels, three in neon and one in helium. The 
excitation of helium and neon atoms to higher energy states is performed by means 
of radio (high) frequency electromagnetic field. The construction of the He-Ne 
laser is given in figure 16.11. 

16.5.1 Construction of He-Ne Laser 

         It consists of: 

 (i)A working substance in the form of a mixture of helium and neon gases in the 
ration 7:1 at a total pressure of 1 mm of Hg. 

 (ii)A resonant cavity of quartz tube is of about 0.5 m length and 5 mm diameter. 
There are two windows ଵܹ ܽ݊݀ ଶܹ made optically flat and cemented at Brewster’ 
angle to the tube axis for specific wavelength ߣ. The ends of the cavity are 
enclosed by two concave mirrors, ܯଵ ܽ݊݀ ܯଶ, one perfectly reflecting and other 
partially reflecting. 

(iii) An exciting source for creating a discharge in the tube. It is generally a radio 
frequency high voltage source such as a ݈ܽݏ݁ݐ coli and is applied by means of 
metal bands around the outside of the tube. 

16.5 He-Ne Lasers  
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                           Figure 16.11: He-Ne Laser. 

16.5.2 Operation of He-Ne Laser 

         The working of the He-Ne laser is based on the fact that the neon has energy 
levels very close to ݈ܾ݉݁݁ܽݐݏܽݐ energy of helium. He-Ne gas lasers can operate 

into three distinct spectral regions in the red 6328 Å, in the near infrared around 
 The partial energy level diagram of he-Ne .݉ߤ and in the infrared at 3.39 ݉ߤ 1.15
is given in the figure 16.12, which explains the origin of these lines. 

 
Figure 16.12: Partial energy level of He-Ne gas LASER along                               
with transitions. 

     When electromagnetic energy is injected into the tube through metal bands by 
means of a radio frequency high voltage source, helium atoms get excited to 
 state. The excited helium atoms collide with unexcited neon atoms ݈ܾ݁ܽݐݏܽݐ݁݉
and resonant energy transfer takes place so that neon atoms get excited to a 
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specific energy level. Helium atoms after transferring energy return to the ground 
state. The laser action takes place only in neon-atoms while helium in the mixture 
serves the only purpose to enhance the excitation process. 

     When population inversion has occurred in Ne-atoms, they return to lower 
energy states emitting the photons. The photons emitted parallel to the axis of tube 
bounce back and forth between polished mirrors and stimulate emission of the 
same wavelength from other excited Ne-atoms. Hence, the photons get multiplied 
and a powerful, coherent, parallel laser beam emerges from the partially reflecting 
end of the tube.  

16.6 CO2 Electric Discharge Lasers            
          In all gaseous lasers, carbon dioxide laser is considered to be most efficient 
and powerful laser. This laser uses a mixture of carbon dioxide, nitrogen and 
helium. Oscillations occur between two vibrational levels, in carbon dioxide, while 
the efficiency is greatly improved by nitrogen and helium. The laser operates in the 
middle infrared in rotational-vibrational transitions, in the 10.6 ݉ߤ and 9.5 ݉ߤ 
regions of wavelengths. Both CW and pulsed output is available in different 
configurations of gas discharge in a mixture of ܱܥଶ, ଶܰ and He gases. A typical 
mixture has a ratio of ܱܥଶ: ଶܰ of approximately 0.8:1. The ratio of helium is more 
than nitrogen. This laser gives pulsed energy of 10 KJ and CW power of the order 
of more than 100KW. The gain takes place, over a range of rotational vibrational 
transitions, which are dominated by either Pressure-broadening or Doppler-
broadening. This depends on the pressure of the gas. 

          The lasers operate over a range from small CW modes, of the types in wave-
guides, with lengths up to 35 cm to larger pulsed modes. A man could even walk 
through such large tubes designed for these lasers. There is a CW version with a 
cavity having a length of 1.2 m, which gives one or more KW of output power. 

16.6.1 Geometry of Carbon Dioxide Lasers 

     There are different structures of carbon dioxide lasers, which are given below: 

(a) Wave-guide carbon dioxide laser. 

(b) Transverse Excitation Atmospheric Lasers (TEA lasers). 

(c) Longitudinally excited laser. 

16.6  CO2 Electric Discharge Lasers            
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(d) Gas dynamic laser. 

16.6.1.1 Wave-Guide Carbon Dioxide Laser 

        For the construction of this laser, the first attempt was with a hollow structure 
having a small bore. A practical scheme of this configuration was made about a 
decade after that. This geometry is known as wave-guide laser. These lasers are 
made with gases like helium-neon, helium-xenon, nitrogen, carbon dioxide, xenon-
fluorine and a large number of other molecules, which have emission in the far 
infrared region of the spectrum. 

           These are considered to be the most efficient of schemes, which can 
produce a compact, continuous wave, ܱܥଶ laser. The scheme consists of two 
transverse radio frequency (RF) electrodes separated by insulating sections, which 
form the bore region as shown in figure 16.13. 

          A radio frequency power supply is connected to the electrodes, which 
provides a high-frequency alternating field, across the electrodes inside the bore 
region. The bore is usually square in shape. The bore should be able to propagate 
the beam in wave-guide modes, which gets reflected from insulating materials (or 
insulators). The modes reflect, off the walls of the discharge, in zigzag manner and 
hence, the modes can access the entire gain medium. 

       The small bore regions make the scheme work in high pressure. It also helps in 
quick removal of heat. As a result, a high output power and high gain is available. 

         The main property of this category of lasers to produce CW powers, up to 
about 100 W. 

 
              Figure 16.13 Scheme of Wave-guide ࡻ࡯૛ laser 
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16.6.1.2 Transversely Excited Laser At Atmospheric Pressure (Tea Laser) 

        In a TEA laser, atmospheric pressure is maintained inside the discharge tube. 
However, the gas discharge is not maintained by applications of an electric field 
longitudinally. The discharge is maintained by applying the field in the transverse 
direction as showing in figure 16.14. 

 
Figure 16:14: Arrangement of TEA laser showing discharge taking place 
normal to laser cavity. 

        The voltage, required for transverse excitation, is quite less since the gas 
discharge occurs at a critical electric field. The transverse directions are of the 
order of 10 mm, which requires a voltage of about 0.12 KV. The discharge has to 
be maintained uniformly through the total length of the discharge tube. 

The TEA lasers operate at a gas pressure of 1 atmosphere or more. The energy 
output is function of the volume of gas. There are more laser species at higher 
pressure. 

       Operating the laser at high pressure, with a discharge that is longitudinal, is 
very difficult because, this operation demands very high voltages for initial 
ionization of the gas; moreover arcing can occur within the discharge, which will 
make the current to flow in a random and irregular direction, as in the case of a 
thunder and lightning. Whereas, in a transverse discharge, the electrodes are placed 
parallel to each other, over entire length of the discharge tube, separated by a few 
centimeters and high voltage is applied as shown in figure 16.15. 

         Before applying the high voltage, a process of pre-ionization is done to ionize 
the region between the anode and cathode, which results in filling up of the area 
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with electrons. The pre-ionization enables the discharge to be uniform through the 
entire electrode assembly and arcs due to generation of high current are avoided. 

 
                        Figure 16.15: Arrangement of TEA ࡻ࡯૛ laser. 

       The process of pre-ionization involves flashing of ultraviolet rays from an 
array of pre-ionizing ultraviolet spark discharges. This ionizes a portion of the gas 
uniformly between the electrodes. These lasers can produce a large amount of 
energy (many joules). With this configuration the best form of high-energy pulses 
can be obtained. 

16.6.1.3 Longitudinally Excited CO2  Laser 

       The arrangement of the system of longitudinally excited ܱܥଶ laser is given 
below in figure 16.16.  

       These schemes work as conventional gas discharge lasers having long 
cylindrical, narrow glass enclosures with electrodes at both ends, which provides 
the current for excitation of the discharge. These lasers can operate in CW or pulse 
modes. These tubes can be very long-several meters. In some configurations, the 
enclosures of the discharge are sealed. This necessitates refilling of the gases, 
because in the sealed tube, the ܱܥଶ molecule can get disintegrated. The  ܱܥଶ 
molecules can break up and produce oxygen, which can result in corrosion of the 
electrodes. 

     In some versions, the gas is introduced into the tube longitudinally. This is done 
in order to conserve the gas. Water vapour is considered to improve the power 



338 
 

output and operating life of a  ܱܥଶ laser. Water produces OH radical in the 
discharge which when combined with CO, produces  ܱܥଶ and H. The enhanced 
output power of  ܱܥଶ- ଶܰ-ܪ -݁ܪଶܱ (or  ܪଶ) laser is believed to be due to the 
effective relaxation of the lower laser level by impact with  ܪଶ. 

 
             Figure 16.17: Longitudinally Excited   ࡻ࡯૛ laser. 

       Sealed off lasers have the advantage of being compact and portable. The 
output spectrum is stable. Conservation of costly gases like helium is also possible. 
However, they suffer the disadvantage of having smaller operating lifetime. The 

tube is required to be cooled with water to keep the temperature at about 20℃ 
because the output of the laser decreases as the walls of the tube becomes hotter.     

16.7 Gas Dynamic Lasers 
        This laser is different with compare to other laser. In this laser, population 
inversion is achieved by application of thermodynamic principles and not by 
standard electrical discharge. A mixture of carbon dioxide and nitrogen is first 
heated, compressed and then passed through a specially designed nozzle, into a 
low-pressure region. While heating and compressing, the population of the energy 
states touches the Boltzmann distribution adequate for higher temperature. A large 
portion of the energy gets stored in the vibrational mode of the nitrogen molecule. 

           The resonant impact of the excited nitrogen molecules, with the carbon 
dioxide molecules, populate the 001 state of the ܱܥଶ, which results in population 
inversion which can be increased by adding a small quantity of water vapour as we 
have seen in the previous section. The water vapour has to be added at the points, 
where the gas expansion occurs. This accelerates the relaxation of the 100 state, to 
the ground state. An optical cavity is introduced inside the region where the 

16.7 Gas Dynamic Lasers 
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maximum amount of population inversion occurs. By this, CW powers, of the 
order of tens of kilowatts, can be obtained. However, the system is quite 
voluminous and operation is noisy. 

           In these lasers, the gas flows in the transverse direction, to the axis of the 
laser, as is done in the TEA laser. Excitation takes place due to the heating, which 
is done thermally. In some versions, the heating is also done electrically. The upper 
laser level thus gets populated. The arrangement of gas dynamic laser is shown in 
figure 16.18.  

 
Figure 16.18: Gas Dynamic Laser 

       As mentioned earlier, a small amount of water vapour is added to the gas 
mixture. The rapidly flowing gas is then expanded at a very high speed through an 
expansion nozzle into the low-pressure zone, using high speed pumps. This sudden 
expansion cools the gas. This provides a rapid relaxation of the lower laser level 
from the highest rotational state. This leaves a population inversion of the 
unoccupied higher rotational state, as compared to the upper laser level.                

16.8 Excimer Lasers                                                       
 For the principle of ݁ݎ݁݉݅ܿݔ lasers, let us consider a situation, which is given 
below: 

       Consider a diatomic molecule ܯଶ, having curves of potential energy as shown 
in figure 16.19. These curves show the ground state and excited states. The ground 
state is repelling and therefore the molecule does not exist in this state; which 

16.8 Excimer Lasers                                                       
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means that the species ܯ, exists only in the ‘monomer’ form M in the ground state. 
But the curve of potential energy for excited state touches a minimum. Hence, the 
molecule ܯଶ exists in the excited state; which means, species M exists in the 
excited state. Such a molecule  ܯଶ

∗ is called an ‘Excimer’ which is evolved from 
the words ‘ݎ݁݉݅ܦ ݀݁ݐ݅ܿݔܧ’. 

 
             Figure 16.19: Energy levels in an Excimer language. 

       A similar situation can happen with molecules of more complex nature. Some 
complex molecules exist only in excited state and they dissociate when they are in 
the ground state. This type of a molecule is called ‘ݔ݈݁݌݅ܿݔܧ’ derived from the 
words ‘Excited Complex’. 

       Let us consider that a large number of ݁ݏݎ݁݉݅ܿݔ have been created within a 
particular volume. Lasing can take place on the transition between upper bound 
state and the lower unbound level. Such a laser is called an ݁ݎ݁݉݅ܿݔ laser. The 
 laser has unique characteristics indicating the condition, that the ground ݎ݁݉݅ܿݔ݁
state is repelling in nature. They are: 

(a) After undergoing laser transition, once the molecule reaches the ground state, it 
quickly dissociates. This indicates that the lower laser level will always be 
unoccupied. 

(b) There is no ݈ܿ݁ܽݎ − ݈ܽ݊݋݅ݐܽݐ݋ݎ or well defined ݐݑܿ −  transition in ݈ܽ݊݋݅ݐܽݎܾ݅ݒ
existence. The transition is also broadband. As a result, a ݈ܾ݁ܽ݊ݑݐ laser radiation 
over the broad band can be obtained. 

         Excimer lasers are pulsed lasers of short duration. These lasers are made by 
combining a rare gas atom of argon, krypton, xenon, etc and a halogen atom of 



341 
 

fluorine, chlorine, bromine or iodine. The excimer molecule, as mentioned earlier, 
exists only in the excited state because of the fact that the ground state is of 
extremely short duration, due to the repulsive force between the two atoms of the 
molecule in the ground state. 

      A typical excimer lasers emit in the ultraviolet region of the spectrum. 
However, some of them do operate in the visible region also. 

Examples of excimer lasers are: 

 .ଶ with transition at 153nmܨ (ܽ)
ݎܣ (ܾ) −   .݉݊ 193 ݐܽ ܨ
ݎܭ (ܿ) −   .݉݊ 248 ݐܽ ܨ
(݀) ܺ݁ −   .݉݊ 308 ݐܽ ݈ܥ
(݁) ܺ݁ −   .݉݊ 353 ݐܽ ܨ
       A typical excimer laser has gain medium with length of 0.5 to 1.0 m. It would 
also have a transverse discharge configuration for its electrodes similar to ܱܥଶ 
lasers. The halogen species have tendency to disintegrate and form other unwanted 
species during the operation of the laser. Therefore, the schemes require a 
 system of gas, to provide a constant and regular supply of purified ݃݊݅ݐ݈ܽݑܿݎ݅ܿ݁ݎ
constituents of the gas, to the gain region. Because of very high order of gain, these 
lasers produce a multi-mode output, of a very high order. Since they can give out 
high pulse energy, and ultraviolet output, they can be effectively used in material 
processing. 

16.8.1 Structure of Excimer Lasers 

 The arrangement of a typical excimer laser is shown in figure 16.14.  The 
halogens are corrosive in nature. So, the entire structure and components are made 
of stainless steel with corrosion resistant materials, such as Teflon or polyvinyl, 
like in TEA laser, the discharge takes place in the transverse direction. The 
electrodes are metal pieces that are flat and long in size. The metal pieces are 
rounded in the corners to make the electric field uniform between the electrodes, 
when the voltage is applied. So, arcing is avoided, and there will be a uniform 
excitation. There is an initial electron seeding which is achieved by a pre-
ionization pulse; in the area between the electrodes, which also ensure uniform 
excitation. Just as in the case of a TEA ܱܥଶ laser, the pre-ionization pulse is 
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produced by an array of tiny ultraviolet spark charges; which is called a ‘flash 
board’. These sparks emit sufficient ultraviolet radiation to produce ionization in 
the gain region, which substantially increases and electrical conductivity of the gas 
medium 

 
Figure 16.20: Structure of Excimer Laser 

 A high-voltage capacitor, coupled with a thyratron-switching device, provides the 
discharge current. A mirror with high reflectivity is placed at the rear of the laser 
system. This arrangement is not shown in given diagram. A flat quartz is placed at 
output-coupling mirror. The low reflectivity of the quartz is adequate to give the 
required optical feedback, within the medium, for efficient working, because the 
gain is typically of the order of 0.8݉ିଵ. 

       In these lasers also, like in ܱܥଶ lasers, a wave-guide can be used. 

       In waveguide excimer lasers, electric discharge tubes, with bore regions, 
having a lateral dimension of less than 1 mm are used. The metallic transverse 
electrodes are fixed externally to the bore. The electrodes provide pre-ionizing 
pulse, of high voltage and a radio frequency main pulse to the tube.   
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16.9 Self Learning Exercise                                                
Q.1  Give the application of rare-earth ion laser.  

Q.2  Give the application of He-Ne laser. 

Q.3  Give the application of Dye lasers. 

Q.4  What is metastable state? 

Q.5  What is the principle of Laser? 

Q.6  Give the application of Excimer Laser. 

Q.7  Give the characteristics of Laser rays. 

16.10 Summary 
          A solid state laser was the first one to come into the laser world. Solid state 
lasers are part of the laser systems involving high-density gain media. Neodymium 
is a typical example of an optically pumped rare-earth laser system. 

       After solid state laser, liquid lasers are designed. These are the lasers in which 
the active medium is formed by solutions of certain organic dyes dissolved in 
liquids such as alcohols or water. 

       Then gas laser fall in the category of lasers involving low-density gain media. 
The gas media are used in almost half of the commercial lasers that are currently 
available. 

       In chemical laser, the energy pumping is obtained from a chemical react ion. 
Typical chemical lasers operate on molecular transitions. 

16.11 Glossary 

Pumping: It is a process by which population inversion can be produce known as 
pumping. The population inversion can be achieved by exciting the medium with 
suitable form of energy. 

Direct Conversion: In this type of method, a direct conversion of electrical energy 
into radiant energy occurs in Light Emitting Diodes (ݏܦܧܮ). The example of 
population inversion by direction by the method of direct collision occurs in 
semiconductor lasers. 

16.9 Self Learning Exercise                                                

16.10 Summary 

16.11 Glossary 
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Dye Lasers: These lasers are produced in an organic liquid media. These lasers 
have unique characteristics that they do not have ݅݊ℎݏ݁݅ݐ݅݁݊݁݃݋݉݋ as solid lasers. 

16.12 Answer of Self Learning Exercise  

Ans.1: ܰ݀ laser are commonly used than other similar lasers. They find various 
applications as compared to other lasers. The major application is in the different 
forms of material processing such as spot welding, drilling and making other 
lasers. Since they can be focused to tiny spots, these lasers are used for resister 
trimming, memory repair and in circuit mask. They are also used in cutting out 
specialized circuits. 

       It is also used in the field of military exploitation. They are used for target 
designation, range finding etc. Laser gyros are used in many aircraft and in 
weapon systems. Attempts are being made to use them in detection of 
submerged inertial confinement fusion. 

     ܰ݀ lasers also find wide application in general laboratory work and in scientific 
fields. Since frequency multiplication into ultraviolet and green can be done with 
these lasers, they are good sources for pumping tunable dye lasers and other 
varieties of diagnostic and laser probes.    

Ans.2: There are some fields, where helium-neon laser is applied, which are given 
below: 

(1) Interferometry   (2) Laser printing    (3) Bar-code reading. 

(4) As pointing and directional reference beams. 

       In the first field, the helium-neon laser gives a very stable and single 
transverse mode reference beam, which is essential in identifying optical 

characteristics of material like smoothness (∆) and the figure of the surface. 

    In the field of laser printing, the laser beam is used as a source for writing on the 
photosensitive material, which give print patterns in detail. 

     It is common now days to see departmental stores using  He-Ne lasers to check 

out or for scanning the merchandise having digital codes, which are imprinted on 

the product. 

16.12 Answer of Self Learning Exercise  
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     In optical fiber communication the laser having 1.523 micrometer is used for 
measuring the lines, which have minimum loss in those wavelengths. 

Ans.3: There are several important uses of Dye lasers, which are given below: 

(1) Dye lasers are ideal for research work where either tunable laser of ultrafast 
pulses or tunable narrow bands are required. 

(2)  They find vide application in spectroscopy, especially in absorption 
spectroscopy in solid materials and in photochemistry. The most important 
application in the field of spectroscopy is in the separation of isotopes. Here, a 
tunable laser, pumped by a copper vapour laser is used for selective excitation of 
specific isotopes of uranium, which gives an enriched version of uranium. 

(3) Dye lasers are also used to retard atoms to very slow speeds, which is a new 
breakthrough in atomic and laser science. This is achieved by tuning the lasers to 
specific frequencies of absorption in atoms. 

(4) Ultrafast pulses are also used in the study of dynamic excited states of 
semiconductors and some other classes of solids.  

(5) In the field of medical science, dye lasers are used to remove tattoos and 
birthmarks. They are also used in treatment of cancer by applying selective 
absorption in a similar way as is done with gold vapour laser.             

Ans.4: When all the constituent photons of a light beam have the same energy, the 
same direction of momentum, and identical polarization, the light beam is said to 
be perfectly coherent. 

Ans.5: Normally, the atoms of a substance are in their ground quantum state. 
When they are given energy by some external source, they are excited and reach 
some higher-energy state. An atom can persist in an excited state only for 10ି଼ 
second after which it returns to its normal state. In this process, the atom emits 

light-photons of frequency υ, where  ℎ߭ = ଶܧ −  ଵܧ
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        Where ܧଵ ܽ݊݀ ܧଶ are the energies in the lower energy and higher energy 
states respectively. The process is called ‘Spontaneous emission’. This is an 
irregular emission and takes place at different times for different atoms. So, the 
light obtained by spontaneous emission from different atoms is incoherent. 

Ans.6:  Excimer lasers are used in medical field, material processing, pumping of 
dye lasers and in photolithography. Excimer lasers can provide pulse intensities 
of the order of 10ଵଷܹ/݉ଶ. Moreover, the absorption coefficient for most of the 
materials, is much greater for wavelengths of ultraviolet, than for most of the 
materials, is much greater for wavelengths of ultraviolet, than for visible and 
near infrared. Hence, excimer laser beams are absorbed over very short depths, 
when materials are irradiated with excimer lasers. They produce sharp edges in 
cutting process. This property can be gainfully employed in medical 
applications, such as surgery and cornial sculpting which can provide optical 
correction to the eye without using glasses.  

     In lithography, the excimer laser can provide an excellent source of ultraviolet 
illumination, at 248 nm and 193 nm, which can produce features of microchips 
as small as 0.18 to 0.25 ݉ߤ. 

    Excimer lasers are also used for pumping organic dye lasers, because all such 
dyes have extended absorption, into the ultraviolet region. 

Ans.7: There are some characteristics of laser rays which are given below: 

(1) Laser rays are completely coherent. 

(2) The laser light is almost perfectly monochromatic. 

(3) Laser rays are directional. Hence, a laser beam is very narrow. 

(4) These rays can go to long distances without absorption. They are not 
absorbed in water. 

(5) Laser light is very intense. 

(6) Laser beam can vaporize even the hardest metal. 

(7) The colour of the laser light can be changed. If laser red light be passed 
through quartz strips, the colour of light will change. 
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16.13 Exercise 

Q.1  What is Laser? Explain the Salient features of a laser radiation. Mention 
some of its principal uses. 

Q.2  Describe He-Ne laser. How is population inversion achieved in this type of 
laser? 

Q.3  What is pumping? Give its mechanism also. 

Q.4  Define population inversion and Give the classification of the Pumping. 

Q.5  Describe the solid state rare earth ion laser and its application also. 

Q.6  Give the brief summary of Dye lasers with its construction. 

Q.7  Give the brief summary of excimer lasers with its uses and its geometry 
also. 

Q.8  What type of Gas dynamic laser? Give its application and its construction 
also. 

Q.9  Give the theory of any one Solid state laser and uses of Solid state laser. 

Q.10  Give the theory of any one ܱܥଶ electric discharge laser and its construction.   
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17.0 Objectives 
In this unit we shall examine the properties of optical resonators consisting two 
plane parallel, flat mirrors placed a distance apart. First of all, the properties of 
standing electromagnetic waves in such a system and the way in which their stored 
energy is lost if the mirrors are not totally reflecting will be considered. Also we 
shall see some very useful and quite simple techniques for analysing optical 
systems and a wave standpoint at how narrow beams of light travel through optical 
systems. 

17.1 Introduction 
When a Fabry-Perot resonator is filled with an amplifying medium, laser 
oscillation will occur at specific frequencies if the gain of the medium is large 
enough to overcome the loss of energy through the mirrors and by other 
mechanisms within the laser medium. In Paraxial ray analysis, we will be 
confronted with the problem of how the components of the system affect the 
passage of light. Here also we shall see that the special solutions to the 
electromagnetic wave equation exist that take the form of narrow beams called 
Gaussian Beams 

17.2 Laser Resonators 
A device with population inversion, convert oscillator into amplifier, known as 
Resonator. When it is used by the help of Laser beams, then it is known as Laser 
Resonators. There are many type of Laser Resonator, which are given below: 

(1)݈ܲܽ݊݁ − ݕݎܾܽܨ or ݈݈݈݁ܽݎܽܲ −  ,Resonator ݐ݋ݎ݁ܲ

 ,resonator ݈ܽܿ݅ݎℎ݁݌orܵ ܿ݅ݎݐ݊݁ܿ݊݋ܿ (2)

 ,Resonator ݈ܽܿ݋݂݊݋ܥ (3)

17.0 Objectives 

17.1 Introduction 

17.2 Laser Resonators 
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 ,Resonator system ݈ܽܿ݋݂݊݋ܿ݅݉݁ܪ (4)

 ,Resonator݈ܾ݁ܽݐܵ and ݈ܾ݁ܽݐݏܷ݊ (5)

17.3 Basic Resonators    
 In very simple terms, we can say that a medium, with population inversion, can 
get amplified. However, if the medium is to function as an oscillator, a part of the 
output energy has to be given as a feedback in to the laser system. 

         The authors sometimes noted that in the initial stages of development of 
lasers, some researchers wanted to name the optical phenomenon as LOSER, 
which is an acronym for Light Oscillation by Stimulated Emission of radiation. 
But, the term ‘loser’ indicates a person who ‘loses’! Not a very good expression. 
The move was subsequently dropped. 

          The feedback is affected by placing two mutually facing reflectors or mirrors 
at the ends of the active medium. 

        The resonators used in lasers are different from those used in masers. The 
main differences are that: 

(ܽ) In lasers, the dimensions of the resonators are much larger than the 
wavelengths of the lasers. The wavelength usually is over a range from a fraction 
of a micron to tens of microns. As a result, the cavity having dimensions akin to 
the wavelengths actually have very low gain to sustain oscillations. 

(ܾ)In lasers, no lateral surface is used and the resonators are generally open; for 
convenience. For a laser, pumped by a flash lamp, the lateral surface can rather be 
a nuisance for pumping. 

         These two characteristics have a great influence on the performance of 
optical resonators. Since the resonator is open for any cavity mode, there will 
certainly be some losses taking place. This is because of a part of the energy, 
escaping from the sides of the cavity, due to diffraction of the electromagnetic 
field. These losses, therefore, are aptly termed as ‘Diffraction Losses.’  

       We had seen earlier that the mode of a resonator is having the configuration of 
an electromagnetic field, which could satisfy both Maxwell’s equation and the 
boundary conditions. The electric field of such a configuration could be written as: 

,࢘)ࡱ (ݐ = (࢘)࢛଴ܧ exp(݂݅ݐ)                     (17.1) 

17.3 Basic Resonators    
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          Here, the mode frequency is ݂/2ߨ. 

         When we take into account the losses taking place, the definition of the 
mode, as indicated by equation (17.1) above, cannot be implemented in case of a 
resonator, which is open, and as such, true modes having a configuration, which is 
stationary, are not in existence for such a resonator. However, the configuration of 
standing electromagnetic waves with aluminium losses can be seen in open 
resonators. 

       Therefore, we can have new definitions for mode with some modification and 
we will call this quasi mode. We could also call the mode an electromagnetic 
configuration having an electrical field as: 

,࢘)ࡱ (ݐ = (࢘)࢛଴ܧ exp ቂ(݂݅ݐ) − ቀ ௧
ଶ௧೏
ቁቃ                    (17.2) 

              Where ݐௗ  is the ‘time for decay’ of the square of the amplitude of the 
electric field. This time ݐௗ    is termed as the ‘Cavity Photon Decay Time’(CPDT). 

     The attribute of the laser beam as mentioned at (a) above (where we compared 
laser and maser resonators) indicates that the resonant frequencies of the cavity are 
spaced very closely.  This basically is the reason for the tendency of the lasers to 
oscillate on different modes. 

      The optical resonators are therefore called ‘Multimode Resonators’; a term, 
which is in fact, is not scientifically correct, according to some authors. 

       In all the laser resonators we have either plane or spherical reflectors of 
rectangular or spherical shape, separated by a selected distance. The distance 
between the mirrors may be over range from a fraction of a centimetre to metre, 
whereas the dimensions of the mirrors may range from a fraction of a centimetre to 
a few centimetres. 

17.4 Fabry-Perot or Plane-Parallel Resonator  
   In this set-up, two plane reflectors placed parallel and facing each other are used. 
The modes of this optical resonator, according to a first approximation, can be 
considered as the superimposition of two plane electromagnetic waves traversing 
in opposite directions along the axis of the cavity. This arrangement is shown in 
figure 17.1. 

17.4 Fabry-Perot or Plane-Parallel Resonator  
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Figure 17.1: Plane Parallel Cavity Resonator 

    Within this condition, we can get the resonant frequencies by dictating that the 

length of the cavity l must be an integral number of half of the wavelength λ. 

      That is 

݈ = ݊ ቀఒ
ଶ
ቁ                                                                                           (17.3) 

             Here n is a positive integer. This is essential for the electric field of the 
electromagnetic standing wave to be zero on the two reflectorsܴଵ ܽ݊݀ ܴଶ. 
Naturally, the resonant frequencies can be obtained by the equation  

௥݂ = ݊ ቀ ௖
ଶ௟
ቁ                                                                                          (17.4) 

      Here, it is apparent that the equation (17.4) can also be derived by 
superimposing the conditionality, that the phase shift of a plane wave through one 
round trip, along the length of the cavity, must be equal to an integral number of 

times of 2ߨ. That is: 

2݈݇ =  (17.5)                                                                                           ݊ߨ2

      The mathematical analysis of this configuration done by 

 .ܵܧܹܱܰܶ andܹܱܮܹܣܪܥܵ

17.4.1 Mathematics Analysis Of Fabry-Perot Resonator By Townes And 
Schawlow 

       Now we will see what kind of mathematical treatment these great scientists 
gave us. Here, we have to have a bit of practice on matrix analysis and integration. 

       Townes and Schawlow were the first pair of scientists who proposed an 
extension to the concept of maser into optical 
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frequencies. What they used, in order to derive the first laser approximation, was 
an analogy with a closed rectangular resonator with known modes. One may say 
that the treatise they gave was rather intuitive than a rigorous work up. But some 
cardinal expressions in a lucid manner could be obtained. 

 ݊݋݅ݐ݅ݏ݋݌ ܽ ݏݏ݈݁ ݋݊ and ݏݎ݁ݏ݈ܽ ݈ܽܿ݅ݐܿܽݎ݌ ݂݋ ݎℎ݁ݐ݂ܽ ℎ݁ݐ ݏܽ can be considered ݏ݁݊ݓ݋ܶ

is occupied by ܵܿℎܽݓ݋݈ݓ. 

Let us consider a figure: 17.2. 

 
Figure 17.2: A cavity of rectangular shape having perfectly conducting walls at 

temperature T. 

        The electric field (E-field) components of the modes of the cavity can be 
written as: 

௫ܧ    = ݁௫ܿ݇ݏ݋௫݇݊݅ݏ ݔ௬݇݊݅ݏ ݕ௭ݐ߱݊݅ݏ ݖ  
௬ܧ = ݁௬ܿ݇ݏ݋௫݇ݏ݋ܿ ݔ௬݇݊݅ݏ ݕ௭ݐ߱݊݅ݏ ݖ  

௭ܧ                                 = ݁௫݇݊݅ݏ௫݇݊݅ݏ ݔ௬݇ݏ݋ܿ ݕ௭(17.6)                   ݐ߱݊݅ݏ ݖ 

      Here, 

݇௫ =
ߨ݌
2ܽ

,݇௬ =
ߨݍ
2ܽ

, ݇௭ =
ߨݎ
݈

 

      And here ݌, ,ݍ  The .(.is not radius of curvature ݎ here ).are positive integers ݎ

notation ߱ is angular velocity. The resonant frequencies are given as  

௥݂ = ௖
ଶ
൤ቀ௥

௟
ቁ
ଶ

+ ቀ ௤
ଶ௔
ቁ
ଶ

+ ቀ ௤
ଶ௔
ቁ
ଶ
൨
ଵ/ଶ

                       (17.7) 
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     Here, c is the velocity of light in the active medium.  

     The expressions of equation (17.6) assumes a complex form when the sine and 
cosine functions are expressed in the realm of exponential functions. By doing this, 
the component of the ܧ − ݂݈݅݁݀ is put as the sum of eight plane waves travelling in 

the directions of eight wave vectors with components ±݇௫ , ±݇௬ , ±݇௭. Hence, 

the direction cosines of the vectors are, ± ቀ௣గ
ସ௔
ቁ , ± ቀ௤గ

ସ௔
ቁ  ܽ݊݀ ±

ቀ௥గ
ସ௔
ቁ  ܽ݊݀ ± ቀ௥గ

ଶ௟
ቁ. We know that λ is the wavelength of a specific mode. 

When we superimpose these eight plane waves, we get the standing wave as 
indicated in the set of equations at (17.6). 

    The assumption arrived at by Townes and Schawlow was that the modes the 
open cavity as shown at fig: 17.1 are described by those modes of the rectangular 
shown at figure 17.2. The fig. 17.1 is actually a modified version of figure 17.2 by 
simply eliminating the lateral surface. 

     The assumptions of Townes and Schawlow can be justified in the light of the 
fact that the modes of such a cavity may be shown as the superimposition of plane 
waves travelling at a minute angle to the axis Z. Removal of the lateral surface, 
therefore, will not alter these modes greatly. In fact, the modes, which correspond 
to values of p and q, which are not small as compared to r, will be drastically 
affected when we remove the sides of the resonator. When the sides are eliminated, 
we see that these modes undergo heavy diffraction losses. 

      When we assume that (ݍ ݀݊ܽ ݌)are much less than r, the resonant frequencies 

of the plane-parallel cavity can be derived from equation(17.7). For each set of 
values of the three quantities ݌,  there exists a well-defined cavity mode ,ݎ ݀݊ܽ ݍ

with a well-specified resonant frequency. The difference in frequency ∆ ௡݂ 
between two modes having the same values for p and q and whose values of 
quantity r differs by unity (1) is given by the expression  

∆ ௡݂ = ௖
ଶ௟

               (17.8) 

When we assume that (݌,  the resonant frequencies can be ,ݎ is much less than (ݍ
derived from equation (17.7) using a power series expansion within the square 
root: 
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݂ ≃ ௖
ଶ
ቂ௥
௟

+ ଵ
ଶ
൫௣మା௤మ൯

௥
ଵ
ସ௔మ

ቃ            (17.9) 

    Since the modes differ only in their field distribution longitudinally along the z-
axis, ∆ ௡݂ is generally termed as a difference in frequency between two successive 
longitudinal modes. 

     The difference in frequency between two modes which vary only by having a 
difference of 1 in their p value is: 

∆ ௤݂ = ௖௟
ସ
ൣ(௤ାଵ)మି௤మ൧

ସ௔మ௥
= ௖௟

଼௥௔మ
ቀݍ + ଵ

ଶ
ቁ        (17.10) 

        And for equation (17.9), we can get 

∆ ௤݂ = ∆ ௥݂
௟మ

ସ௥௔మ
ቀݍ + ଵ

ଶ
ቁ          (17.11) 

         In an analogous manner, two modes having a difference of 1 in p values will 
have a frequency separation of 

∆ ௣݂ = ∆ ௥݂
௟మ

ସ௥௔మ
ቀ݌ + ଵ

ଶ
ቁ          (17.12) 

           Those modes, which only differ in their p or q value by unity, will in turn 
have only a difference in the transverse distribution of field along the plane, which 
lies orthogonal to the ݖ −  .that is, transversely ,ݏ݅ݔܽ

      As a result ∆ ௤݂ and ∆ ௣݂ are termed as the difference in frequency between two 
transverse modes. We can write (17.11) and (17.12) as 

∆ ௤݂ = ∆ ௥݂
ቀ௤ାభమቁ

଼ே
            (17.13) 

                   and ∆ ௣݂ = ∆ ௥݂
ቀ௣ାభమቁ

଼ே
          (17.14) 

 Here, we have used N. N is equal to 
௔మ

௟ఒ
. This component N is the Fresnel number 

which is used as a dimensionless factor. 

      It then becomes apparent that the Fresnel number N is equal to 
஽೒
ଶ஽௟

.  Therefore, 

the Fresnel number is half the ratio between geometrical half angle ܦ௚ and the 
angle of Diffraction ݈ܦ of the plane electromagnetic eave with the same transverse 
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dimensions as the cavity resonator. Higher orders of Fresnel number therefore 
indicate a small spread of diffraction as compared to the geometrical angle. 

      In the treatise by Townes and Schawlow, so far, the losses in the cavity 
resonator have not been taken into account. The cavity resonances have been taken 
as infinitely narrow. But we have seen earlier, that there are many types of losses 
due to diffraction in a resonator. As such, the mode can be expressed in terms of 
equation (17.2). Hence, its resonance will have a Full Width at Half Maximum 
(FWHM) given by the expression: 

∆ ௘݂ = ଵ
௧ௗ

              (17.15) 

             The photon decay time ݀ݐ is given by: 

݀ݐ = 1/ܿ߭                        (17.16) 

      Where υ is the fractional loss per pass of the cavity resonator and contained in 
it, are losses due to diffraction, the mirror transmission and internal loss of the 
active material. 

       The magnitude of υ can range from a small percentage of 1 to 3 in case of a 
gas laser having low level of gain. For solid state or dye lasers having higher order 
of gain, the percentage may be 10-30 or more. 

17.5 Spherical or Concentric Resonator   
In this type of resonator, two spherical mirrors with exactly the same radius r are in 
operation. The reflectors are separated by a distance ݈. The centres of curvature of 
the reflectors ܥଵܽ݊݀ ܥଶ  are coincident. Hence, we can say that ݈ =   .ݎ2

      This system is shown in figure 17.3 below: 

 
Figure 17.3: Configuration of a concentric resonator. 

17.5 Spherical or Concentric Resonator   
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           The mathematical analysis of this configuration as done byFox and Li, 
which is given below: 

17.5.1 Mathematics Analysis of Spherical Or Concentric Resonator By Fox 
And Li: 

This mathematic analysis is based on a scalar approximation. In this analysis, these 
scientist made an assumption that the field is almost linearly or circularly 
polarised, uniformly, and is transverse. 

          The field in this case may be expressed by a scalar quantity U representing 
the magnitude of the electromagnetic field. Let us take an arbitrary distribution of 
field on reflector ܴଵܽݏ ଵܷ. 

          This distribution due to diffraction will result in a consequent field 
distribution on reflector ܴଶ . the expression for this distribution can be derived by 
using the Kirchhoff diffraction integral.  

 
Figure 17.4: Calculation of mode for a plane-parallel optical resonator using 
Kirchhoff’s diffraction integral. 

      The electromagnetic field ܷଶ( ଶܲ) at an arbitrary point ଶܲ on the reflector ܴଶ may 
then be written as: 

ܷଶ( ଶܲ) = − ௜
ଶఒ ∫

௎భ(௉భ)ୣ୶୮(௜௞௥)(ଵା௖௢௦థ)
௥

݈ ଵܵଵ        (17.17) 

     Where r is distance between ଵܲ and ଶܲ, ϕ is the angle made by the line ଵܲ ଶܲ 
with the perpendicular to the surface ଵܲ, ݈ ଵܵ is a surface element around ଵܲand 
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݇ =  The integral shown at (17.17) has to be calculated for the entire surface .ߣ/ߨ2
of reflector ܴଵ. 

     We may take a distribution ܷ corresponding to the optical resonator mode 
instead of the general distribution ଵܷ. Then we can show the distribution on 
reflector ܴଶ as derived by equation 17.17 to be equal to ܷ in addition to some 
constant factor. 

)ܷߪ ଶܲ) = − ௜
ଶఒ ∫

௎(௉భ)ୣ୶୮(௜௞௥)(ଵା௖௢௦థ)
௥

݈ ଵܵଵ        (17.18) 

         Where, σ is constant. 

      When the field distribution ܷ on the reflectors is known, we can calculate the 
field distribution at any point inside or outside the cavity resonator. 

      When ܽ is much less than ݈ or in other words, when the length of the cavity is 
much greater than its transverse dimension, equation (17.18) gets simplified 

considerably. We can, in fact, write ܿݏ݋߶ ≃ ݈ ݎ݋ 1 ≃  in the amplitude ݎ
component appearing under the integral sign. 

     A suitable expression to the nearest approximation can be obtained for the 
phase factor ݇ݎ by writing the equation as  

ݎ = [݈ଶ + ଵݔ) − ଶ)ଶݔ + ଵݕ) −  ଶ)ଶ]ଵ/ଶ                     (17.19)ݕ

            = ݈ + ቀ ଵ
ଶ௟
ቁ ଵݔ)] − ଶ)ଶݔ + ଵݕ) − [ଶ)ଶݕ + ܾ      (17.20) 

    Here, we make a power expansion of the expression coming under the square 

root. The remainder b of the power series can be ignored only if ܾ݇ is much less 

than 2ߨ. The term b consists of a converging series with terms having signs that 
are alternating. We can have a corollary, that it has a value smaller than the 
magnitude of the first term. 

      So, in order to have a condition that ܾ݇ is much less than 2ߨ, a situation in 

which ܽܭସ/݈ଷ is much less than 2ߨ, is required. Taking Fresnel’s 

number ܰ = ܽଶ/݈ߣ, the condition required is that N should be much less 

than݈ଶ/ܽଶ. 
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Hence, if we consider that l is much greater than a and N is much less than
௟మ

௔మ
. We 

can derive an expression as shown below: 

exp(݅݇ݎ) ≃ exp ቄ(݈݅݇) + ݈ ቀగே
௔మ
ቁ ଵݔ)] − ଶ)ଶݔ + ଵݕ) −  ଶ)ଶ]ቅ                           (17.21)ݕ

      Now, if we introduce two dimensionless quantities ܨ ݀݊ܽ ܧ, we have 

ܨ = ቀ√ே
௔
ቁܨ ݀݊ܽ ݔ = ቀ√ே

௔
ቁ(17.22)          ݕ 

                Using the equation (17.21), we can put equation (17.18) as follows: 

(ଶܨ,ଶܧ)ܷ∗ߪ = −݅ ∫ ଵߨ݅} exp(ଵܨ,ଵܧ) ଵܧ)] − ଶ)ଶܧ + ଵܨ) −  ଵ            (17.23)ܨଵ݈ܧ݈[ଶ)ଶܨ

∗ߪ                                  =  exp (−݈݅݇)                   (17.24) ߪ

In case of reflectors of rectangular or square shape, the variables appearing in 
equation(17.23) can be eliminated. A simplified expression is as follows: 

(ܨ,ܧ)ܷ =  ܷா(ܧ)ܷி(ܨ)                     (17.25) 

∗ߪ    = ி∗ߪா∗ߪ  

      With the above input, we can write equation (17.23) in the following forms 

forܷா(ܧ) ܽ݊݀ ܷி(ܨ): 

ா∗ߪ ாܷ(ܧଶ) = exp ቂ−݅ ቀగ
ସ
ቁቃ ∫ ாܷ(ܧଵ)exp {݅ߨା√ே

ି√ே
ଵܧ) −  ଵ                        (17.26)ܨ݈{ଶ)ଶܧ

ி∗ߪ ிܷ(ܨଶ) = exp ቂ−݅ ቀగ
ସ
ቁቃ ∫ ிܷ(ܨଵ)exp {݅ߨା√ே

ି√ே
ଵܨ) −  ଵ       (17.27)ܨ݈{ଶ)ଶܨ

Here, now we can show that the function ܷா  gives the field distribution of an 
optical resonator consisting of two plane reflectors having a dimension of 2a in the 

x direction and infinitely long in the y-direction. Exactly in the same manner ܷி  
also can give the field distribution. We can identify the Eigen functions and Eigen 
values shown at equations (17.26) and (17.27) by corresponding q and p values 
respectively. So according to equation (17.25): 

ܷ௤௣(ܨ,ܧ) = ܷா௣(ܧ)ܷா௤(ܧ)            (17.28) 

௤௣௢∗ߪ =  ி௣            (17.29)∗ߪா௤∗ߪ

Although for circular reflectors also the treatment is identical, it is rather easy to 

put the equation (17.18) as a function of cylindrical co-ordinates rather than of 
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rectangular co-ordinates. 

We see that equations, (17.26) and (17.27) are more easily handled but it is not 
possible to find an analytical solution for them. In 1961 Fox and Li became 
successful to find an analytical solution for these equations with the help of 
computer. 

   For the solution of these equations Fox and Li showed that, if the initial 
distribution of field on one reflector is considered as uniform and if phase is 
constant across that reflector, the relative field distribution after about 300 transits 
within the optical resonator steadies and settles down to a value having maximum 
amplitude at the centre and the amplitude starts reducing as it moves further and 
further away from the centre. The relative distribution of amplitude across the 
reflector after a single transit and 300 transits in case of a cavity resonator with two 
infinite strip mirrors is shown in figure 17.5. Strip mirrors have the dimension 2a 
in the x-direction and infinite length in the y-direction. 

        In this diagram(ܽ)is half the width of the side of the resonator with a value 
 We get Fresnel .ߣl is the separation between the reflectors having a value100,  ߣ25

Number N as ܰ = ௔మ

௟ఒ
= 11.25 

Similarly, we can show the relative distribution of phase across the reflectors 
during first transit and after 300 transits as in Figure 17.6. 

Fox and Li with the aid of computers solved several values of Fresnel number N. 

        In fact these scientists took up an interactive procedure on the basis of the 
following argument. 

        Consider a wave travelling up and down in the resonator. Let us assume that, 

at a given time, the distribution of the field ଵܷ(ܧଵ) on the reflector ܴଵ is known 

to us. The distribution of the field ܷଶ(ܧଶ) on the reflectorܴଶ, which is borne 

from the distribution of field ଵܷ, can subsequently be calculated using the formula 

(17.26). In fact, if the function ܷா(ܧଵ) in the right hand of the equation (17.26) 

is replaced by the function ଵܷ and if we carry out integration, we can obtain the 

function ܷଶ = ܷா(ܧଶ) which again is an offspring of the first round about trip. 
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Once we know ܷଶ, we are in a position to calculate the new field distribution on 

reflectorܴଵ due to the second transverse and it continues further. 

 
Figure 17.5:     Relative amplitude distribution 

 
Figure 17.6:    Relative distribution of phase. 
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        Fox and Li have proved that after enough number of passes, disregarding the 

formative distribution on reflector ܴଵ, we reach a distribution of the field which 
does not undergo any change from traverse to traverse. 

This pattern of distribution which is made by the results of Scientist Fox and Li, 
will then be an Eigen solution of equations (17.26) and (17.27).By this procedure, 
we can calculate the Eigen values as well as the loss due to diffraction and the 
resonant frequency of the chosen mode. 

      If we choose the initial distribution of the field as an even function of E, we 
will have a mode having even value. Conversely, if we choose the initial 
distribution of the field  as an odd function of E, we get odd modes. 

         When we examine the diagrams at Fig 17.5 and 17.6, we get the amplitude 

and phase of ܷ = ܷ ቀ௫
௔

,ܰቁ provided, we also choose the initial values of ଵܷas 

symmetric and of uniform field distribution. That is, ଵܷ becomes a constant. If we 
take N=6.25, about 200 transmits are required to attain the steady stationary form 
of the curve as shown in Figure 17.7 and 17.8. 

 
                  Figure 17.7: Field amplitude U Vs number of transits. 

      In the same way, we can get an asymmetric mode of the lowest order if we 
chose a uniform and asymmetric initial distribution. The condition for the same is: 

ܽ > ݔ > 0 ܽ݊݀ ଵܷ = ݎ݋݂ 1− − ܽ < ݔ < 0 

Figure 17.7 gives the field distribution ܷ ቀ௫
௔

,ܰቁ obtained in the above described 
manner for two values of Fresnel number. As regards phase, it is shown 

in figure 17.8. 
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      As per equations (17.28) and (17.29), the total field distribution ௤ܷ௣(ݔ,  is (ݕ
given by multiplying  ௤ܷ(ݔ) with ௣ܷ(ݕ). The mode which is related to the situation 
when both ܷ(ݔ) and ܷ(ݕ)   are given by the lowest order solution, that is 
ݍ = ݌ = 0, as  shown in figure 17.5, is called ܶܯܧ଴଴ mode. The mode ܶܯܧ଴ଵ can 
be obtained when ܷ(ݔ) is given by the lowest order solution as indicated in figure 
17.5 and 17.6 when q=0. If ܷ(ݕ) is given by the next higher order solution, we get 
 .ଵ଴ mode when p=1 as shown in figure 17.8 and 17.9ܯܧܶ

            
Figure17.8: Amplitude of the asymmetric mode of the lowest order for a 
plane-parallel optical resonator. 

 
Figure 17.9: Phase of the lowest order asymmetric mode 



364 
 

17.6 Confocal Resonator   
This type of arrangement consists of two spherical reflectors having the same 
radius of curvature r and placed facing each other at a distance ݈ are used. The foci 
 ଶ of the reflectors ܴଵ ܽ݊݀ ܴଶ are coincident. Hence, the centre of curvatureܨ ݀݊ܽ ଵܨ
C of reflector ܴଵlies on the surface of the Reflectorܴଶ. By this, we found that ݈ =  .ݎ
From the point of geometrical optics, the paths of the reflecting rays are shown in 
figure 17.10. 

           
                     Figure 17.10: Confocal configuration. 
         From the path of the reflecting rays, we do not have any ides as to what 
would be the configuration of the modes. We will see that this arrangement will 
not be described by a plane wave or any spherical wave. As such a treatment of 
geometrical-optics does not easily give us the form of resonant frequencies. 

17.7 Unstable and Stable Resonator            
The entire known resonators which are used in Laser can be always grouped in two 
categories, named as ‘Stable’ and ‘Unstable’.  
        An unstable resonator can be defined as the resonator where an arbitrary ray 
of light, while impinging on mirror 1 and bouncing back to mirror 2, would get 
deflected, or get deflected, or get diverged indefinitely, away from the axis of 
resonator.  The arrangement of an unstable resonator is shown in Fig. 17.11. 

 
Figure 17.11: Unstable resonator. 

17.6 Confocal Resonator   

17.7 Unstable and Stable Resonator            
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         Now the stable resonator is defined as the resonator in which the beam of 
light strictly remains within the cavity. The arrangement of the stable resonator is 
given in figure 17.12. 

 A resonator can be termed as stable when0 < ܨܧ < 1. 

  
Figure 17.12: Diagram of stability for a general spherical resonator. 

17.8 Laser Stability 
In the geometrical sense, the optical stability is here, concerned with the question 
as to whether any light ray has been trapped inside the resonator or not. 

      For this analysis, we can consider an optical cavity as an infinite series of 
lenses with alternating focal lengths equal to the optical length of the cavity. 

      If the rays propagating near the axis of such an infinite series of lenses are 
refocused periodically at regular intervals, then the system is considered stable. 

     If all the rays diverge then the condition is violated and the resonator is termed 
as an unstable resonator. 

 Now we consider ݎଵܽ݊݀ ݎଶmeaning the radii of the reflectors and l the distance 
between them. Now, let us introduce two dimensionless quantities   E and F such  

17.8 Laser Stability 
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that:ܧ = 1 − ௟
௥భ

ܨ, = 1 − ௟
௥మ

 

 A geometrical analysis will indicate that all stable cavities are governed by the 
condition: 

0 ≤  (17.30)                                                                                                        ܨܧ

 ଶ are the radii of curvature of the reflectorsܴଵܽ݊݀ ܴଶrespectively andݎ ଵܽ݊݀ݎ

݈ is the optical length of the resonator. 

 The factors ܨ ݀݊ܽ ܧ are introduced for describing the frequencies of the TEM 
modes. 

 The diagram of stability of Laser is shown below which has been constructed by 

plottingܨܧ = ݈. 

 
                                   Figure 17.13: Stability Diagram 

Some features of the stability diagram which is given below: 

(ܽ) The plot of ܧ = ܨ ݀݊ܽ 1 = 1 represents the Fabry-Perot Interferometer (Plane 
parallel Configuration). 

ܧ(ܾ) = ܨ, 0 = 0 is a symmetrical confocal resonator. This configuration 
givesܶܯܧ଴଴. 

(c)ܧ = ܨ, 1− − 1Gives a symmetrical concentric configuration. 

         The configuration ܧ = ܨ, 0 = 0 gives the lowest of diffraction losses in 

the ܶܯܧ଴଴ mode as compared with the higher ܶܯܧ modes. 

17.9 Paraxial Wave Equation 
A plane wave is characterized by a unique propagation direction given by the wave 

vector࢑. All fields associated with the wave are, at a given time, equal at all points 

17.9 Paraxial Wave Equation 
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in infinite planes orthogonal to the propagation direction. In real optical systems 
such plane wave do not exist, as the finite size of the element of the system 
restricts the lateral extent of the wave.  

 Optical components with cause further deviations of wave from ݎ݈ܽ݊ܽ݌݊݋ܰ
planarity. Consequently, the wave acquires a ray direction which varies from point 
to point of the phase front. The behaviour of the optical system must be 
characterized in the deviations its element cause to the bundle of rays that comprise 
the propagating, laterally-restricted wave. This is most easily done in terms of 
paraxial rays. In a cylindrically-symmetric optical system, for example, a coaxial 
system of spherical lenses of mirrors, ݏݕܽݎ ݈ܽ݅ݔܽݎܽ݌are those rays whose directions 

of propagation occur at sufficiently small angles ߠ to the symmetry axis of the 

system that it is possible to replace ߠ݊݅ݏ or ߠ݊ܽݐ by ߠ - in other words paraxial 
rays obey the small angle approximation. 

 

17.9.1 Matrix Derivation: 

In an optical system whose symmetry axis is in the z direction, a paraxial ray in a 

given cross-section (ݖ =  from the z ݎ is characterized by its distance (ݐ݊ܽݐݏ݊݋ܿ 
axis and the angle r’ it makes with that axis. If the value of these parameters at two 

planes of the system (ܽ݊ ݈݅݊݁݊ܽ݌ ݐݑ݌ݐݑ݋ ݊ܽ ݀݊ܽ ݐݑ݌) are ݎଵݎଵᇱand ݎଶݎଶᇱrespectively, 
as shown in Fig. (17.14a), in the paraxial ray approximation there is a linear 
relation between them of the form 
ଶݎ = ଵݎܣ +  ଵᇱݎܤ
ଶᇱݎ = ଵݎܥ +  ଵᇱ                                        (17.31)ݎܦ

Or, in matrix notation 

ቀ
ଶݎ
ଶᇱݎ
ቁ = ቀܣ ܤ

ܥ ቁܦ ቀ
ଵݎ
ଵᇱݎ
ቁ                                                                                                                      (17.32) 

ቀܣ ܤ
ܥ  ,.ቁis called the ray transfer matrix, M; its determinant is usually unity, i.eܦ
ܦܣ − = ܥܤ  1. 

 Optical systems made of isotropic material are generally reversible – a ray 
which travels from right to left with input parameters ݎଶݎଶᇱwill leave the system 
with parameters ݎଵݎଵᇱ– thus; 
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ቀ
ଵݎ
ଵᇱݎ
ቁ = ቀܣ

ᇱ ᇱܤ
ᇱܥ ᇱቁܦ ቀ

ଶݎ
ଶᇱݎ
ቁ                                  (17.33) 

Where the reverse ray transfer matrix satisfies 

ቀܣ
ᇱ ᇱܤ

ᇱܥ ᇱቁܦ = ቀܣ ܤ
ܥ ቁܦ

ିଵ
 

The ray transfer matrix allows the properties of an optical system to be described 
in general terms by the location of i ݂ݏ݈݁݊ܽ݌ ݈ܽ݌݅ܿ݊݅ݎ݌ ݀݊ܽ ݏݐ݊݅݋݌ ݈ܽܿ݋.ts 

 
Figure 17.14: (a) Paraxial ray path from input to output plane. 

       The location of focal points and principle planes is determined from the 
element of the matrix. The significance of these features of the system can be 
illustrated with the aid of Fig.(17.14b). An input ray which passes through 
the ݂݅ܨ,ݐ݊݅݋݌ ݈ܽܿ݋݂ ݐݏݎଵ (or would pass through this point if it did not first enter the 
system) emerges travelling parallel to the axis. The intersection point of the 
extended input and output rays, point ܪଵ in Fig. (17.14b), defines the location of 
the ݂݈݅݁݊ܽ݌ ݈ܽ݌݅ܿ݊݅ݎ݌ ݐݏݎ. Conversely, an input ray travelling parallel to the axis 
will emerge at the output plane and pass through the ܨ,ݐ݊݅݋݌ ݈ܽܿ݋݂ ݀݊݋ܿ݁ݏଶ (or 
appear to have come from the point). The intersection of the extension of these 
rays, point ܪଶ, defines the location of the ݈݁݊ܽ݌ ݈ܽ݌݅ܿ݊݅ݎ݌ ݀݊݋ܿ݁ݏ.Rays 1 and 2 Fig. 
(17.14b) are called ݏݕܽݎ ݈ܽ݌݅ܿ݊݅ݎ݌ of the system.  

                Now The location of the principal planes allow the corresponding 
emergent ray paths to be determine as shown in Fig (17.14b). The dashed lines in 
the figure, which permit geometric construction of the location of the output rays 1 
and 2, are called ݐܽ݌ ݕܽݎ ݈ܽݑݐݎ݅ݒℎݏ. 
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Figure 17.14: (b) Principal planes, points, and rays of a paraxial optical 

system. 

Both ܨଵ and ܨଶ lie on the axis of the system. The axis of the system intersects the 
principal planes at the principal points, ଵܲ and ଶܲ, in Fig. (17.14b). 

 The distance ଵ݂ from the first principal plane to the focal pointis called 
the ݂݅ݐ݈݃݊݁ ݈ܽܿ݋݂ ݐݏݎℎ; ଶ݂ is the ݐ݈݃݊݁ ݈ܽܿ݋݂ ݀݊݋ܿ݁ݏℎ. 

      In most practical situations, the refractive indices of the media to the left of the 
input plane(ݐℎ݁ ݁ܿܽ݌ݏ ݐ݆ܾܿ݁݋)and to the right of the output plane (ݐℎ݁ ݅݉ܽ݃݁ ݁ܿܽ݌ݏ) 
are equal. In this case we can derive simple relations between the focal lengths ଵ݂ 
and ଶ݂ and ℎଵand ℎଶ; the distance of the input and output planes from the principal 
planes, measured in the sense shown in Fig. (17.14b). 

 We can break up the system shown in Fig. (17.14b) into three parts, the 
region from the input plane to the first principal plan, the region between the two 
principal planes, and the region from second principal plane to output plane. 

 If we write the transfer matrix from the left to the right principal planes 

asቀܣ
ᇱᇱ ᇱᇱܤ

ᇱᇱܥ  ᇱᇱቁ, then the overall transfer matrix isܦ

ቀܣ ܤ
ܥ ቁܦ = ቀ1 ℎଶ

0 1
ቁቀܣ

ᇱᇱ ᇱᇱܤ
ᇱᇱܥ ᇱᇱቁܦ ቀ

1 ℎଵ
0 1

ቁ                                                                                         (17.34) 

Which gives 

ቀܣ
ᇱᇱ ᇱᇱܤ

ᇱᇱܥ ᇱᇱቁܦ  = ቀ1 −ℎଶ
0 1

ቁ ቀܣ ܤ
ܥ ቁܦ ቀ

1 −ℎଵ
0 1

ቁ           (17.35) 

               and therefore 
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ቀܣ
ᇱᇱ ᇱᇱܤ

ᇱᇱܥ ᇱᇱቁܦ  = ൬ܣ − ℎଶܥ ܤ − ℎଶܣ − ℎଶ(ܦ − ℎଵܥ)
ܥ ܦ − ℎଵܥ

൰                                                                (17.36) 

        Clearly, ܥ’’ =  for the principal ray in Fig. (17.14b), the distance of the ray ܥ 
from the axis r, does not change, therefore ܣ’’ =  1giving 

= ݎ  (17.37)              ,ݎ (ܥℎଶ – ܣ) 

              So   ℎଶ = ஺ିଵ
஼

                (17.38) 

Furthermore, for the first principal ray, whose input angle isݎ’ 
= ݎ + ݎ ’’ܣ   (17.39)            ’ݎ ”ܤ

 So B’' = 0. Consequently, if the media to the left of the input plane and 
the right of the output plane are the same, using ݀݁(ܯ)ݐ  =  1, gives 

ℎଵ = ஽ିଵ
஼

               (17.40) 

    Note that both ܣ’’ and ܦ’’ are equal to unity. 

For the second principal ray in Fig.(17.14b) 

ቀ
ଶݎ
ଶᇱݎ
ቁ = ቀܣ" "ܤ

"ܥ ቁ"ܦ ቀ
ଵݎ
0ቁ                      (17.41) 

    So      ݎ′ଶ =  ଵ                            (17.42)ݎ"ܥ

   From Fig. (17.14b), it is easy to see that 

ଶ′ݎ− = ௥భ
௙మ

                        (17.43) 

Now from combining Equations. (17.42) and (17.43) gives 

"ܥ = −1/ ଶ݂            (17.44) 

By a similar procedure using the first principal ray it can be shown that 

"ܥ = −1/ ଵ݂             (17.45) 

We have already seen from Eq. (17.36) that ܥ” =  ,therefore ܥ 

ଵ݂ = ଶ݂ = ݂                 (17.46) 

If the media to the left and right of the input plane are the same, both principal 
focal length are equal. If the elements of the transfer matrix are known, the 
locations of the focal points and principal planes are determined. Graphical 
construction of ray paths through the system using the methods of ݃݊݅ܿܽݎݐ ݕܽݎ is 
then straightforward. 
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17.9.2 Ray Tracing: 

Practical implementation of paraxial ray analysis in optical system can very 
conveniently carried out graphically by ray tracing. In ray tracing a few simple 
rules allow geometrical construction of the principal ray paths from an object 
point, although these constructions do not take into account the non-ideal 
behaviour, or aberrations, of real lenses. The first principal ray from a point on the 
object passes through (or its projection passes through) the first focal point. From 
the point where this ray, or its projection, intersects the first principal plane the 
output ray is drawn parallel to the axis. The actual ray path XX’ in the thick lens 
shown in Fig. (17.15b). The second principal ray is directed parallel to the axis; 
from the intersection if this ray, or its projection, with the second principal plane 
the output ray passes through (or appears to have come from) the second focal 
point. The actual ray path between input and output planes can be found in simple 
cases, for example, the path YY’ in the thick lens shown in Fig. (17.15b). The 
intersection of the two principal rays in the image space produces the image point 
which corresponds to the same point of the object. If only the back-projections of 
the output principal rays appear to intersects, the intersection point lies on 
a ݈ܽݑݐݎ݅ݒ ݅݉ܽ݃݁. 

 

 
Figure 17.15 (a): Ray path through a thick lens. ࡯૚ ࡯ ࢊ࢔ࢇ૛ are the centre of 
curvature of the two spherical surface of which the faces of a lens are a part.  
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Figure 17.15 (b): Principle rays and planes for a thick lens. The dashed lines 
show the use of the principle plane for which determining the exit trajectories 
for the input principle rays.  

 

 
Figure 17.16: Ray tracing Diagrams Real  images production by a converging 

lens. 

17.9.3 Imaging And Magnification: 

In Fig. (17.16) the ratio of the height of the image to the height of the project is 
called the ݂݉ܽ݃݊݅݅ܿܽ݊݋݅ݐ ݉. In the case of thin lens 

݉ = ௕
௔

= ௩
௨

              (17.47) 
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For a more general system the magnification can be obtained from the ray transfer 
matrix equation 

ቀܾܾ′ቁ = ቀܣ ܤ
ܥ ቁܦ ቀ

ܽ
ܽ′ቁ =  ቀܽܽ′ቁ                                                                                                 (17.48)ܯ

Where a’ is the angle of a ray through a point on the object and b’ through the 
corresponding point on the image. The matrix M in the case includes the entire 
system from object O to image I. So, in Fig. (17.16a) 

ࡹ = ൬݉ܽ݉ݎ݋݂݅݊ݑ ݎ݋݂ ݔ݅ݎݐ
൰ቀݒ ℎݐ݈݃݊݁ ݂݋ ݉ݑ݅݀݁݉

ݎ݋݂ ݔ݅ݎݐܽ݉
ݏ݈݊݁

ቁ ൬݉ܽ݉ݎ݋݂݅݊ݑ ݎ݋݂ ݔ݅ݎݐ
 ൰            (17.49)ݑ ℎݐ݈݃݊݁ ݂݋ ݉ݑ݅݀݁݉

For imaging, b must be independent of a’.so B = 0. 

 The magnification is ݉ = ௕
௔

=  (17.50)                                                   ܣ

So the ray transfer matrix of the imaging system can be written  

ࡹ = ൬ ݉ 0
−1/݂ 1/݉൰             (17.51) 

Where it should be noted the result, ݀݁(ܯ)ݐ  =  1,has been used. 

The ܽ݊݃݊݋݅ݐ݂ܽܿ݅݅݊݃ܽ݉ ݎ݈ܽݑof the system is defined as 

݉ᇱ = ቀ௕
ᇲ

௔ᇲ
ቁ
௔ୀ଴

            (17.52) 

Which gives ݉’ =  1/݉. 

Note that mm’ = 1, a useful general result. 

17.10 Gaussian Beams 
Here we shall look from a wave standpoint at how narrow beams of light travel 
through optical systems and also we see that a special solution is exist for the 
electromagnetic wave equation that take the form of narrow beams  called 
as ݏ݉ܽ݁ܤ ݊ܽ݅ݏݏݑܽܩ. These beams of light have a characteristic radial intensity 
profile whose width varies along the beam. Because these Gaussian beams behave 
somewhat like spherical waves, we can match them to the curvature of the mirror 
of an optical resonator to find exactly what form of beam will result from a 
particular resonator geometry. 

17.10.1 Beam-Like Solution of The Wave Equation 

Here we consider that the transverse modes of a laser system will take the form of 

17.10 Gaussian Beams 
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narrow beams of light that propagate between the mirrors of the laser resonator and 
maintain a field distribution that remains distributed around and near the axis of the 
system. We shall therefore need to find solutions of the wave equation that take the 
form of narrow beams and then see how we can make these solutions compatible 
with a given laser cavity. 

       Now, the wave equation is, for any field or potential componentܷ଴ of an 
electromagnetic wave 

∇ଶ ଴ܷ − ௥߳଴߳ߤ
డమ௎బ
డ௧మ

= 0                                                                        (17.53) 

    Where ߳௥  is the dielectric constant, which may be a function of position. The 
non-plane-wave solutions that we are looking for are of the form 

଴ܷ = ,ݔ)ܷ ,ݕ  (17.54)          [࢘.(࢘)࢑ఠ௧ି]௜݁(ݖ

Now we allow the wave vector (࢘)࢑ to be a function of r to include situations 
where the medium has a non-uniform refractive index. From eq.(17.53) and 
(17.54) 

∇ଶܷ − ௥߳଴߱ଶܷ߳ߤ = 0                                                                         (17.55) 

௥߳ߤ  may be the function of r. we have seen previously that the propagation 

constant in the medium is ݇ = ߱ඥ߳ߤ௥߳଴, so 

∇ଶܷ − ଶܷ(࢘)݇ = 0           (17.56) 

     This is the time-independent form of the wave equation, frequently referred to 
as the ݈݉݁ܪℎݖݐ݈݋ equation. 

 
Figure 17.17: The changing curvature of a spherical wave as it propagates in 
the z-direction. 
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      In general, if the medium is absorbing, or exhibits gain, then its dielectric 

constant߳௥  has real and imaginary parts. 

߳௥ = 1 + ߯(߱) = 1 + ߯ᇱ(߱) − ݅߯"(߱)                                       (17.57) 

And ݇ = ݇଴√߳௥                                                                                          (17.58) 

       Where ݇଴ = ߱ඥ߳଴ߤ 

    If the medium were conducting, with conductivity ߪ, then its complex 
propagation vector would obey 

݇ଶ = ௥߳଴߱ଶ߳ߤ ቀ1 − ݅ ఙ
ఢೝఢబఠ

ቁ                        (17.59) 

     So conductivity can be included as a contribution to the imaginary part of the 
dielectric constant. 

      We know that simple solutions of the time-independent wave equation above 
are transverse plane waves. However, those simple solutions are not adequate to 
describe the field distributions of transverse modes in laser systems. Let us look for 

solutions will be of the form ܷ = ,ݕ,ݔ)߮  ௜௞௭ for waves propagating inି݁(ݖ
the positive z direction. For functions ߮(ݕ,ݔ,  which are localized near the z axis(ݖ
the propagating wave takes the form of a narrow beam. Further, because ߮(ݕ,ݔ,  (ݖ
is not uniform, the surfaces of constant phase in the wave will no longer 
necessarily be plane. If we can  find solutions of the wave equation  

where ߮(ݕ,ݔ,  gives phase fronts that are spherical then we can make the (ݖ

propagating beam solution ܷ = ,ݔ)߮ ,ݕ  ௜௞௭ satisfy the boundaryି݁(ݖ
conditions in a resonator with spherical reflectors, provided the mirrors are placed 
at the position of phase fronts whose curvature equals the mirror curvature. Thus 
the propagating beam solution becomes a satisfactory transverse mode of the 
resonator. For example in figure 17.17 if the propagating beam is to be a 

satisfactory transverse mode, then a spherical mirror of radiusܴଵ must be placed at 

position 1 or one of radiusܴଶ at 2 etc. Mirrors placed in this way lead of the wave 
back on itself. 

       Substituting ܷ = ,ݔ)߮ ,ݕ  ௜௞௭ in equation (17.56), we getି݁(ݖ
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ቀడ
మఝ
డ௫మ

ቁ ݁ି௜௞௭ + ቀడ
మఝ
డ௬మ

ቁ ݁ି௜௞௭ + ቀడ
మఝ
డ௭మ

ቁ ݁ି௜௞௭ − 2݅݇ ቀడఝ
డ௭
ቁ ݁ି௜௞௭ −

݇ଶ߮(ݔ, ,ݕ ௜௞௭ି݁(ݖ + ݇ଶ߮(ݔ, ,ݕ ௜௞௭ି݁(ݖ = 0                 (17.60) 

which reduces to 

ቀడ
మఝ
డ௫మ

ቁ + ቀడ
మఝ
డ௬మ

ቁ + ቀడ
మఝ
డ௭మ

ቁ − 2݅݇ ቀడఝ
డ௭
ቁ = 0                (17.61) 

If the beam-like solution we are looking for remains paraxial then ߮ will only vary 

slowly with ݖ, so we can neglectቀడ
మఝ
డ௭మ

ቁ and get 

ቀడ
మఝ
డ௫మ

ቁ+ ቀడ
మఝ
డ௬మ

ቁ − 2݅݇ ቀడఝ
డ௭
ቁ = 0                                           (17.62) 

       We try as solution 

,ݔ)߮ ,ݕ (ݖ = exp ቄ−݅ ቂܲ(ݖ) + ௞
ଶ௤(௭) ݎ

ଶቃቅ       (17.63) 

         Where ݎଶ = ଶݔ +  from ݕ,ݔ ଶ is the square of the distance of the pointݕ
the axis of propagation. P (z) represents a phase shift factor and q(z) is called the 
beam parameter. We shall see the significance of these parameters shortly. 

      Substituting in equation (17.62) and using the relations below that follow from 
equation (17.63) 
డఝ
డ௫

= ି௜௞
ଶ௤(௭) exp ቄ−݅ ቂܲ(ݖ) + ௞

ଶ௤(௭) ݎ
ଶቃቅ .  (17.64)          ݔ2

ቀడ
మఝ
డ௫మ

ቁ = ି௜௞
௤(௭) exp ቄ−݅ ቂܲ(ݖ) + ௞

ଶ௤(௭) ݎ
ଶቃቅ − ௞మ

ସ௤మ(௭) exp ቄ−݅ ቂܲ(ݖ) +
௞

ଶ௤(௭) ݎ
ଶቃቅ .  ଶ                                                                                              (17.65)ݔ4

 
డఝ
డ௭

= exp ቄ−݅ ቂܲ(ݖ) + ௞
ଶ௤(௭) ݎ

ଶቃቅ ቂ−݅ ቀௗ௉
ௗ௭
− ௞

ଶ௤మ
ௗ௤
ௗ௭
 ଶቁቃ       (17.66)ݎ

   We get 

−2݇ ቂௗ௉
ௗ௭

+ ௜
௤(௭)ቃ − ቂ ௞మ

௤మ(௭) −
௞మ

௤మ(௭)
ௗ௤
ௗ௭
ቃ (ଶݎ) = 0                        (17.67) 

        Since this equation must be true for all values of r the coefficients of different 
powers of r must be independently equal to zero so 
ௗ௤
ௗ௭

= 1                                                                                             (17.68) 
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and 
ௗ௉
ௗ௭

= − ௜
௤(௭)             (17.69) 

      The solution߮(ݕ,ݔ, (ݖ = exp ቄ−݅ ቂܲ(ݖ) + ௞
ଶ௤(௭)

 ଶቃቅݎ

 Is called the ݂݉ܽ݁ܤ ݊ܽ݅ݏݏݑܽܩ ݈ܽݐ݊݁݉ܽ݀݊ݑ solution of the time-independent wave 
equation since its ‘intensity’ as a function of ݕ ݀݊ܽ ݔ is 

ܷܷ∗ = ߮߮∗ = exp ቄ−݅ ቂܲ(ݖ) + ௞
ଶ௤(௭) ݎ

ଶቃቅ exp ቄ݅ ቂܲ∗(ݖ) + ௞
ଶ௤∗(௭) ݎ

ଶቃቅ   
              (17.70) 

where ܲ∗(ݖ) ܽ݊݀ (ݖ)∗ݍ is the conjugate complex of ܲ(ݖ)ܽ݊݀ (ݖ)ݍ, 
respectively, so 

ܷܷ∗ = ߮߮∗ = exp{−݅[ܲ(ݖ) − {[(ݖ)∗ܲ  exp ቄ− ௜௞௥మ

ଶ
ቂ ଵ
௤(௭) −

ଵ
௤∗(௭)ቃቅ  (17.71) 

     For convenience we introduce two real beam parameters(ݖ)ݓ ݀݊ܽ(ݖ)ࡾ that 

are related to (ݖ)ݍ by  
ଵ
௤

= ଵ
ோ
− ௜ఒ

గ௪మ                        (17.72)                                                                    

 Where both R and w depend on z. it is important to note that ߣ =  ଴/݊ is theߣ

wavelength in the ݉݁݀݅݉ݑ. From equations (17.71) and (17.72) above we can 
see that  

ܷܷ∗ ∝ ݌ݔ݁ ି௜௞௥మ

ଶ
ቀି௜ఒ
గ௪మ −

௜ఒ
గ௪మቁ ∝ ݌ݔ݁ ିଶ௥మ

௪మ           (17.73) 

       Thus, the beam intensity shows a Gaussian dependence on r, the physical 

significance of (ݖ)ݓ is that it is the distance from the axis at the point z where the 
intensity of the beam has fallen to 1/݁ଶ of its peak value on axis and its amplitude 

to 1/݁ of its axial value: (ݖ)ݓ is called the ݁ݖ݅ݏ ݐ݋݌ݏ. With the parameters 

 ܷ = exp ቊ−݅ ቈ݇ݖ + (ݖ)ܲ +
ଶݎ݇

2 ൬
1
ܼ −

ߣ݅
 ଶ൰቉ቋݓߨ

17.10.2 The Transformation of A Gaussian Beam By A Lens:  

A lens can be used to focus a laser beam to a small spot, or systems of lenses may 
be used to expand the beam and recollimate it. An idea thin lens in such an  

application will not change the transverse mode intensity pattern measured at the 
lens but it will alter the radius of curvature of the phase fronts of the beam. 
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 We have seen that a Gaussian laser beam of whatever order is characterized 
by a complex beam parameter q(z) which change as the beam propagates in an 
isotopic, homogeneous material according to q(z) = q0+z, where 

଴ݍ = ௜గ௪బ
మ

ఒ
 ܽ݊݀ ଵ

௤(௭)
= ଵ

ோ(௭)
− ௜ఒ

గ௪మ            (17.74)           

 is radius of curvature of (approximately) spherical phase front at z and is (ݖ)ܴ
given by 

(ݖ)ܴ = ݖ ൤1 + ቀగ௪బ
మ

ఒ௭
ቁ
ଶ
൨                     (17.75) 

      This Gaussian beam becomes a true spherical wave as w → ∞. Now, a 
spherical wave changes its radius of curvature as it propagates according 
to ܴ(ݖ)  =  ܴ଴ +  where R0 is its radius of curvature as z = 0. So the complex ݖ
beam parameter of a Gaussian wave change in just the same way as it propagates 
as does the radius of curvature of a spherical wave. 

 When a Gaussian beam strikes a thin lens the spot size, which measures the 
transverse with of the beam intensity distribution, is unchanged at the lens. 
However, the radius of curvature of its wavefront is altered in just the same way as 
spherical wave. If R1 and R2 are the radii of curvature of the incoming and 
outgoing waves measured at the lens, as shown in Fig. (17.18), then as in the case 
of a true spherical wave 
ଵ
ோమ

= ଵ
ோభ
− ଵ

௙
            (17.76) 

 
Figure 17.18: Transformation of a Gaussian beam by a lens. The input and 

output phase front curvatures and beam parameters are indicated. 
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So, for the change of the overall beam parameter, since w is unchanged at the lens, 
we have the following relationship between the beam parameters, measured at the 
lens 
ଵ
௤మ

= ଵ
௤భ
− ଵ

௙
                                                                                                 (17.77) 

Figure 17.19: Optical system diagram for transformation of a Gaussian beam 
from an input to an output plane. 

If instead q1 and q2 are measured at distances d1 and d2 from the lens as shown in 
Fig. (16.19) then at the lens 
ଵ

(௤మ)ಽ
= ଵ

(௤భ)ಽ
− ଵ

௙
                                                                             (17.78) 

 And since (ݍଵ)௅ = ଵݍ + ݀ଵ and (ݍଶ)௅ = ଶݍ + ݀ଶ we have 
ଵ

௤మିௗమ
= ଵ

௤భାௗభ
− ଵ

௙
                 (17.79) 

   Which gives     

ଶݍ      =
ቀଵି೏మ೑ ቁ௤భା(ௗభାௗమିௗభௗమ/௙)

(ି௤భ/௙)ା(ଵିௗభ/௙)
          (17.80) 

If the lens is placed at the beam waist of the input beam then 
ଵ

(௤భ)ಽ
= ି௜ఒ

గ௪బమ
            (17.81) 

 Where w0 is the post size of the input beam. The beam parameter immediately 
after the lens is 
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ଵ
(௤మ)ಽ

= ି௜ఒ
గ௪బమ

− ଵ
௙

                 (17.82) 

This can be rewritten as     (ݍଶ)௅ = ିగ௪బమ௙
௜ఒ௙ାగ௪బమ

        (17.83) 

    At the distance d2 after the lens 

௅(ଶݍ) = ିగ௪బమ௙
௜ఒ௙ାగ௪బమ

+ ݀ଶ            (17.84) 

  This can be rearranged to give 

ଶݍ/1 =
(ௗమି௙)ାቆ ഊ೑

ഏೢబ
మቇ

మ
ௗమି௜ቆ

ഊ೑మ

ഏೢబ
మቇ

(ௗమି௙)మା(ഊ೑೏మ)మ

ഏೢబ
మ

         (17.85) 

The location of the new beam waist (which is where the beam will be focused to its 
new minimum spot size) is determine by the condition ℛ(1/q2) = 0: namely 

(݀ଶ − ݂) + ቀ ఒ௙
గ௪బమ

ቁ
ଶ
݀ଶ = 0          (17.86) 

    which gives 
݀ଶ = ௙

ଵାቆ ഊ೑
ഏೢబ

మቇ
మ              (17.87) 

     Almost always ቀ ఒ௙
గ௪బమ

ቁ
ଶ
≪ 1 so the new beam waist is very close to the very 

focal point of the lens. 

Examination of the imaginary part of the right hand side of Eq. (17.85) reveals that 
the spot size of the focused beam is 

ଶݓ =
ഊ೑
ഏೢబ

ඨଵାቆ ഊ೑
ഏೢబ

మቇ
మ

             (17.88) 

   Which provided
ఒ௙
గ௪బమ

≪ 1, as is frequently the case, gives 

ଶݓ ≃  (17.89)               ߠ݂

     Where θ = λ/πw0 is the half angle of the divergence of the input beam. 
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It is straightforward to show that in general the minimum spot size of TEM00 

Gaussian beam focused by a lens is 

௙ݓ = ఒ௙
గ௪భ

൤ቀ1 − ௙
ோభ
ቁ
ଶ

+ ቀ ఒ௙
గ௪భమ

ቁ
ଶ
൨
షభ
మ

         (17.90) 

     Where w1 and R1 are the laser-beam spot size and radius of curvature at the 
input face if the lens. If the lens is placed very close to or vary far from the beam 
waist of the beam being focused, Eq. (17.90) reduces to 

௙ݓ =  ஻               (17.91)ߠ݂

       Where θB is the beam divergence at the input face of the lens. 
 Thus, if the focusing lens is placed a great distance from, or vary close to, 

the input beam waist then the size of the focused spot is always close to ݂ߠ. If, in 
fact, the beam incident on the lens were a plane wave, then the finite size of the 
lens (radius r) would be the dominant factor in determining the size of the focused 
spot. We can take the ‘spot size’ of the plane wave as approximately the radius of 
the lens, and from Eq. (17.74), setting w0= r, the radius of the lens, we get 

ଶݓ = ఒ௙
గ௥

                   (17.92) 

  This focused spot cannot be smaller than a certain size since for any lens the 

value of r clearly has to satisfy the condition r ≤ f 
 Thus, the minimum focal spot size that can result when a plane wave is 
focused by a lens is    

~.௠௜௡(ଶݓ)  
ఒ
గ

               (17.93) 

    We do not have equality sign in Eq. (17.93) because a lens for which 
r = f does not qualify as a thin lens, so Eq. (17.92) does not really hold exactly. 
 We can see from Eq. (17.74) that in order to focus a laser beam to a small 
spot be must either use a lens of very short focal length or a beam of small beam a 
divergence. We cannot however, reduce the focal length of the focusing lens 
indefinitely, as when the focal length does not satisfy f1<< w0,w1, the lens ceases to 
satisfy our definition of it as a thin lens (f1<< r). To obtain a laser beam of small 
divergence we must expand all recollimate the beam; there are to simple ways of 
doing this: 
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(i) With a Galilean telescope as shown in Fig. (17.20). The expansion ratio for 
this arrangement is –f2/f1, where it should be noted that the focal length f1 of the 
diverging input lens is negative. This type of arrangement has the advantage that 
the laser beam is not brought to a focus within the telescope, so the arrangement is 
very suitable for the expansion of high power laser beams. Very high power beams 
can cause air breakdown if brought to a focus, with considerably reduce the energy 
transmission through the system. 
(ii) With an astronomical telescope, as shown in fig. (17.20). The expansion 
ratio for this arrangement is f2/f1. The beam is brought to a focus within the 
telescope, which can be a disadvantage when expanding high intensity laser beams 
because air breakdown at the common focal point can occur. The telescope can be 
evacuated or filled to high pressure to help prevent as such breakdown occurring. 
An advantage of this system is that by placing a small circular aperture at the 
common focal point it is possible to obtain an output beam with a smoother radial 
intensity profile then the input beam. The aperture should be chosen to have a 
radius about the same size, or slightly larger than, the spot size of the focused 
Gaussian beam at the focal point. This process is called spatial filtering and is 
illustrated in Fig (17.22). In both the astronomical and Galilean telescope, 
spherical aberration is reduced by the use of bispherical lenses. This distributes the 
focusing power over the maximum number of surfaces. 

(a) 

 (b) 

Figure 17.20: Galilean telescope laser beam expanders: (a) using bispherical 
lenses; (b) using plano-spherical lenses. 
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Figure 17.21: Astronomical telescope laser-beam expander in which the beam 
is brought to an internal focus. 

        

 
Figure 17.22: Beam expander incorporating a spatial filter for smoothing the 

intensity profile. 

17.10.3 Transformation of A Gaussian Beams By The General Optical System 

         As we have seen, the complex beam parameter of a Gaussian beam is 
transformed by a thin lens in just the same way as the radius of curvature of a 
spherical wave. Now, the transformation of the radius of curvature of a spherical 

wave by an optical system with transfer matrix ቀܣ ܤ
ܥ  ቁ  obeysܦ

ܴଶ = ஺ோభା஻
஼ோభା஽

                   (17.94) 

    Thus by continuing to draw a parallel between the q of a Gaussian beam and the 
R of a spherical wave, we can postulate that the transformation of the complex 
beam parameter obeys a similar relation i.e. 

ଶݍ = ஺௤భା஻
஼௤భା஽

              (17.95) 
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       Where ቀܣ ܤ
ܥ  ቁ  is the transfer matrix for paraxial rays. Eq. (17.95) can beܦ

justified for a general optical system by considering that such a system could, in 
principle, be replaced by an arrangement of spaced thin lenses. Each thin lens, of 
length of uniform medium, obeys Eq. (17.95). We can illustrate the use of the 
transfer matrix in this way by following the propagation of a Gaussian beam in a 
lens waveguide. 

17.10.4 Gaussian Beams In Lens Waveguides 

In a biperiodic lens sequence containing equally spaced lenses of focal lengths 

ଵ݂ ܽ݊݀ ଶ݂ the transfer matrix for ݊ unit cells of the sequence is, 

ቀܣ ܤ
ܥ ቁܦ

௡
= ଵ

௦௜௡థ
൬݊݅ݏܣ ݊߶ − sin(݊ − 1)߶ ߶݊ ݊݅ݏܤ

ܿ sin ݊߶ ܦ sin ݊߶ − sin (݊ − 1)߶൰     (17.96)     

So from eq. (17.95) and writing 

௡ାଵݍ = (1/ sin߶) [஺௦௜௡ ௡థିୱ୧୬(௡ିଵ)థ]௤భା஻஻௦௜௡ ௡థ
஼ ୱ୧୬(௡థ)௤భି஽ୱ୧୬௡థିୱ୧୬ (௡ିଵ)థ

        (17.97) 

The condition for stable confinement of the Gaussian beam by the lens sequence is 

the same as in the case of paraxial rays. This is condition that ߶ remains real, i.e. 

| cos߶ | ≤ 1, where 

cos߶ = ଵ
ଶ

ܣ) + (ܦ = 1 − ௗ
௙భ
− ௗ

௙మ
+ ௗమ

ଶ௙భ௙మ
           (17.98) 

 Which gives 

0 ≤ ቀ1− ௗ
ଶ௙భ
ቁ ቀ1− ௗ

ଶ௙మ
ቁ ≤ 1         (17.99) 

17.10.5 Gaussian Beams In Plane And Spherical Mirror Resonators 

We have already mentioned that a beam-like solution of Maxwell’s equations will 
be satisfactory transverse mode of a plane or spherical mirror resonator provided 
we place the resonator mirrors at point where there radii of curvature of the phase 
fronts of the beam. So for a Gaussian beam a double-concave mirror resonator 
match of phase front as shown in Fig. (17.23) and plano-spherical and concave-
convex resonator as shown in Fig. (17.24) and (17.25). 
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Figure 17.23: Resonator using two concave mirrors showing the location of 
the beam waist and the contour of the Gaussian beam 

 
Figure 17.24: Laser resonator that uses a plane and a concave mirror. 

 
Figure 17.25: Convex- Concave Laser Resonator. 
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 We can consider these resonator in terms of their equivalent biperiodic lens 
sequences as shown in Fig. (17.26). Propagation of a Gaussian beam from plane 1 
to plane 3 in  the biperiodic lens sequences in equivalent to one complete round 
trip inside the equivalent spherical mirror resonator. If the complex beam 
parameters at planes 1, 2, and 3 are q1,q2,and q3, then 
ଵ

௤భାௗ
− ଵ

௙భ
= ଵ

௤మ
                          (17.100) 

Which gives 

ଶݍ = (௤భାௗ)௙భ
௙భି௤భିௗ

           (17.101) 

 

and 
ଵ

௤మାௗ
− ଵ

௙మ
= ଵ

௤య
              (17.102) 

. 

Figure 17.26: Biperiodic lens sequence equivalent to the resonator in figure 
17.23. 

       If the Gaussian beam is to be a real transverse mode of the cavity, then we 
want it to repeat itself after a complete round trip- at least as far spot size and 
radius of curvature are concerned-that is we want 

ଵݍ = ଵݍ =  (17.103)                 ݍ

17.11 Self Learning Exercise                                               

Q.1 What is the Long Radius Cavity? 

17.11 Self Learning Exercise                                               
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Q.2 In a laser scheme emitting at a wavelength of 0.94μm are separated by 300Hz 
given that refractive index of the laser material is 3.3 

 (a) Calculate the length of the cavity 

 (b) Calculate the number of longitudinal modes emitted by the Scheme. 

 (c) Which of these modes will actually take part in the laser action? 

Q.3 Give a brief description of cavity modes in a laser resonator with simple 
diagrams. 

Q.4 How does Gaussian beam works in Lens Waveguides? 

17.12 Summary 
This unit is basically gives us knowledge about the analysis of optical system and 
working of Laser resonator. The mathematics of the resonator is also given in this 
unit. This unit consists a very important topic named as Optics of Gaussian Beams. 
This unit contains all about Gaussian Beams. 

17.13 Glossary 
Resonator: A device with population inversion, convert oscillator into amplifier, 
known as Resonator. 

Laser Resonator:  When resonator is used by the help of Laser beams, then it is 
known as Laser Resonators. 

LOSER: Light Oscillation by Stimulated Emission of radiation. 

Paraxial Rays: Those rays whose directions of propagation occur at sufficiently 

small angles ߠ to the symmetry axis of the system. 

Gaussian Beams: We shall look from a wave standpoint at how narrow beams of 
light travel through optical systems and also we see that a special solution is exist 
for the electromagnetic wave equation that take the form of narrow beams  called 
as ݏ݉ܽ݁ܤ ݊ܽ݅ݏݏݑܽܩ. 

17.14 Answer of Self Learning Exercise  
Ans.1: A long radius cavity is a configuration of resonator whose reflectors have 
their radii of curvatures much longer than the distance that is separating them. The 
arrangement of a long radius cavity is shown below. 

17.12 Summary 

17.13 Glossary 

17.14 Answer of Self Learning Exercise  
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                          Figure: A Long Radius Cavity 

             In this resonatorݎଵ = ଶݎ < ݈. 

      This type configuration is a good compromise between the plane parallel and 
confocal configuration. Here, we find that a slight misalignment of reflectors will 
not result in severe problems because their curvatures would automatically focus 
the light back towards the first reflector. With this configuration a stable cavity is 
available due to the fact that the light rays reflected from ܴଶ ݋ݐ ܴଵ will keep 
bouncing back and forth indefinitely. Most of the commercial lasers adopt this type 
of arrangement of the reflectors and beams of light. 

Ans. 2: (a) The cavity length l is given by the relation: 

݈ = ܿ, ߤ ݂∆ 2/ܿ = 3 × 10଼,∆݂ = 300 × 10ଽ,ߤ = 3.3 

So now     ݈ = ଷ×ଵ଴ఴ

ଶ×ଷ଴଴×ଵ଴వ×ଷ.ଷ
=  ݉ߤ 151.5

(b) Number of longitudinal modes is given by the relation: ௟ܰ௠ =  ߣ/݈ ߤ 2

       (݈݉ Shown with ܰ is only an acronym for longitudinal modes). 

= 2 × 3.3 × 151.5/0.94 ≈ 1064 

(c) Out of these longitudinally modes only those modes which fall within the 
spontaneous emission spectrum will be taking part in the laser action. 

Ans.3:     It is known that a wave with a frequency ݂ which is traversing a laser 
cavity gives a series of standing waves inside the resonator. The configuration and 
the dimensions of the cavity control these discrete resonant attributes. 

        The modes of the laser which are governed by the axial dimensions of the 
cavity are called longitudinal modes or axial modes. But if the laser modes are 
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determined by the cross-sectional dimensions of the resonator then such modes are 
termed as transverse modes. 

       The arrangement of the two cavities indicating the longitudinal and transverse 
modes are shown in the diagrams (ܽ) ܽ݊݀ (ܾ), which are given below: 

 
                      Figure for the modes of cavities. 

Ans.4:In a biperiodic lens sequence containing equally spaced lenses of focal 
lengths ଵ݂ ܽ݊݀ ଶ݂ the transfer matrix for ݊ unit cells of the sequence is, from eq. 
(15.3) 

ቀܣ ܤ
ܥ ቁܦ

௡
=

1
߶݊݅ݏ ൬

߶݊ ݊݅ݏܣ − sin(݊ − 1)߶ ߶݊ ݊݅ݏܤ
ܿ sin ݊߶ ܦ sin݊߶ − sin (݊ − 1)߶൰ 

So from eq. (16.88) and writing 

௡ାଵݍ = (1/ sin߶)
߶݊ ݊݅ݏܣ] − sin(݊ − ଵݍ[߶(1 + ߶݊ ݊݅ݏܤܤ
ܥ sin(݊߶)ݍଵ − ܦ sin ݊߶ − sin (݊ − 1)߶  

The condition for stable confinement of the Gaussian beam by the lens sequence is 
the same as in the case of paraxial rays. This is condition that ߶ remains real, i.e. 

| cos߶ | ≤ 1, where   cos߶ = ଵ
ଶ

ܣ) + (ܦ = 1 − ௗ
௙భ
− ௗ

௙మ
+ ௗమ

ଶ௙భ௙మ
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Which gives 

0 ≤ ቀ1− ௗ
ଶ௙భ
ቁ ቀ1− ௗ

ଶ௙మ
ቁ ≤ 1 

17.15 Exercise 

Q.1  What is a laser resonator? Define its various types. 

Q.2  Give the brief description of Fabry-Perot resonator and its mathematical 
analysis. 

Q.3  What do you know about the resonator? And give the laser resonator 
stability. 

Q.4  Give a brief description on the Spherical resonator and its mathematic 
analysis. 

Q.5  Give the description stable and unstable resonator. 

Q.6  Develop a matrix approach for dealing with flat and spherical mirrors in 
paraxial ray analysis. 

Q.7 Develop a matrix approach for dealing with flat and spherical mirrors in 
paraxial ray analysis. 

Q.8  For a thin lens with ݑ = 50 ݉݉,݂ = 20 ݉݉ draw a ray tracing diagram to 
illustrate the location of the image and its magnification. 

Q.9  A Gaussian beam has a minimum spot sizeݓ଴ =  and a wavelength of ݉ߤ10
880 nm. Calculate: (a) The radius of curvature 1 m from the beam waist. (b) 
The spot size 1 m from the beam waist. Where does the beam have its 
minimum radius of curvature? 

Q.10  Prove that   ݓ௙ = ఒ௙
గ௪భ

൤ቀ1− ௙
ோభ
ቁ
ଶ

+ ቀ ఒ௙
గ௪భమ

ቁ
ଶ
൨
షభ
మ

 

 where symbol have its own meaning. 
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Coherence ,Some Applications of Lasers 
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18.0 Objectives 
 In this unit we study about the ability of different wave fronts to interfere with 
each other. This unit gives us very important knowledge about the uses of lasers 
and the advantages of Optical fiber. We classified the coherence in this unit and 
study knowledgeable topic wave propagation in optical fiber. The main objective 
of this unit is to study about the topics which contain any information related to the 
laser. 

 

UNIT-18 
Coherence and 

Some Specific Applications of Lasers 

18.0 Objectives 
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18.1 Introduction 

         In this unit, we study about the property of light and laser. The action and 
propagation of light in the Optical Fiber is the main topic of this unit. Coherence is 
the property of light in which we study the measure of the ability of two photons to 
interfere or intermix with each other. Coherence having two types: 

 (1)Spatial Coherence  

 (2)Temporal Coherence 

This unit gives us a idea about the uses of the laser and some advantages of the 
Optical Fiber. 

18.2 Optical Coherence 
 A wave which is appears to be a pure sine wave for an infinitely large 
period of time or in an infinitely extended space is said to be a perfectly coherent 
wave. In such a wave, there is a definite relationship between phase of the wave at 
a given time and at a certain time later or at a given point and at a certain distance 
away. No actual light source, however, emits a perfectly coherent wave. Light 
waves which are pure sine waves only for a limited period of time or in a limited 
space are partially coherent waves. 

In other words, we can say that it is a measure of the ability of different wavefronts 
to interfere or intermingle with each other, when the wavefronts are combined, as 
in an interferometer. As such, coherence can also be termed as ‘the measure of the 
ability of two photons to interfere or intermix with each other’.  

      Optical radiation belongs to the large spectrum of electromagnetic radiation 
and has a degree of coherence which is dependent on the mechanism used for 
generation of the very phenomenon ‘Coherence’.  

     There are two types of optical coherence, which are define below: 

18.3 Temporal Coherence    
       The oscillating electric field ‘E’ of a perfectly coherent light wave would have 
a constant amplitude of vibration at any point, while its phase would vary linearly 
with time. As a function of time, the field would appear as shown in figure (18.1). 
It is an ideal sinusoidal function of time. 

18.1 Introduction 

18.2 Optical Coherence 

18.3 Temporal Coherence    
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Figure:18.1 

                    However, no light emitted by an actual source produces an ideal 
sinusoidal field for all values of time. This is because when an excited atom returns 
to the initial state, it emits light pulse of short duration such as of the order of 

10ିଵ଴ second for sodium atom. Thus, the field remains sinusoidal for time 

intervals of the order of 10ିଵ଴ second after which the phase changes abruptly. 
Hence, the field due to an actual light source will be as shown in figure 18.2. 

 
Figure: 18.2 

             The average time-interval for which the field remains sinusoidal (i.e., 
definite phase relationship exists) is known as “coherence time” or “temporal 

coherence” of the light beam and is denoted by. The distance ܮ for which the field 
is sinusoidal is given by  

ܮ = ߬ܿ 

            Where c is the velocity of light in vacuum. L is called the “coherence 
length” of the light beam. 

                 Laser light is very high degree of temporal coherence, whereas 
conventional light has poor temporal coherence. In case of laser light, the path 
difference in two beams in Michelson’s experiment may be a few meters or even 
more. For ordinary light, the difference may be a few centimeters. This path 
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difference is also known as ‘Coherence Length’ of the source light and the 
coherence time can be calculated by dividing the coherence length by frequency. 

      The ability of light waves to create interference is measured in terms of the 
‘degree of coherence’ of light waves. If the degree of coherence is higher, the 
probability of production of an interference pattern, with contrast, will also be 
higher. 

     According to ZERMIKE, the degree of coherence is equal to the visibility of 
fringes when the path difference between the beams is small and the amplitudes are 
equal and these are exactly the conditions required for the formation of fringes. 

18.4 Spatial Coherence    
The spatial coherence is the phase relationship between the radiation fields at 
different points in space. Let us consider light waves emitting from a source S 
(figure 18.3). Let A and B be two points lying on a line joining them with S. 

The phase relationship between A and B depends on the distance AB and on the 
temporal coherence of the beam. If AB<<L (coherence length), there will be a 
definite phase relationship between A and B, i.e. there will be high coherence 
between A and B. On the other hand, if AB>>L, there will be no coherence 
between A and B. 

 
Figure 18.3 

Spatial coherence is also known as ‘Transverse Coherence’ or ‘Lateral Coherence’. 
Spatial or transverse coherence indicates how far apart from each other, can the 
two sources of light or two portions of the same source can be located in a 
direction transverse to the direction of observation so as to get the property of 

18.4 Spatial Coherence    
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coherence over a number of observation points. This question depends on what is 
the distance of separation of two points, in the transverse direction in the area of 
observation. 

        If we use a laser beam, the dark and bright fringes, falling on the screen, will 
have the highest degree of contrast; because of spatial coherence of laser. If we use 
an ordinary beam of light, such as that form an incandescent bulb, we get the 
fringes with a very faint contrast between darkness and brightness. 

18.5 Some Laser Applications   
        With the discovery of laser, man’s control of light has been and will continue 
to extend to an unpredictably large and diverse number of applications. It would be 
practically impossible to list all the potential uses of the laser, but some of the 
important uses and applications of lasers are given below: 

(i)Laser beam is used in the medical field. The laser beam is used in delicate 
surgery as cornea grafting. With laser beam the surgery is completed in much 
shorter time. This beam is also used in the treatment of kidney, stone, cancer, and 
tumor and in depositing and cutting the blood cells in brain operations. In most of 
these cases, the laser is like an optical knife which would be more accurate, less 
painful and faster than the scalpel. 

(ii) Laser beam has a wide scope in the technical and engineering field. The laser 
beam is used for cutting steel sheets and melting and drilling hard material. It can 
create hole in diamond. Extremely thin wires used in cables can be drawn through 
the diamond hole. Metallic rods can be melted and joined hole by means of a laser 
beam (laser welding). 

(iii)The application of the laser of the field of communications is receiving a large 
amount of technological attention. Since the light from the laser is coherent, it can 
theoretically carry messages in the same manner low frequency carriers. 

(iv) Lasers play very important role during war-time. Lasers are used to detect and 
destroy the enemy missiles. Now, laser-refiles, laser-pistols and laser-bombs are 
also being made which can be aimed at the enemy in the night. In space, laser has 
been used to control rockets and satellites and in directional-communication. 

(v) Laser is used for three-dimensional photography (holography). 

18.5 Some Laser Applications   
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(vi) Laser is useful in science and research. It has been used to perform Michelson-
Morley experiment which is the building stone of Einstein-theory of relativity. It 
can be used to determine the temperature of plasma and the density of electron. 
Laser torch is used to see objects at long distances. 

(vii) Since laser rays are very much parallel, so these are used in measuring long 
distances. The distance between earth and moon has been measured by laser rays. 

(viii)Laser rays have proved to be useful in detecting nuclear explosions and 
earthquakes, in vaporizing solid fuel of rockets and in the study of the surfaces of 
distant planets and satellites. 

(ix)Lasers are used in industry. The precision property of laser light has been 
immense help in industry, particularly in testing the quality of optical components 
e.g. prisms, lenses etc. The use of lasers in industry has considerably increased the 
accuracy in the measurement of the size of the physical quantities. 

(x)Laser beam is used in the field of biology. The ability of laser beams to 
concentrate high power density of light at a focal point has opened a new era of 
micro Raman spectroscopic analysis. This enables one to extend such studies to 
biomedical samples available only in very small quantities. 

(xi)Asers can be extremely useful tool in controlled fusion research (Laser-fusion). 

(xii) Radio astronomers have found lasers extremely valuable for amplifying very 
faint radio signals from space. Radio telescopes have now an additional accessory- 
a laser (ruby). Thus, lasers are used in astronomy. 

18.6 Wave Propagation in Optical Fibers   
For the wave propagation of light waves in an optical fiber, we should have 
following mechanism and conditions: 

(1) Mechanism: If light waves enter at one end of a fiber in proper conditions, 
most of it is propagated down the length of the fiber and comes out from the other 
end of the fiber. There may be some loss due to a small fraction leakage through 
the side-walls of the fiber. This type of a fiber is called light-guide or sometimes 
light- pipe. The reason of confining the light beam inside the fiber, is the total 
internal reflection and refraction of light waves. The light which enters at one end 

18.6 Wave Propagation in Optical Fibers   
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of a fiber at a single angle to the axis of the fiber follows a zig-zag path due to 
series of reflections down the length of the fiber. 

(2) Conditions: Total internal reflection in the walls of the fiber can occur, if and 
only if, the following two conditions are satisfied: 

 (i)The glass at around the centre of the fiber should have higher refractive index 

   .(ଶߤ)than that of the material (cladding) surrounding the fibre (ଵߤ)

(ii)The light should be incident at an angle of θ (between the path of the ray and 

normal to the fiber wall) which will be greater than the critical angleߠ௖. 

sinߠ௖ = ఓమ
ఓభ

                (18.1) 

       Reflection, refraction and total internal reflection of light waves are shown in 
given figure 18.4. 

           
Figure 18.4(a) ߤଵ > ଵߤ ଶ                           Figure 18.4 (b)ߤ <  ଶߤ

 
Figure 18.4(c) ߤଵ >  ଶ (Total Refelction)ߤ
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         Let us now write down the conditions of reflection, refraction and total 
internal reflection. 

(1) In reflection angle of incidence is equal to the angle of reflection. 

(2) In refraction (i) ߤଵ sinߠ௜ = ଶߤ sinߠ௥ 

      (ii) The refracted wave should move towards the normal, if the light wave is 
incident from the optically lighter medium to an optically denser medium. And the 
refracted light wave should move away from the normal, if the light wave travels 
from the optically denser to optically lighter medium. 

(3) The condition for total internal reflection is given in equation (18.1). 

       The angle of incidence at which total reflection first occurs is called the 

critical angleߠ௖ for the two mediums. Light waves incident at angles greater than 

 .௖ will also be totally reflectedߠ

18.6.1 Propagation of Light Wave Through an Optical Fiber         

As we saw in above topic that the central core of an optical fiber consists of a glass 

core, with a certain refractive index ߤଵ and totally enclosed by a glass cladding, 

having refractive index ߤଶ. (ߤଵ >   (ଶߤ

       
Figure 18.5 : Light wave propagation along a glass fiber core 

The given figure 18.5 represents a longitudinal cross-section of a fiber. Any light 
wave, which travels along the core and meets the cladding at the critical angle of 

incidence,ߠ௖ will be totally reflected. This reflected ray will be totally reflected. 
This reflected ray will then meet the opposite surface of the cladding, again at the 

critical angle ߠ௖ and so again totally reflected. Therefore the light wave is 
propagated along the fiber core by a series of total internal reflections from the 
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core-cladding interface. This is a sort of step index fiber, as there is clearly a 
sudden change of refractive index at the junction of the core and the cladding. 

     The path of only one light beam shown in the below given diagram 18.5, which 
is possible only from a very tiny point-source. 

But practically it is not so. Light energy emanating from any practical point source, 
will have several paths with different angles of incidence at the boundary –layer. It 
may also contain different colours with different frequencies (and so wavelengths). 
Then it is called step – index multimode propagation as shown in below given 
figure 18.6. any other light wave which is meeting the core-cladding interface at or 

above the critical valueߠ௖ will also be totally reflected and hence will propagate 
along the core. However, any light wave, meeting the core-cladding interface at an 

angle belowߠ௖ will pass into and be absorbed by the cladding. 

 
Figure 18.6: Stepped index multimode propagation ߤଵ >  ଶߤ

        Thus, the various light waves, travelling along the core, will have propagation 
paths of different lengths. Hence they will take different times to reach a given 
destination. Thus a distortion is produced and is called transmitted time dispersion. 
This dispersion sets an upper limit on the rate at which the light can be modulated 
by an analogue or digital electrical signal. As a result of the distortion, the 
variations of successive pulses of light may overlap into each other, and thereby 
cause distortion of the information being carried. However, this defect can be 
minimized by making the core diameter of the same order as the wavelength of the 
light wave to be propagated. The resultant propagation is a single light wave, as 
shown in given figure 18.7. However this type of fiber is called a stepped index 
monomode fiber. This has very high capacity and large bandwidth. 
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Figure 18.7 :Stepped index monomode propagation ߤଵ >  ଶߤ

    Now, we discuss the propagation of multiwave light energy in graded index 
fiber, as shown in figure 18.8, with the individual waves being gradually refracted 
in the graded-index core, instead of being reflected by the cladding.  

 
Figure 18.8 : Graded index multimode propagation 

         Hence waves travelling at different incident angles will travel different 
distances from the horizontal central axis, before being reflected back to recross 
the central axis. 

         It is obvious that the light waves with large angle of incidence travel more 
paths than those with smaller angles. But we know that the decrease of refractive 
index allows a higher velocity of propagation. Thus all waves will reach a given 
point along the fiber at virtually the same time. As a result the transit time 
dispersion is greatly reduced. This type of light wave propagation is referred to as 
graded index multimode propagation. 

       One important thing to mention here that in all three types of fibers (i.e. .n step 
index multimode ,step index monomode, graded index multimode), the thickness 
of cladding material around the fiber core should at least be several wavelengths. 
This arrangement will prevent light energy losses due to absorption and scattering. 
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18.7 Distance and Velocity Measurements            

18.7.1 Distance Measurements 

The large coherence length and high output intensity coupled with a low 
divergence, enables the laser to find applications in precision length measurements 
using interferometric techniques. The method essentially consists of dividing the 
beam from the laser by a beam splitter into two portions and then making and then 
making them interfere after traversing two different paths. One of the beams 
emerging from the beam splitter is reflected by a fixed reflector and the other 
usually by a retroreflector( it reflects an incident beam in a direction exactly 
opposite to that of an incident beam) mounted on the surface whose position is to 
be monitored. The two reflected beams interfere to produce either constructive or 
destructive interference. Thus, as the reflecting surface is moved, one would obtain 
alternatively constructive and destructive interference, which can be detected with 
the help of a photodetector. Since, the change from a constructive to a destructive 
interference corresponds to a change of a distance of half a wavelength, one can 
measure the distance traversed by the surface on which the reflector is mounted by 
counting the number of fringes which have crossed the photodetector. Accuracies 

up to 0.1݉ߤ can be obtained using such a technique. 

 
Figure18.9: Laser interferometer arrangement for precision length measurements. 

      This technique is being used for accurate positioning of aircraft components on 
a machine tool, for calibration and testing of machine tools, for comparison with 

18.7 Distance and Velocity Measurements            
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standards, and many other precision measurements. The conventional cadmium 
light source can be used only overpath difference of about 20 cm. with the laser 
one can make very accurate measurements over very long distances because of the 
large coherence length. The most common type of laser used in such applications 
is the helium-neon laser, and since the distance measurements is being made in 
terms of wavelength, in these measurements, a high wavelength stability of the 
laser output must be maintained. 

18.7.2 Velocity Measurements 

 
Figure 18.10: Schematic of an arrangement for measuring the velocity of a moving 
object using Doppler shift. 

    It is well known that when a light beam gets scattered by a moving object, the 
frequency of the scattered wave is different from that of the incident wave; the 

shift in the frequency depends on the velocity of the object. Indeed, if ݒ represents 

the light frequency and ߭ is the velocity of the moving object which is moving at 

an angle ߠ with respect to the incident light beam (fig. 18.10), then the change in 

frequencyΔݒ between the incident and the reflected beams is given by 

Δݒ
ݒ

=
ݒ2
ܿ
 ߠݏ݋ܿ

where c represents the velocity of light in free space. Thus the change in frequency 
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    Δݒ is directly proportional to the velocity ݒ of the moving object; this is the 
Doppler shift. Thus, by measuring g the change in frequency suffered by a beam 
when scattered by a moving object, one can determine the velocity of object. This 
method has been successfully used for velocity determination of many types of 
materials from about 10mm/min to about 150mm/min. further using the above 
principle, portable velocity-measuring meters have been fabricated which measure 
speeds in the range of 10-80 miles/hour; these have been used by traffic police. 
Laser Doppler velocity meters have also been used for measuring fluid flow rates. 

18.8 Self Learning Exercise  

Q.1 What is Numerical aperture? Give its relation with the acceptance angle. 

Q.2 Compute the NA and the acceptance angle of an optical fiber from the 
following data. 

(݁ݎ݋ܿ)ଵߤ = (݈݃݊݅݀݀ܽܿ)ଶߤ ݀݊ܽ 1.55 = 1.50 
Q.3 Calculate the NA, acceptance angle, and the critical angle of the fiber 

having 

(݁ݎ݋ܿ ݂݋ ݔ݁݀݊݅ ݁ݒ݅ݐܿܽݎ݂݁ݎ)ଵߤ = 1.50 
(݈݃݊݅݀݀ܽܿ ݂݋ ݔ݁݀݊݅ ݁ݒ݅ݐܿܽݎ݂݁ݎ)ଶߤ = 1.45 

Q.4  What are the applications of fibers ? 

Q.5 What are the optical fibers ? 

Q.6 Give some advantages of the optical fiber. 

18.9 Summary 
The summary of this unit is not one because it contains two different topics, (1) 
Propagation of light in optical fiber and optical fiber, (2) which is related to the 
property of laser and uses of laser. 

     We have studied the propagation of light in air and other medium, but in this 
chapter we have studied the propagation of light in optical fiber.  

An important property of light is also given in this unit which is Coherence. 

18.10 Glossary 
Coherence: It is the property of light in which we study the measure of the ability 
of two photons to interfere or intermix with each other. 

18.8 Self Learning Exercise  

18.9 Summary 

18.10 Glossary 



404 
 

Optical Coherence: A wave which is appears to be a pure sine wave for an 
infinitely large period of time or in an infinitely extended space is said to be a 
perfectly coherent wave. 

Spatial Coherence: The spatial coherence is the phase relationship between the 
radiation fields at different points in space. The spatial coherence is the phase 
relationship between the radiation fields at different points in space. 

Light Guide: If light waves enter at one end of a fiber in proper conditions, most 
of it is propagated down the length of the fiber and comes out from the other end of 
the fiber. There may be some loss due to a small fraction leakage through the side-
walls of the fiber. This type of a fiber is called light guide. 

18.11 Answers to Self Learning Exercise 
Ans.1: Numerical aperture is an important term associated with a fiber. Sometimes 

this term called as the figure of merit for optical fibers. Numerical aperture of 
an optical fiber is defined as 

ܣܰ =
ඥߤଵଶ − ଶଶߤ

଴ߤ
 

      If the fiber is surrounded by air (ߤ଴ = 1) then 

ܣܰ = ටߤଵଶ −  ଶଶߤ

   Generally ߤଵ are only a few percentages greater than ߤଶ.  

ܣܰ = ඥ(ߤଵ − ଵߤ)(ଶߤ + (ଶߤ ≃ ඥ2ߤଵ(ߤଵ −  (ଶߤ

ܣܰ = ඨ2ߤଵଶ
ଵߤ) − (ଶߤ

ଵߤ
 

ܣܰ =  ∆ଵ√2ߤ
where 

ଵߤ) + (ଶߤ ≃ =∆ ଵܽ݊݀ߤ2
ଵߤ) − (ଶߤ

ଵߤ
 

      and also we know that the half acceptance angle  

18.11 Answers to Self Learning Exercise 
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଴ߠ = sinିଵටߤଵଶ −  ଶଶߤ

      Thus the light which travels within a cone defined by the acceptance angle is 
trapped and guided. This is the fundamental property of light propagation in a 
fiber. This cone is referred to as acceptance cone.  

Hence  

଴ߠ = sinିଵ(ܰܣ) 
       This is the required relation between numerical aperture and half acceptance 

angle. 

Ans.2: We know that the Numerical aperture of an optical fiber is 

ܣܰ =  ∆ଵ√2ߤ
where 

∆=
ଵߤ) − (ଶߤ

ଵߤ
=

1.55 − 1.50
1.55

= 0.03226 

ܣܰ = 1.55√2 × 0.03226 = 0.394 
Now for acceptance angle, we have the relation  

଴ߠ = sinିଵ(0.394) = 23.2∘ 
Ans. 3:  We know that the relation between refractive index and ∆ 

∆=
ଵߤ) − (ଶߤ

ଵߤ
=

1.5 − 1.45
1.5

= 0.033 

ܣܰ = 1.55√2 × 0.033 = 0.387 
Now for acceptance angle, we know that the relation 

଴ߠ = sinିଵ(0.387) = 22.78∘ 
    Now the critical angle is given by 

௖ߠ = sinିଵ
ଶߤ
ଵߤ

 

௖ߠ = sinିଵ
1.45
1.5

= 75.2∘ 

Ans.4: There is some application of fiber, which is given below: 
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(1) When the transmission medium has a very large bandwidth, a single mode 
fiber is used. Example: Undersea cable system. 

(2) When the system bandwidth requirements are between 200 MHz and 
2GHz km, a graded index multimode fiber would be the best choice. Example: 
in intra-city trunks between telephone central offices. 

(3) When the system bandwidth requirements are lower, a step-index 
multimode fiber would be better. Example: Data links. 

Ans.5:Optical fibers are the light equivalent of microwave waveguides with the 
additional advantages of a very wide bandwidth. Physically an optical fiber is 
a very thin and flexible medium, having a cylindrical shape consisting of three 
sections: (i) the core, (ii) the cladding and (iii) the jacket. Out of these, the 
core is the innermost section and is made of glass or plastic. This is the actual 
fiber and has the remarkable property of conducting an optical beam. It is 
surrounded by its own cladding, a glass or plastic coating, which has optical 
properties which are different from those of the core. The outer section is 
called the jacket made of plastic or polymer and other materials and is 
provided for protection against moisture, absorption, crushing and other-
environment dangers. 

      The core acts like a continuous layer of two parallel mirrors. A signal is first 
encoded into a beam, which is then passed in between the two boundaries and 
propagated as a result of multiple internal reflections. 

Ans.6: An optical fiber has very clear advantages over wire or radio system. The 
following are the main advantages of optical fibers: 

  (1) Attenuation in a fiber is markedly lower than that of coaxial cable or 
twisted pair and is constant over a very wide range. So transmission within 
wide range of distance is possible without repeaters etc. 

 (2) Smaller size and lighter weight. Optical fibers are considerably thinner 
than coaxial cable or bundles twisted-pair cable. So they occupy much less 
space. 

  (3) Electromagnetic isolation .Electromagnetic waves generated from 
electrical disturbances and electrical noises do not interfere with light signals. 
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As a result, the system is not vulnerable to interference, impulse noise or 
cross-talk. 

 is requires between the sender  and the݊݋݅ݐܿ݁݊݊݋ܿ ݈ܽܿ݅ݎݐ݈ܿ݁݁ ݈ܽܿ݅ݏݕℎ݌ ݋ܰ (4) 
receiver. 

 (5) The fibre is ݉ܿݑℎ ݈ܾ݈݉݁ܽ݅݁ݎ ݁ݎ݋, because it can better withstand 
environment conditions, such as pollution, radiation and salt produces no 
corrosion. Moreover, it is nominally affected by the nuclear radiation. Its life 
is longer in comparison to copper wire. 

 (6) Almost there is ݊ݏݏ݋ݎܿ ݋ −  in optical fibers and hence transmission is ݈݇ܽݐ
more  ݁ݎݑܿ݁ݏ and private, as it is very difficult to tap into a fibre. 

 ℎ. Bandwidth of the optical fibre is higher than that ofݐ݀݅ݓܾ݀݊ܽ ݎ݁ݐܽ݁ݎܩ (7) 
an equivalent wire transmission line. 

  (8) As fibers are  ݏܿ݅ݎݐ݈ܿ݁݁݅݀ ݀݋݋݃ ݕݎ݁ݒ, isolation coating is not required. 

 (9) Due to the ݊݊݋ − ݊݋and݊ ݁ݒ݅ݐܿݑ݀݊݅ −  nature of a fiber, there is݁ݒ݅ݐܿݑ݀݊݋ܿ
no radiation and interference on other circuits and systems. 

 Fewer repeaters indicate lower cost and .݃݊݅ܿܽ݌ܵ ݎ݁ݐܽ݁݌ܴ݁ ݎ݁ݐܽ݁ݎܩ (10) 
fewer sources of error. It has been observed that a fibre transmission system 
can achieve a data of 5 ݏ݌ܾܩ over a distance of 111 Km, without repeaters, 
whereas coaxial and twisted-pair systems generally have repeaters every few 
kilometres. 

18.12 Exercise 

Q.1  What is coherence or optical coherence? 

Q.2  What is the Optical Fiber?  

Q.3  Give some advantages of the Optical Fiber. 

Q.4  Give the brief classification of the Coherence. 

Q.5 Give some uses of Lasers. 

Q.6 What is the behaviour of Light, when it propagates in the Optical Fiber 
medium? 

Q.7   What is acceptance angle? Give its relation with the Numerical Aperture. 

18.12 Exercise 
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Q.8   Give the application of Laser in Medical Sciences and Holography. 

Q.9 Calculate ∆ for a step index fiber having core & cladding refractive indices 
1.48 and 1.46 respectively. 

Q.10  Calculate the NA, ∆ and acceptance angle of a fiber having the following 
characteristics:  

(݁ݎ݋ܿ ݂݋ ݔ݁݀݊݅ ݁ݒ݅ݐܿܽݎ݂݁ݎ)ଵߤ = 1.44 
(݈݃݊݅݀݀ܽܿ ݂݋ ݔ݁݀݊݅ ݁ݒ݅ݐܿܽݎ݂݁ݎ)ଶߤ = 1.40 
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 References and Suggested Readings 

19.0 Objectives 
There is an ever-increasing demand for accurate, low-cost and highly reliable 
guidance, control, and navigation systems for air, land, sea and space vehicles. The 
heart of these systems is gyroscope. Gyroscope is a device used to maintain 
orientation in space during motion and determine the angular rate of its carrying 
vehicle with respect to a reference frame. At present time, the best gyroscopes are 
still mechanical in nature using a large rotating mass, but now there are made a lot 
of efforts to develop high performance non-mechanical gyroscope like laser 
gyroscope. In this unit, we will discuss about the laser gyroscope and its working 
principle, and applications of lasers in defense, industry and medicine. 

UNIT-19 
Laser Gyroscope, Applications of Lasers 

19.0 Objectives 
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19.1 Introduction 
The Laser gyroscope works on a physical principle discovered by the French 
Physicist George Sagnac in 1913. Unlike the conventional spinning gyroscope with 
its gimbals, bearing and torque motors, the laser gyroscope uses a ring of laser 
light together with rigid mirrors and electronic devices. Thus, the laser gyroscope 
has more attractive features than conventional gyroscope including much greater 
reliability, lower maintenance requirements, light weight and compact in size. The 
LASER light has four main characteristics including (i) coherency (ii) high 
monochromaticity (iii) narrow angular spread and (iv) high intensity. Due to these 
characteristics, the lasers have many specialized applications is the field of 
defense, industry and medicine. 

19.2   Sagnac Effect  
In 1913, George Sagnac performed a ring interferometry experiment to point out 
the effect of rotation on the propagation of light traveling along a closed path. The 
first ring interferometry experiment aimed at observing the correlation of angular 
velocity and phase –shift performed by the French Physicist George Sagnac and 
his result came to be known as the Sagnac effect. This experimental arrangement is 
called a Sagnac interferometer as shown in figure 19.1. 

In this experiment, a beam of light in slipt by a half-silvered mirror into two beams 
and sent in two opposite directions around a closed path on a revolving platform 
(turntable). If the apparatus is stationary, the two beams will travel equal distance 
around the closed loop and arrive at the detector simultaneously in phase. 
However, if the entire device is rotating, the beam traveling around the loop in the 
direction of rotation will travel a slightly greater distance than the beam traveling 
counter to the direction of rotation, because during the period of travel the mirrors 
and detector will all move slightly toward the counter rotating beam and away 
from the co-rotating beam. Consequently, the beam will reach the detector at 
slightly different times and slightly out of phase, producing optical fringes. 
Therefore, the interference pattern obtained at each angular velocity of the plate-
form features a different phase-shift particular to that angular velocity.  Thus, the 
position of the interference fringes is dependent on the angular velocity of the set 
up.  

19.1 Introduction 

19.2   Sagnac Effect  
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Figure 19.1 Sagnac interferometer 

19.3   Laser Gyroscope or Ring Laser Gyroscope  

Laser gyroscopes are based on Sagnac effect. The modern Sagnac gyroscope either 
uses a coil of fiber-optic cable to make the path length around a ring interferometer 
very long or use a ring laser cavity. Therefore, there are two types of gyroscopes. 

1. Fiber-Optic Gyroscope (FOG) 
2. Ring Laser Gyroscope (RLG) 

In this unit, we will study about a laser gyroscope, which have two counter-rotating 
laser beam travel around a ring or closed path. Such a laser gyroscope is referred to 
commonly as a ring laser gyroscope as shown in figure 19.2. 

The first experimental ring laser gyroscope was demonstrated in the USA by 
Macek and Davis in 1963. A ring laser gyroscope uses interference of laser light 
within a bulk optic ring to detect changes in orientation and spin. RLG can be used 
as the stable element in an inertial reference system. Physically an RLG consists of 
a three or four sided block of low expansion coefficient material, which defines a 
closed optical cavity. The light path is defined by mirrors mounted at the corners. 

19.3   Laser Gyroscope or Ring Laser Gyroscope  
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The light travels through holes bored in the block containing a low pressure gas, 
usually a He-Ne mixture which lases when the anode and cathode are excited. 
Thus, RLG is itself actually a laser, therefore there is no need of any external light 
source in this gyroscope. 

19.4 Working of Laser Gyroscope 
According to the Sagnac effect, if two identical light waves circulate in opposite 
directions along a closed path undergoing a rotation (߱), then the light beam 
traveling in the same direction as the rotation takes longer time to travel around the 
path than the other beam, i.e. the resonant frequencies of the two standing waves 
produce in cavity are different. Therefore, a beat frequency (difference between the 
two frequencies) is obtained, which is directly proportional to the rotation rate. 
This gives change in the interference pattern of the beams.  

 
Fig. 19.2 Ring Laser Gyroscope 

Hence, the angular rate is measured by counting the interference fringes. The phase 
shift produced is given by 

 ∆߶ = ଶగ
ఒ

 ×(path difference)                                     (19.1) 

19.4 Working of Laser Gyroscope 
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The path difference between the counter-rotating laser beams traveling around 
closed path is calculated as follows:- 

Usually several mirrors are used, so that the light beams follow a circular path. Let 

R be the radius of the platform and ߱ be its angular velocity, then the 

circumferential tangent speed will be v = ߱R. Assuming entire device is rotated 
clockwise, then the time taken by light traveling in the co-rotating direction in one 
complete rotation is 

                t1 =
ଶగோ
௖ି௩

=  ଶగோ
௖ିఠோ

                              (19.2) 

and that in the counter-rotating direction is 

 t2 =
ଶగோ
௖ା௩

=  ଶగோ
௖ାఠோ

                           (19.3) 

The difference between the travel times is 

ݐ∆   = ଵݐ − ଶݐ = ܴߨ2 ቀ ଵ
௖ିோఠ

− ଵ
௖ାோఠ

ቁ 

ݐ∆  = ଶగோ × ଶோఠ
௖మିோమఠమ = ସగோమఠ

௖మିோమఠమ 

Since R߱ is very small in comparison to  (R߱ << c), when c is the speed of 
the light, then 

ݐ∆                    ≈ ସ஺ఠ
௖మ

                                        (19.4) 

where A = ܴߨଶ is the area enclosed by the loop. 

The path difference is ∆ݔ = ݐ∆ܿ = ସ஺ఠ
௖

                           (19.5) 

The number of fringes shifted ∆݊ = ௖∆௧
ఒ

= ସ஺ఠ
௖ఒ

                          (19.6) 

This is Sagnac’s formula. The amount of displacement is proportional to angular 
velocity of rotating platform or turntable. 

Thus, the phase shifted is (using eq. 19.5) 

2 4A
c

 

    
 

 

   Δ߶ = ଶగఠ
ఒ
ቀସ஺ఠ

௖
ቁ 
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   Δ߶ = ଼గ஺ఠ
ఒ௖

                          (19.7) 

It there is N turns in the circular part, then total phase difference  ∅ = ܰ∆∅ 

   ߶ = ቀ଼గ஺ఠ
ఒ௖

ቁܰ 

   ߶ = ቀ଼గ஺ே
ఒ௖

ቁ߱                                     (19.8) 

where ቀ଼గ஺ே
ఒ௖

ቁ = scale factor for the gyro                                      (19.9) 

A = Area enclosed by the beam path 

N = No. of times beam has gone around the path 

߱ = Rotation of system 

As we know that the laser gyroscope measures rotation rate by sensing frequency 
differences. When the rate of rotation is very small and thus the frequency 
difference between two beams is also small. There is a tendency for the two 
frequencies to couple together. This effect is known as “Lock-in”. It limits the 
accuracy of the laser gyroscope at important low rotation rates. The problem of 
lock-in is compensated by introducing a randomized “dither” by mechanically 
rotating the gyroscope. 

The laser gyroscope is insensitive to variations in the earth’s magnetic and 
gravitation fields due to the use of solid-state components and mass-less light. 
These are especially attractive for high performance aircraft, remotely piloted 
vehicles and missiles. 

19.5 Applications of Lasers 
Lasers are used in variety of applications.  These are based on the four important 
properties of laser beam viz. coherency, high intensity, monochromaticity and 
narrow angular spread (high directionality). Many of the interferometric techniques 
in optics (example-Holography) use laser sources on account of their high coherent 
nature. High intensity of laser beam makes it convenient for material processing 
and surgery. The high monochromaticity of laser beam has been used to separate 
isotopes. The high directionality of the laser beam makes it useful for ranging i.e. 
to measure distance of an object and the speed with it moves. 

19.5.1 Applications of lasers in Defense 

19.5 Applications of Lasers 
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Lasers have been used for various military technologies.  

a) Laser finder: Generally, laser beam is being used for effective and 
automatic control and guidance of rockets and satellites. When used in 
radars, it can be employed to destroy aeroplanes and missiles. Focused laser 
beams would become the legendary death ray of fictions that would burn 
everything standing in the way of beam. With improved firing accuracy of 
guns and enhanced destructive power ammunition, it is imperative to have 
accurate information about range to improve the First Hit Probability. 
Lasers play an active role in it and it is no wonder the weapon platforms 
like battle tanks, all over the world, are being with laser range finders. 
Therefore, lasers are ideal tools, available for range finders. Finders 
interfaced with computers are available. The First Hit Probability has thus 
improved tremendously. 

b) Laser Radar: The technique used in laser radar is similar to electronic radar. 
In the conventional radar, the electromagnetic pulse is transmitted and the 
reflected echo is recorded. Similarly, in laser radar, light energy is sent out 
in pulses and the reflected light echo is collected. However, here, since light 
is diffused by targets, there is a requirement of high peak power; that must 
have suitable pulse repetition rate, which is governed by the distance that is 
required to be measured. So, a laser radar scheme uses a laser scanner to 
observe the field of view. The scanner can be a system with mechanical 
devices formed with rotating mirrors. Scanning of the beam is done through 
the field of view in a pattern somewhat similar to the technique used in 
televisions. 

19.5.2 Applications of lasers in Industry 

The Lasers are used in many material processing applications such as laser surface 
modification (Cladding, Alloying and surface hardening), welding, drilling, 
cutting, scribing, thermal treatment, marking, etc. 

The laser beam is usually a few millimeters in diameter. For material processing 
applications, the laser beam has to be focused using lens or a combination of 

lenses. If λ  is the wavelength of light, ܽ is the radius of the beam and f is the focal 
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length of the lens, the incoming beam will get focused into a region of radius b 
given by  

fb
a


  

If P is the power of the incoming beam, them the intensity I obtained at the focused 
region is given by 

߇       ≈ ௉
గ௕మ

 = 
௉௔మ

గఒమ೑మ
 

Thus on focusing a 1W laser beam (with 1.06 = ߣ μm and having a beam radius of 
1 cm) by a lens of focal length 2 cm, the intensity at the focused spot is given by  
7.08 x 106 W/cm2. Because of such large intensities, enormous heat is generated 
which can melt metals. Therefore, Lasers have been employed to modify the 
surface properties of a material. 

(a) Laser Surface Modification (LSM) 

Laser surface modification (LSM) refers to any process in which the heat produced 
by the interaction of the laser beam and surface of the material is used to bring 
about a desirable alteration in material properties. It is used to increase wear 
resistance, corrosion resistance or strength. The techniques usually employed are 
laser chemical vapour deposition (LCVD), cladding, alloying, surface hardening 
and surface melting. The set-up used for LSM is relatively simple. The beam is 
directed perpendicular or nearly perpendicular to the surface to be treated. The spot 
size of the laser beam is usually large and the beam or the surface is moved to 
facilitate the scanning of the entire surface. 

Laser chemical vapor deposition (LCVD) is a process whereby the laser is used to 
heat a substrate so that a vaporous material can be deposited on it. It is one of the 
several techniques used in thin film technology. The substrate is heated for better 
adhesion. Laser is an inappropriate heat source for depositing on large areas the 
substrate. It is ideal and appropriate for localized heating and for complex substrate 
geometries which are encountered in integrated circuits. In some cases, laser could 
also be used to dissociate molecules or excite atoms in the gas phase or on a 
surface to form a thin film, without actually heating the substrate. 
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Cladding and Alloying: Cladding and alloying are similar processes. In both these 
techniques, an appropriate powder is laid down on the surface and is melted by the 
heat from the laser beam. During cooling the melt forms a chemical bond with the 
base metal surface. This process is also known as hard facing. In alloying, the base 
metal is melted to a substantial depth. The alloying material is mixed into the base 
metal to produce a new alloy. These two processes are shown in Fig. 19.3. 
Cladding and alloying may be used for improving wear resistance, corrosion 
resistance and impact strength. 

 
Fig. 19.3 Cladding and Alloying 

Surface hardening: It is well known that many materials such as cast iron and 
steel become hard after heat treatment. The laser is an ideal tool for selective and 
localized heating. Surface hardening with the laser improves wear resistance, 
impact strength and fatigue strength. The structural changes that occur on the 
surface due to rapid heating and cooling introduce residual stresses. These residual 
compressive stresses are responsible for the improved properties. 

(b) Soldering and Welding 

Lasers are used for both welding and soldering. In soldering, the laser acts as a 
heart source to reflow the solder which has previously been placed on the metallic 
part or parts. Laser soldering is preferred because the heat input can be localized 
and minimal heating is required. Hot plate or hydrogen flame techniques heat 
either the entire substrate or a large portion of it. This can damage sensitive 
electronic components. 
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 Two regimes of operation occur in laser welding depending on the incident 
power and power density. These are referred to as thermal conduction welding and 
keyhole welding. In thermal conduction welding, the laser welding is 
predominantly controlled by thermal conduction. This means that the power is 
absorbed at the surface of the metal and diffuses into the metal. Melting occurs for 
a depth determined by the thermal characteristics of the material and the welding 
parameters. Obviously, there must be sufficient heat to raise the material’s 
temperature above the melting point. In thermal conduction welding, a great deal 
of energy is lost due to reflection. Although, the reflectance of metal decreases as 
the temperature increases. Molten metal is still highly reflective. 

   In key-hole welding, the welding process is made more effective. The vapor 
pressure of the heated metal overcomes the surface tension of the molten pool and 
opens up a cavity into the metal which allows the laser beam to penetrate deeper as 
shown in fig. 19.4. The molten metal flows around the key hole and fills the hole, 
after the laser beam has passed over. Typical laser weld configurations are shown 
in the figure. Usually the welding operation is carried out in an atmosphere of 
flowing insert gas such as Helium, argon and nitrogen as shown in fig 19.5. This 
ensures the protection of the focusing optics and control of weld plasma. The 
plasma is produced by the heating of the work piece which emits small particles, 
electrons and ionized atoms. The advantages of laser welding are(a) flexibility (b) 
no need of a filter material (c) weld in most atmospheres (d) weld many dissimilar 
metals (e) deep penetration (f) high speed (g) no special joint preparation (h) 
minimal part distortion and (i) small heat affected zone. 

(c) Hole drilling 

There are two methods of piercing holes with lasers. They are percussive drilling 
and gas assist process. In percussive drilling, the energy from the laser pulse causes 
material to vaporize rapidly enough so that the molten and the solid material are 
expelled from the hole due to the rapid high pressure build-up. In the Gas assist 
process, air or an insert gas is blown into the hole so that the molten material and 
solid particles are expelled. Holes ranging from 0.025 mm in diameter up to 1.5 
mm in diameter are routinely drilled by laser up to depths of 25 mm. 
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Fig. 19.4 Welding 

 
Fig. 19.5 Gas flow welding apparatus 

(d) Cutting   

Cutting of metals with lasers is a gas assisted process. The purpose of using the gas 
is to blow away the molten material and prevent it from damaging the focusing 
optics. Since the molten material is blow away, the amount of vaporization 
required is minimized. This improves both the cutting rate and the quality of the 
cut. Laser cutting is also employed in garment industry. 

(e) Marking  
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One of the major uses of lasers is in marking (sometimes referred to as engraving). 
CO2 lasers are used to produce entire patterns, bar codes, serial numbers, logos etc. 
with one or two laser pulses. 

19.5.3 Applications of lasers in medicine 

Lasers are widely used in medicine both for therapeutics as well as for diagnosis. 
When a human tissue is exposed to laser radiation its temperature raises. The 
extent of damage depends on the time for which the tissue is at elevated 
temperatures. The nature of laser tissue interaction process may be divided into 
several regions, determined primarily by the intensity of the laser beam and its 
interaction time with the tissue. Lasers are used for tissue cutting and relatively 
high beam intensities with exposure times of milliseconds to seconds. This results 
in rapid deposition of heat and subsequent vaporization or decomposition. These 
are processes that are characteristic of thermal or thermo-acoustic ablation. For 
nanosecond pulses at relatively high photon energies, photons can directly break 
specific chemical bonds resulting in strong absorption and particularly clean cut. 
Lasers have been extensively used in ophthalmology, oncology, dermatology, 
cardiology, gynecology, dentistry and acupuncture. In many cases, the laser is 
precisely targeted with the help of an optical fiber.  

The advantages of using laser include 

(a) greater precision in targeting the diseased tissue 
(b) less bleeding and swelling  
(c) greater control over the input energy by mean of varying the laser pulse 

duration as well the Number of pulses per second 
(d) Less pain and dispensing with general anesthesia. 

(a) Ophthalmology  

The eye is roughly spherical in shape and consists of an outer transparent wall 
called cornea as shown in fig.19.6. This is followed by iris which controls the 
amount of light entering the eye and the eye lens. The space between the cornea 
and the lens is filled with aqueous humor. The rear portion of the eye consists of 
retina. Light falling on the eye is focused onto the retina. The photosensitive 
pigment contained in the retinal cells convert the light energy to electrical pulses. 
These are carried by the optic nerve to the brain for processing. Sometimes the 
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retina many get detached from the underlying tissue causing blurred vision or 
blindness. Lasers are primarily used for treating the retinal detachment. It is used 
for photocoagulation of the retinal blood cells i.e., the blood vessels are heated to 
the point where the blood coagulates and forms a viscous mass. Photocoagulation 
is useful for repairing retinal tears and holes that develop prior to retinal 
detachment.  

 
Figure 19.6 Laser eye surgery 

Lasers can be used for correction of focusing defects of the eyes. In the method 
referred to as LASIK (Laser In-Situ Keratomileules), the cornea of the eye can be 
crafted to adjust its curvature. This leads to proper focusing of light on to the 
retina. This treatment is suitable for people who use glasses with high lens powers. 

(b) Oncology  

Laser is an ideal tool for burning away the cancerous tissues. The treatment has the 
advantage that the laser beam can be focused to a very small region. This helps in 
retaining the healthy tissues which are otherwise destroyed along with cancerous 
cells. Some cancerous cells selectively absorb a phototoxic dye. These dyes 
become toxic when exposed to light and hence destroys the cancer cells on 
exposure to laser. This is known as photodynamic therapy. 

(c) Dermatology  

Lasers can be used to remove tattoos and skin blemishes. It is also used to remove 
port-wine birth marks, which appear as a result of concentration of blood vessels in 
the patch of the skin. 
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(d) Cardiology  

Cholesterol clots and plaques in coronary arteries obstruct the smooth flow of 
blood and cause malfunctioning of the heart. Lasers have been used to vapourise 
cholesterol clots and plaques which are deposited in the coronary arteries. The 
presence of clots and plaques in coronary arteries alters the speed of blood flow. 
Hence a measurement of the speed of blood could provide an early diagnosis for 
taking remedial measures. Laser Doppler velocimetry is employed to measure the 
speed of blood flow. 

(e) Gynecology  

Blocks in the fallopian tubes are one of the major reasons for the infertility in 
women. These blocks can be removed with laser. Cysts and tumors in uterus have 
been cauterized using laser. 

(f) Urology 

 Lasers have been successfully used to remove kidney stones from the bladder. 

(g) Dentistry  

Lasers have been used to drill out the decayed portion of the tooth or sterilize the 
decayed tooth cavity. It has been used to fuse the enamel when there is a slight 
porosity or cracks. Laser brushing of teeth is found to alter the surface texture of 
the teeth and make it resistant to decay. In dental restorative operations, laser is 
used for welding gold and other dental alloys with various dental bridge work 
elements. 

(h) Acupuncture 

 Pain due to disorders of many internal organs of the body travels away from the 
source of disorder and is experienced at sites remote from the ailing organs. This is 
because the pain manifests itself due to the irritation of a nerve trunk, its root or its 
terminal ends. There are a number of areas in the human skin where pain from the 
organ appears and this is known as referred pain or reflex pain. About 700 sites on 
the skin surface are identified which corresponds to various inner organs. 
Acupuncture is traditionally performed with sharp pointed needles. Depending on 
the diagnosis of the medical experts, these needles are inserted into the relevant 
areas of the skin to overcome pain and cure the disease. In recent years, 
acupuncture has been tried with laser pulses instead of sharp pointed needles. 
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19.6 Illustrative Examples 
Example 1 In a laser gyroscope, fringe shifted of 5 are seen due to rotation of 
platform of area 1m2, when a laser light of wavelength 600 nm is used in it. 
Calculate the angular speeds of rotating platform. 

Sol. Number of Fringes shifted due to rotation of platform 

  ∆n = ସ୅ன
ୡ஛

 

  ω = ୡ஛∆୬
ସ୅

 

Given  = 600 nm = 6x10-7m, A = 1m2, ∆n = 5 and c = 3x108m/s 

 = ଷ୶ଵ଴
ఴ  ୶ ଺୶ଵ଴షళ୶ହ
ସ୶ଵ

 

 = 225 revolutions/second    
 Ans.  

Example 2 A laser light of wavelength 500 nm is circulating in laser gyroscope 
along a closed path of area 2m2 and rotating with the angular speed of 20 
revolutions/second in 5 turns. Calculate the phase shift produced in circulated light 
by the rotation of turntable. 

Sol. The total phase difference is 

  ϕ = ቀ଼஠୅ன
஛ୡ

ቁN 

   Given   = 500x10-9m = 5x10-7m,   A = 2m2,  

N = 5,    = 20 rev/s      and    C = 3x108m/s 

   ϕ =  ଼୶ଶ୶ଶ଴୶ହ
ହ୶ଵ଴షళ୶ଷ୶ଵ଴ఴ

π 

  ϕ =  ଵ଺଴଴
ଵହ଴

 π = 10.7 π radius      

19.7 Self Learning Exercise 

Q.1 What is Gyroscope? 

Q.2 Write the Sagnac’s formula. 

Q.3 Laser gyroscope is based on the…………………….. . 

Q.4 Write the types of modern gyroscopes. 

19.6 Illustrative Examples 

19.7 Self Learning Exercise 
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Q.5 What is L.S.M.? 

Q.6 What is LCVD process? 

Q.7 Define the word LASIK. 

Q.8 What do you mean by laser Radar? 

19.8 Summary 

This unit starts with the introduction of laser gyroscope. By giving the concept of 
Sagnac’s ring interferometry experiment, the laser gyroscope has been explained in 
detail. The applications of laser in defence, industry and medicine have also been 
studied in this unit. Some examples on the above concept are given in the end of 
the unit. 

19.9 Answers to Self Learning Exercise 
Ans.1:Gyroscope is a device used to maintain orientation in space during motion 
and determine the angular rate of its carrying vehicle with respect to a reference 
frame. 

Ans.2: ∆݊ =
ωܣ4

ߣܿ
 

Ans.3: Sagnac effect 

Ans.4: Two types (i) Fiber-optic gyroscope and (ii) Ring laser gyroscope 

Ans.5: Laser surface modification 

Ans.6: Laser chemical vapour deposition 

Ans.7: Laser In-situ keratomileules 

Ans.8: In laser radar, light energy is sent out in pulses and the reflected light echo 
is collected. 

19.10 Exercise 
Section-A (Very Short Answer Type Questions) 

Q.1 Which laser source is used in laser gyroscope? 

Q.2 What is beat frequency? 

Q.3 What are the advantages with laser gyroscope? 

Q.4 Which laser is used for marking purpose? 

19.8 Summary 

19.9 Answers to Self Learning Exercise 

19.10  Exercise 
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Q.5 Who discovered the principal on which laser gyroscope is working? 

Section-B (Short Answer Type Questions) 

Q.6 What is the aim of ring interferometry experiment? 

Q.7 Why laser gyroscope is referred a ring laser gyroscope. 

Q.8 Which technique is used to measure the speed of blood flow in human 
body? 

Q.9 Why laser soldering is preferred? 

Q.10 What is photodynamic therapy? 

Section-C (Long Answer Type Questions) 

Q.11 Describe the construction and working of laser gyroscope? 

Q.12 What do you mean by gyroscope and Sagnac effect. Explain the working of 
Laser gyroscope.                    

Q.13 Discuss the various applications of lasers in medicine? 

Q.14 How laser can be used in industry applications. 

Q.15 Explain the various application of lasers in defense? 

19.11Answers to Exercise 

Ans.1: He-Ne laser 

Ans.2: Difference between the two frequencies in laser gyroscope experiment. 

Ans.3: Light weight, compact in size, lower maintenance and much greater 
reliability. 

Ans.4: Co2 Laser 

Ans.5: French Physicist George Sagnac. 
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