UNT-] BazicPqpatiesof Nudar

StuctureoftheUnit

10 Ogjedives

11 Introdution
12 NuderReadusandNuderDanity
13 Nuders Sain(Tad Angiar Manemtur)
14 Paity
15 IllugrdiveExampes
16 Seff LearingExerisel

17 MageticMonert

18 BindngEnegy
19 Semienpirica MassFormla
110 IllugrdiveExamples
111 SeffearingExerisell
112 Summay
113 Glossay
114 AnswestoSdf LeqmingExerises
115 Exerise
116 ArbnestoExerise
RefremesandSuggeted Reedngs

10Obiedives

Inthisunt, westall desonbethecetan bac propaties of nudessurnes sze
 trytoundastandthemby neersof enertay thearies

11Introdutior

|van propese a ans, naeles, salos andiquos an mexpaneentre besis of beavior of the edetrons, naerthdess, roleof thenudesisimportat in rature Applicaions of nuder physics havehad enmous effets an narkind Themost spectanlar apdicaion of nuder phyicsis nuder enagy . Theenegy daradeistic of dans is of theorder of eV wheres of nudeus is of theorder of MeV . In this unit weintrodresomeof its nost basic propeties In thelat we shall describethesemiempiricd messformabyemdging liquiddopmod.

12Nuder RadusandNuder Dasity

Thesizef nudeswesfirs inestigetedinthe α patidescturingeperinets of Ruthefard Inthis elpainett, thedstance of dose aproach provids the irfomstiondat thenuder radusof theard of $10^{14} \mathrm{~m}$
Themostacarterealts indvescdteringof higheregy rddivisicedetrors(f) doat $200 \mathrm{M}=\mathrm{V}$ kintic e ereg) fromtrintage of thenteid undr study. The
 of nides Asnuder farescobntatanandedron sowehaeadvalacewith
 wall krown Thesedetion scatteingtalls us the dstibution of darge If higly
 us the dstribuion of nuler nass beease netron intaats aly thragh the
 wenay eqpess its size intems of its radus R. Neder radus is nerred in fentoneter.

$$
1 \text { fenteneta }=1 \mathrm{Femin}=1 \mathrm{fm}=10^{15} \mathrm{~m}
$$

The eppeinetid realts indcete that the radus R vaies aproximatdy ∞ the aberoctof themassnumer addtisisddiontipisuadly egressedx

$$
\begin{equation*}
R=R_{0} A^{1 / 3} \tag{1}
\end{equation*}
$$

WhereA is themmsnumber and R_{0} isanempicice coefficiet andits appoxin\#te valueis

$$
\mathrm{R}_{\mathrm{\theta}} \approx 12 \times 10^{-15} \mathrm{~m}
$$

Adud valueof R_{0} dapenos onthetedriquethzt ueedfor dłeminntion of nuder radus

NuderVdurev $=\frac{4}{3} \pi \mathrm{R}^{3}$. Fromeq(1) wehave

$$
\begin{equation*}
\mathrm{V}=\frac{4}{3} \pi \mathrm{R}_{0}^{3} \mathrm{~A} \tag{2}
\end{equation*}
$$

i.e voluneof anudesisproparional tothenunter of nudens.

As thenwses of a poten and a netron are aproxinđtly equa, say m_{p}, then massof nudesmmay bewittenas

$$
\begin{equation*}
\mathrm{m} \# \mathrm{~A} \tag{3}
\end{equation*}
$$

Nuder massdansity $\rho_{m}=\frac{m}{V}=\frac{m_{p}}{\frac{4}{3} \pi R_{0}^{3}}$
which is indqpendertof nams nunber Ai.e thenamdrsity is appoinadły smefor all nude.
Wehavem $16 \times 10^{27} \mathrm{kgand}_{\mathrm{R}_{0}} \approx 1.2 \times 10^{-15} \mathrm{~m}$
Therfare $\rho_{m} \approx \frac{1.67 \times 10^{-27}}{\frac{4}{3} \pi\left(1.2 \times 10^{-15}\right)^{3}}=2.3 \times 10^{17} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
i.e nudernamscreityisof theacłrof $10^{17} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$. Thuswefindthtdarsity of a nudes has the edrenty tigh value, ratron stas have danities of this magitude
Nunher of nudeorsper uritvdure $=\frac{\text { Mass }}{\text { Mas of a nucleus }}$

$$
\cong \frac{2.3 \times 10^{17}}{1.6 \times 10^{-27}} \cong 10^{4} \text { nudeansini }
$$

Experinetd dosevetions for all nude are reesondly well aproxinated by fdlowingnderdargedstriation(nderdargedanity):

$$
\begin{equation*}
\rho(r)=\frac{\rho_{0}}{1+\exp \left[\frac{(r-R)}{t}\right]} \tag{4}
\end{equation*}
$$

Aboveempiricd equtionrepresertsFernitno paraneer nodd, where ρ_{0} is the nudeendargednsity ner thecertre of thenudesandr isrodd dstace Atdstacer $=$ R, fromea, (4) wehave

$$
\rho(r)=\frac{\rho_{0}}{1+1}=\frac{\rho_{0}}{2}
$$

i.e Ristheradusawhichthedanity hesfallentohaff itscertrd value Temtis nuder suface thidness parater. The dstance ouer which nuder darge danity ${ }_{p(r)}$ fallsfrom $0.9 \rho_{0}$ to $01 \rho_{0}$ is 4.4 t Wecanprovethisbyuingea(4)

$$
\begin{equation*}
0.9 \rho_{0}=\frac{\rho_{0}}{1+\exp \left[\frac{\mathrm{r}_{1}-R}{t}\right]} \Rightarrow \frac{r_{1}-R}{t}=-\ln 9 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
0.1 \rho_{0}=\frac{\rho_{0}}{1+\exp \left[\frac{\mathrm{r}_{2}-R}{t}\right]} \Rightarrow \frac{r_{2}-R}{t}=\ell n 9 \tag{6}
\end{equation*}
$$

Fromear(5) \& (6)

$$
\left.r_{2}-r_{1}=211 n 9\right) \approx 4.4 t
$$

Apdcofeq(4) isshownbdow

Figrell
Thedhagedarities of nudernsin n_{27} Coand $_{88} B i$ nude verusradd dstancefrom catreispdtedinfigre(12).

From the figre (12), it is evidat that $\rho(0)$ (inteior value of nuder dage danity) derees Sowly withincearing (nassnumer).
Thedrurgedarity $\rho(r)$ coresponds thederity of theprotens inthenudesand $\rho_{m}(r)$ representsthedanity of al nudens(natter) inthenides Experimertd resultsindcatetht

$$
\rho(r) \propto \frac{Z}{A} \rho_{m}(r)
$$

Experimetd doservaions show that $\rho_{m}(0)$ (interiar value of nuder mass density) is aproximatdy thesarefordl nude.

13Nuder Spin(Tda Anglar Manetum)

Anglarmentumof anudencanbedsaibedas

(i) SpinAnglar Monetum

Eachnudeen(prdonornatron) hesspinagiar romertum

$$
|s|=\sqrt{s(s+1)} t=\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \hbar=\frac{\sqrt{3}}{2} \hbar
$$

where $s=1 / 2$ sainanglar nenextumqentumunber.
Protonandmetronare fervionserchwithspinquatumunhers $=1 / 2$.
(ii) Orbitd Anglar Monetum

Theragitudeof orditd angiar mometumcanbeepressedas
$|\bar{l}|=\sqrt{(l(+1)} \hbar$
wheel=arbitd quatumunter.

(iii) Tdal Anglar Monetum

Themagitudeof thetdd angla mometumof thenideonis

$$
j=\sqrt{(i j+1)} t
$$

Thene angla monertumof thenudes is theresltat of all thespin anglar momtaandabitd anglarmomtaof the its constituentudeans Themagitudeof thenuder anglarmonetumdutodl nudensis

$$
|\overline{\mathrm{I}}|=\sqrt{\mathrm{I}(\mathrm{I}+1)} \hbar
$$

Where I is called todal anglar nonertumquertumnunter or nudeer gin whichnzy beaninteger or ahalf integer.
Greatestposidecomponet of thetdd angularmertumadanganydreationis

$$
\begin{aligned}
& I_{Z}=m_{I} \hbar \\
& \mathrm{~m}=-\mathrm{I},-\mathrm{I} \not \mathrm{I}_{1} . \ldots, \mathrm{I}-1_{\mathrm{I}}
\end{aligned}
$$

Wherem $=$ nægetictod anguar nonertumquartumumer.
The ward spinusully refers to the resilat angla nometumof a nudas in nuder physics, whees, in tamic physics the word spin refes to the intrinsic spinanglarmattum
It is fand thet nude witheren Zanderen N havethetad angla nomertum zeo, beeasepairs of pronsareformedinsunaweythttheir anglarmomta cand andsinilaly pars of netrons areformed insuma wey that their anglar nometacand.

Thetdd angula nometumquamnunter I is integrd for nude witheren nessnumber A andhelf integd for nude withodlmessnumberA.
Follaingcondusionaboutdd anglarnonertumof anudascanbenæde

$\begin{gathered} \text { Nexs } \\ \text { NunterA } \end{gathered}$	Pror NuntrarZ	$\begin{aligned} & \text { Naitron } \\ & \text { NuntrarN } \end{aligned}$	Nuderspinl
Even	Ever	Ever	C
	Ot	Ot	1,23,...
Odd	Ever	Ot	$\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \ldots$
	Ot	Evar	$\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$

Shall modl hesbeendadqpedto findtheangula nomettumof anudes. Shell nodA enagydagamisgivenas
$1 g_{9 / 2} \quad 10$
$2 p_{1 / 2} \quad 2$
$1 f_{5 / 2} \longrightarrow 6$
$2 p_{3 / 2} \quad 4$

$$
1 f_{7 / 2}=8
$$

$$
1 d_{3 / 2} \square
$$

$$
2 s_{1 / 2} \square \quad 2
$$

$$
1 d_{5 / 2} \longrightarrow \quad 6
$$

$$
1 p_{1 / 2} \backsim \quad 2
$$

$$
1 p_{3 / 2} \longrightarrow 4
$$

$$
1 s_{1 / 2} 工 \quad 2 \quad \begin{aligned}
& \text { Proton States }
\end{aligned} \begin{aligned}
& \text { Number of } \\
& \text { protonsor } \\
& \text { neutrons }
\end{aligned} \quad \text { Neutron States }
$$

Figrel3

Proton and natron states are filled separddy. The filled shlls hesea tdd anglar nenertuml expl tozan Anglar manertumof nudesisd\&emined by thequatumstde of singeurpared proton or natronintheShdl theary. For eampe, weconsidra ${ }_{8}^{17} 0$ nudeswhichhes8protonsand9natrons Quatumstae(seefigure14) of thelatsinge unparednatronis 11_{52}. Herce anglar nomeatumof thendesisl $5 / 2$

Figre14: Quatumstes of ${ }_{8}^{17} \circ$ nudesinshdl nodd

14Paity

The parity of a waverndion ψ is reded to the symmetry propeties of the navefundion ψ.

$$
\begin{aligned}
& \text { If }{|\psi(\vec{r})|^{2}=|\psi(-\vec{r})|^{2}}^{\psi(\vec{r})= \pm \psi(-\vec{r})}
\end{aligned}
$$

If thespodid pat of the warefundion of anudes is undenged when the space coardites (x, y, z) resubsitutedby $(-x,-y,-z)$

$$
\begin{equation*}
\text { i.e } \quad \psi(-x,-y,-z)=+\psi(x, y, z) \tag{7}
\end{equation*}
$$

i.e navefundion is invaiat undr reflection (fundion is symmetric as regards spotid inersion), thensytemissadtohaveevenpaity.
If thespaid patof thewaveindionof anudesdangessignuhenthespacecoadintes (x, y, z) aesubsititedby $(-x,-y,-z)$ i.e

$$
\begin{equation*}
\psi(-x,-y,-z)=-\psi(x, y, z) \tag{8}
\end{equation*}
$$

,then sytemis sad to haveodd paity i.e funcion is artisynmertic as regards spodid inversion
Theequitions(7) \& (8) may becontinedintheform

$$
\psi(-x,-y,-z)=P_{\psi}(x, y, z)
$$

$$
\begin{aligned}
& \psi(-\vec{r})=P \psi(\vec{r}) \quad \text { Whre } P= \pm 1 \\
& \mathbf{P}=+1 \text { coreapunstoeenprity(pritiveprity) } \\
& \mathrm{P}=-1 \text { corequandtooblprity(neyficieprity) }
\end{aligned}
$$

For Parityquerdor \hat{P}

$$
\hat{P}_{\psi}(\bar{r}, \mathrm{t})=\mathrm{P}_{\psi(-\bar{r}, \mathrm{t})} \quad \text { witheigenelue } \mathbf{P}=\mathbf{+ 1}
$$

Paity isassoidedwithquatumnumer $\#$ Haditisdsodandedbysymbl π. Insdreical polar coordnates (r, θ, ϕ, , a refletionabattheariginisequiveletto thefdlowingranfarmation

$$
\begin{array}{|l|}
\hline r \rightarrow r \\
\theta \rightarrow \pi-\theta \\
\phi \rightarrow \phi+\pi \\
\hline
\end{array}
$$

Toaremondy well approximdionwaveundion ${ }_{\psi}$ of anidesisthepodit of afundion depending an space coordintes and afundion depending onthespin crietdion It hes beenfand that irtringic prity of pronesull mof nation iseeni.e $\left.\quad\right|_{\substack{\text { phrinisic } \\ \text { nucen }}}=+1$
It is fand that prityof andasinagivensteis redtedtoabitd quatum nunber inthefdlovingnarme

$$
P=(-1)^{l}
$$

Thealditdsspdff... coreppondtbl=01,2,3. . reppativdy
Paityiseenforeenl andprityis oblfforobll.
 thenuder wavefuntioninasdeof dafiniteparity, then

$$
\psi_{N}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \ldots \ldots . \vec{r}_{A}\right)= \pm \psi_{N}\left(-\vec{r}_{1},-\vec{r}_{2}, \ldots \ldots . . . \vec{r}_{A}\right)
$$

Toagood aproxintion thewerfundion of thenudes is theprodut of the waveuntions of its constituats patides If the nuder patides have anglar monertumquatumnumess l_{1}, l_{2},respeedively, then parity of thenudes is theprodutavedl nudersisgivenby

$$
\mathrm{P}=P_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \ldots . . .=\Pi_{i} P_{\mu m}(i) P_{t}(i)
$$

$$
\begin{aligned}
&=\Pi_{i} P_{l}(i) \quad \\
&\left\{\because P_{\text {Pintinisic }}\right. \text { nucleon } \\
&\text { nut for nucleon }\} \\
&=-1)^{\ell_{1}}(-1)^{\ell_{2}} \ldots \ldots \ldots . .=(-1)^{\ell_{1}+\ell_{2}+\ldots} \\
& P=(-1)^{2 \ell_{i}}
\end{aligned}
$$

If $\sum l_{i}=$ eenthen P=tlandif $\sum l_{i}=$ odtthen $\mathbf{P}=-1$
The tod anguar nometum is genedly called the rudear spin and it is represetedbyi, butitisdfferetfromthespinanguarmaetum
Thepaity of a nudes is usilly reqeseted by a spascript +or - onthetod anglarmentum(sain) of thenudeas.

$$
\mathrm{I}^{\mathrm{P}} \equiv(\text { spin })^{\text {parity }}
$$

Spinprity sted a nudas is complety dkamined by a singe unpired podonornalron
FreenZ-eenN nude:

$$
\mathrm{I}^{\mathrm{P}}=0 \quad \text { (gandsta) }
$$

Imer shels are compledy filled Protors and neatrors in an even Neven Z nudestendtopar off separddy.
ForevenZ-ablNnude areenNodiZnude:
Tdd anguar mantumand paity aredatminedby the upared nudean.

$$
\left.I=\ell \pm \frac{1}{2}, \quad P \neq-1\right)^{\prime} \quad \text { (goundsta) }
$$

wherel requeststhearditd angla nomertumquatumnunber of theu paired nuden

ForotZ-ablNnuda:

$$
\text { Parity } P=(-1)^{\ell_{n}+\ell_{p}}
$$

Paity is imparat quatity in physics Paity is conseved in strang and dedronagneicirtsadionslatprityisnotconevedinvekinteadions

15IIlustrdiveExampe:

ExampelWhaistheparity of thefdlowingquatumsta

$$
\psi=B r e^{\frac{-r}{a_{0}}} \sin \theta e^{-i \phi}
$$

Sd. $\psi(-\vec{r})=\operatorname{Br} e^{-\frac{r}{a_{0}}} \sin (\pi-\theta) e^{-i(\pi+\phi)}$

$$
\begin{aligned}
& =B r e^{-\frac{r}{a_{0}}} \sin \theta e^{-i \phi} e^{-i \pi} \\
& =B r e^{-\frac{r}{a_{0}}} \sin \theta e^{-i \phi}(-1) \\
& =(-1) \psi(\bar{r})
\end{aligned}
$$

Hence parity $\mathrm{P}=-1$

Exampe2Findtheargiar monertumand parity of thenudes ${ }^{4} \mathrm{Ca}$.

Sd. Quatumstes of ${ }_{20}{ }^{41} \mathrm{Ca}$ rudes inshdl theary areshowninfigregiven bedow

Figrel5

Nudess ${ }_{20}^{41} \mathrm{Ca}$ 1es 20 protans and21 netrons 20protansand20natronsform dosed shallswheres 21 l t ratrongoes to quatumstar If_{72}. Thespin perity of ${ }_{20}{ }_{21} \mathrm{Ca}$ isdłeminedby theurparednatroninthestat l_{772}. Forthisstae

$$
\mathrm{I}=72 \text { andl } 3 \text {, Thuspaity } \mathrm{P}=(-1)^{3}=-1 \text { andr }^{\mathrm{P}}=\frac{7^{-}}{2}
$$

16SdfLemingExacis-I

Q1 Whatisthenture(shepe) of thegraphof $\ln \left(\frac{R}{R_{0}}\right)$ versus $\ln A$?
Q2 Whataretheeigenvdues of parityqpatar?
Q3 Find the detric petetid enegy de to detric realision between two nude of ${ }_{13}^{27} \mathrm{Al}$ when they tard eexh other it the suface (Assumethat $\left.R_{0}=1.1 \times 10^{15} \mathrm{~m}\right)$
Q4 Findthepraityof ${ }_{9}^{18} F$ nudes

17MagelicManert

Thespacinginhyperinesturdreindcdesthethemagitund nuder momets areof thearda of $\frac{e}{2 m_{p}}$ wherem isthemass of theproton Thenæogeic memet of anudesisexpessedinters of thenudernagton μ,

$$
\mu_{N}=\frac{e \hbar}{2 m_{p}}=5.05 \times 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}}=3.15 \times 10^{-8} \frac{\mathrm{eV}}{\mathrm{~T}}
$$

Weknowthat BdrMegnden $\mu_{B}=\frac{e \hbar}{2 m_{e}}$

$$
\text { Thus }=\mu_{\mu_{N}}^{\mu_{B}} \approx 1836
$$

SpinMegnticMonet:

A free proten hes spon magetic manet componet in any dretion (say z dredion) isgivenby

$$
\left(\mu_{s p}\right)_{z}=2.793 \mu_{N}
$$

The sion nagelic nenert of the prom is predld to its sin anglar nonertum
The spon magnic monet componat of a retron in any drection (say z drection) isgivenby

$$
\left(\mu_{s n}\right)_{z}=-1.913 \mu_{N}
$$

Itmeentht sjinnagnticnonetof thenahonisqposietoitspinanglar nonetum

Incrob toundastandthemagneic nomerts of aprotonandanetron(natral patide), intern stuctures of themareconsidred
Weconeyressthespinnmegeic nomertfor protonandnatrona
$\vec{\mu}_{s}=g_{s}\left(\frac{e}{2 m_{p}}\right) \vec{s}$
and $\mu_{s z}=g_{s} \mu_{N} m_{s}$
Wherenaglicspinquanmunterm $= \pm$ /2
$\mathrm{g}=\mathrm{nuder} \mathrm{gfador}$
Forproten $\quad g_{\mathrm{pp}}=+5.5855 \quad \because\left(\mu_{\mathrm{sp}}\right)_{\mathrm{z}}=+2.793 \mu_{\mathrm{N}}$
Fornatron $\quad g_{\mathrm{n}}=-3.826 \quad \because\left(\mu_{\mathrm{sn}}\right)_{\mathrm{z}}=-1.913 \mu_{\mathrm{N}}$

Obita MagndicMonert

Theremay beabitd anglar nometumdeto motion of thenidenswithinthe nudes Thecompenet of theabid mandic nomert of a proton dang thez axs(additaydrection) is

$$
\mathrm{M}_{\mathrm{Lz}}=\frac{\mathrm{e}}{2 \mathrm{~m}_{\mathrm{p}}} \mathrm{~L}_{\mathrm{z}}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{p}}} \mathrm{~m}_{\ell}=\mu_{\mathrm{N}} \mathrm{~m}_{\ell}
$$

Nalronchesnotherethealötd nagneicnonetheraweithesnodarge
Forproton $g_{p}=1$
For Natron $\mathrm{g}_{\mathrm{n}}=0$

RealtariMagnticManet:

To a good aproximaion realtat magnic monert of a nules is dreetly propationd tothenudessini adwecanwite
$\mu_{\text {hdas }}=\mathrm{NgI}$
Heregisthednadeisic of earnndas.
Nudas with zaO nudear sin (todal anglar nonartum) hes no nagneic nonert Thus ean \mathbf{N} - even \mathbf{Z} nude have no nagetic nonet Paired nudeascbnotcartrialetothenagdicnanert:

Mageic nomets of detronsandnudesinteat andthisinterationsditthe atomicleddswhichgives risetothehypafinestuctreof thelines of theatomic spedra
It is found that many nude rein the shape of an ellipsoid inseed of schere
Daidion of dagedstrilution of nudasfiomashasicd shapeisameare of nuderrdedricqualyplenenert
QuahyplemunatQisdafinedas

$$
Q=\int\left(3 z^{2}-r^{2}\right) \rho d V
$$

whereis ρ thenuderchagedasity, $d V=$ vduredenert
SI. unitofQisC-m²
SoneeimesQisdsodfinedæ

$$
Q=\frac{1}{e} \int\left(3 z^{2}-r^{2}\right) \rho d V
$$

wheree- $6 \times 10^{19} \mathrm{C}$ andthenuritof Qwill belbemwher ${ }_{1 \text { Barn }}=10^{-28} \mathrm{~m}^{2}$ If the nudas hes shaically gnmeric dagedstribation, then it hes no dedricquatuplenenertarhigerdedicnenets
The darge dstribution will be stredched in the z dreation (prote shape) if quachuple momert is poitive If quachpole monet is negdive, then dage dstribtionwill beinddđeshøpe

Prolate $\mathrm{Q}>0$

Oblate $\mathrm{Q}<0$

Figrel6
Itisdrenedithtnude of bothnagic NandZherezeoqechyplenonerts andhenceareqdsica.

18BindingEnag

Nudasisass medtobeconposed of netronsad proms Whenneticrsand protens continetoformanudes, theeis aloss in nass So bindngenegy of thendes is theenegy eqivdet of themissing mass of thenudes If Δm be themissing massof thenides, thenlindingeregy E_{\circ} may beexpressedas

$$
E_{b}=\Delta m c^{2} \text { Where }_{c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}}
$$

Whenthenudeenswhich aeinitially far anoy fromeech ther rebraytdoser toformthenides, thearaut of enegy remediscalledthedindngenegy of thendes
Alterntively, we can say that the arourt of enegy requred to spparde the constiuat nudeanstolagedstances is called thebindingeregy of thenudes Thetermiissing mass Δm is known a nasedfet Thegeder value of the bindng enegy of nudas means that the more enegy is needed to break the nudesinto its constituat patides Thusbindng enegy is redtedto stadility of thenudes Stedlenude havepositivevalueof thebindingengy. Nuder mass isfandtobedvayslessthanthesumof thenmeses of consituat nudean The pinid eof eqivdenceof massandengy corfimstheidłaof massdfet
Thebindng enagy of a nudes of rest mass ${ }_{2}{ }^{\prime} m$ compoed of nudens of rest nasesm iswittena

$$
E_{b}=\left(\sum_{i} m_{i}-\frac{A}{Z} m\right) c^{2}
$$

If mass number of nucleus is A and there are Z protons and $(\mathrm{A}-\mathrm{Z})$ neutrons, then bindingenegy isstadas

$$
E_{b}=\left[Z m_{p}+(A-Z) m_{n}-\frac{1}{2} m\right] c^{2} \quad \text { (in Joule) }
$$

Here $_{n_{p}}$ and $_{n_{n}}$ aetherest moses of theprotonardnatronrespeativedy. Indbove expessionnmesesaretakninkg

$$
\begin{equation*}
E_{b}=\left[Z m_{p}+(A-Z) m_{n}-\frac{A}{2} m\right] 931.49 \mathrm{MeV} \tag{9}
\end{equation*}
$$

Hereall massesaetakninurifiedatonicnamuritu

$$
1 u=931.49 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}
$$

$$
\begin{aligned}
& 1 u=\frac{\text { rest mass of one neutral }{ }_{6}^{12} \mathrm{C} \text { atom }}{12} \equiv \frac{1.99265 \times 10^{-26} \mathrm{Kg}}{12} \\
& 1 u \equiv 1.66054 \times 10^{-27} \mathrm{Kg}
\end{aligned}
$$

Alonic nassurit(gynhod : amu) weslesedonoygen and it wes redaced by unified donicnmesurit(symbo: u) in 1961totakestandadsareformindhysics addcheristry. Netethtt lamu candsobetdene ${ }^{1 a n u}=931.49 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}$ Nuder linding enagy is of theade of MEV wheres linding enagy of dedrarsinatomisof thearłrofel. Hencebindingenegy of dedransinatom is nedigde in compaison with nuder lindng eregy. So withat apreidde error, bindngenegy f thenudesmay beaproxin\#edss

$$
\begin{equation*}
E_{b}=\left[Z M_{H}+(A-Z) m_{n}-\frac{{ }_{Z}^{2}}{A} M_{\text {atom }}\right] c^{2} \tag{10}
\end{equation*}
$$

where M_{H} istherestrassof thehydogenatom
In addtion to messes of protas, the term $z M_{H}$ indudes the nusses of Z dedrons Similaly thetem ${ }_{\bar{L}}^{A} M_{a u m}$ aso cantans the cartribution of masses of Z detrons Hence, inthedboveexpession of thebindingenegy E_{5} cortribtions of nuses of detronscand at

PadkingFration

Itisdfinedas
PadkingFration $f=\frac{M-A}{A}$, whereMistheatonicnnssof thenetra tam
Aboveexressionnay bewrittenas $M=A(1+f)$
Padingfradion f isafundionof nassnumberA.
UnifiedAtomicMassUritisdfinedforcaboncs $M\left({ }_{6}^{1} \mathrm{C}\right)=12.0000000 u$
Hercebydfinition predingfiadioniszoffor ${ }_{6}^{12} C$.
Varidianof BindingEnagyper NudenwithMesNLumber:
Averageldindngenegyper nudemismoreusfu parnear formerert of stddility of anudes Itisdfinedas
Averagebindingenegypernudeen $\bar{E}_{b}=\frac{\text { Total binding energy of the nucleus }}{\text { Total }}=\frac{E_{b}}{A}$

For eampe le's considr nudes ${ }_{2}^{4} \mathrm{He}$ which hes linding enegy ${ }_{28} 8.3 \mathrm{MeV}$, then

$$
\bar{E}_{b}=\frac{E_{b}}{A}=\frac{28.3}{4} \cong 7.07 \frac{\mathrm{MeV}}{\text { Nucleon }}
$$

The binding enegy per nudeen ∞ a fundion of nass number A is patted in figre(17).

Figrel7
The dinding enegy per nudeen versus mass number darateistic arve hes fdlowingninfetures
(i) Bindngeregy perndeenislone forbothligtnude ($\mathrm{A} \leqslant 30$) andheay nude ($A \geq 170$). Ontheaverge, nude of intermatenases ($A \sim 50-80$) arthenoststde
(ii) Thebindingenegy per nudeenisfairly contartforthenude of middenmess numbers (doat $30<\mathrm{A}<170$). Inthisregion \bar{E}_{b} hesvaluedat 8 mev .
Wthfuther incremeinthemms nunber A, thebindingenegy per nudeen dereessolytodat 7.6 Mev for $\mathrm{A} \simeq 240$ Thisherpersdetolangrange
realiveCalantbicforcebdweentheprotarsinthenudas
(iii) Thepek $t \mathrm{~A}=4 \mathrm{for}$ nudes ${ }_{2}^{4} \mathrm{He}$ indcdes the unsal tigh sddility of the nudes(dphapatide) ${ }_{2}^{4} \mathrm{He}$ whichisnadeof two protansandtwo natrons Similaty there is a dso radd rise in the value of \bar{E}_{b} for ligt nude with naximafortheevenZelenNude surna ${ }_{6}^{12} C,{ }_{8}^{16} 0$.Atherenude \bar{E}_{b} is renakddy geterthenthoseof theiradacet neighbours
(iv) Theanehesitsnaximumof ${ }_{8.8 \mathrm{MeV}}$ whenthenasenumbris56thtisan ironisdqpe ${ }_{26}^{55_{e}}$ Widhisthenotsddenulas
(v) If aheay nudes of vey hign mass number is spit intotwo nedumnmess fragrets, this process is Knownafission In thefission process enegy is librdedbecasenedumnmsprodit nudè havehiger linding enegy per nudencomparedtocigna heaynudes
Foreande ${ }_{92}^{38} U\left(\right.$ forwtich \bar{E}_{b} isdbat $7.6 \frac{\mathrm{MeV}}{\text { Nucleon }}$) spitsintotwofrogmets of equd nasses say nass number of 119. Appoxinte value of \bar{E}_{b} is 8.5 $\frac{\mathrm{MeV}}{\text { Nucloon }}$ fornude haingA=119. Sogininlindngeregy per nudeanis $8.5-7.6=0.9 \frac{\mathrm{MeV}}{\mathrm{Nuclon}}$. Hence eregy relesed in the process is tat $238 \times 0.9=210 \mathrm{MeV}$
(i) Innuderfision, twoormerenude of vey small nass number A cantine toformarredumndes of higer nassnunberA andenegy is isemedin this process becase produt nudes tes tiger aveage bindng enegy per nuden

19Seni Empiricd MewFarmle

Saetisscardquednuearliqudapprods to gvephycd ingigtintonuer propaties.Inthismodd nudesisassmed likealiqiddopinwtichnuderns are doody packed For epressing the tomic nass ,in 1935 ,Van- Witizader
 catanpropeties of dæsicd liqiddrpis uæed
Fromeq(10) bindngeregy of thendesisgivenby

$$
E_{b}=\left[Z M_{H}+(A-Z) m_{n}-{ }_{Z}^{A} M_{\text {atom }}\right] c^{2}
$$

$$
\begin{equation*}
{ }_{Z}^{A} M_{\text {atom }}=\left[Z M_{H}+(A-Z) m_{n}-\frac{E_{b}}{c^{2}}\right] \tag{11}
\end{equation*}
$$

where ${ }_{Z}^{A} M_{\text {atom }}$ isthenmssof thenatrd dam.
Nownedsassthevariastermsthet cortributeinthebindngenegy

(a) VdureEnagy,

Thistermisbesedonschuclionpquatyof nuderforces Nuder forcesanong nudeans arevery strang and haveveyshat rangeabat3im Wecan visulize eachnudennasaschereandtheseareassumeltobedosely padkedinwhicheach nudeantarkesthe 12 neghbaring nudeans. It can beassmed thet interation between any tho nerest neighbaring nudeans, reslts in cetain interation energy. Tdd interationenegy of sudhtypedapendsonnumber of adacet pairs of nudeans, i.e dapans on the mass nunber (tod nunher of nudeans in the nudes). Sincevdureof the nudesisdreetly propariand toA ,sothistypeof interation eregy is reded to vdure of the nudes. Attrativenuder forces reslts in negdive interation enegy bit binding enegy is taken as positive Hencebinding enegy corespondingtothisinteratiancanbeapproxintedas

VduneBindngEneggy $E_{v}=a_{v} A$
wherea ispositiveconstat

(b) Surface Enagy E_{S}

Nudeons an the sufare have fener neighbours and they are not compledy surounded. Thenudeon on thesurfacefeds tradiveforces aly fromaneside wheem the nudean in the interior feds atrative forces fromall sides In the volure enegy tem ,it wes assumed that each nudeen interads with other nudeons eqully fromal sids, soatemthat is propationd tothesufaceaeaof nudesmet besudrated to redrethelindingenegy. This negdivecoredion cansitutesthesufaceenegyterm E_{s} whichrepresentsthelossof bindngenegy.

$$
\begin{aligned}
E_{s} & =-\alpha R^{2} \\
\Rightarrow E_{s} & =-a_{s} A^{2 / 3} \quad \because R=R_{0} A^{1 / 3}
\end{aligned}
$$

Sinceligter nude have geeder fration (rdio of number of nudeens an the suface to those in the interior volume), so suface eregy termis the not sigificatforligternude.

(d)CalanbEnagy

Calantic replision farce between protans is lang range farce TheCalanb patetid eregy (of Zprotonspackeltogether inscheicd symmeticname) is propationa tonumber of protenpars $\frac{Z(z-1)}{2}$ and isinessely propationd to nuderradus
Thecortribuiontothebindngenegy isexpessedas

$$
\begin{aligned}
& E_{c} \propto \frac{Z(Z-1)}{R} \\
& \Rightarrow E_{c}=-a_{c} \frac{Z(Z-1)}{A^{1 / 3}}
\end{aligned}
$$

TheCalantic repliveenegytemlowes thebindngeregy ardincees the mass, henceit qposesnuder sddility.Forheaierndè $z \gg 1$,hance E_{c} can ๒есргохinжeda

$$
E_{c} \cong-a_{c} \frac{Z^{2}}{A^{13}}
$$

(d) Agymidy Energ

Theagnndry enagy E_{a} arises deto unequl number of natiras and proms inthenulas Togit thebes ageerert with preddedbindngeregy ,itcanbewittena

$$
\begin{array}{lc}
E_{a}=-a_{a} \frac{(N-Z)^{2}}{A} & \text { Here neutron excess } \equiv(N-Z) \\
\Rightarrow E_{a}=-a_{a} \frac{(A-2 Z)^{2}}{A} & \because N=A-Z
\end{array}
$$

The cartribion of the aymmetry enegy to the lindng enegy is neydive becaseit dereesesthebindingenegy of thenudes. Thiscorrediontermcarnt beundastood with simple liqiddop moda, it is a predy qatumnedaricd effetwichisretedwithnuder eregylerds Tobeinthestddestar,nudas shaldocapy thelonet enegy stae Theaymmedry enegy E_{a} iszerofor $Z \neq N$ thetresitsingeter stdility of thenudes

(e) PainingEnagy

The nude haing even numbes of both protors and neatrons ae strongy favared and nost stde innturewheresnide haingodnumbersof both
protons and natrons are the leat stdde Hence this paining effet (spin considedion) istakeninthepaingenegywhichcanbeepressedempiricallyas

$$
E_{p}=(\pm, 0) \frac{a_{p}}{A^{3 / 4}}
$$

Theparingenagy is positivefor ever evennude andzarofor odtevennude revenodnudè andmegaiveforootoodnudè i.e

$$
\begin{array}{lr}
E_{p}=\frac{a_{p}}{A^{3 / 4}} & \text { for even } \mathrm{Z} \text { and even } \mathrm{N} \\
E_{p}=0 & \text { for even } \mathrm{Z} \text { and odd } \mathrm{N} \\
& \text { or odd } \mathrm{Z} \text { and even } \mathrm{N}
\end{array}
$$

$$
E_{p}=-\frac{a_{p}}{A^{3 / 4}} \quad \text { for odd } \mathrm{Z} \text { and odd } \mathrm{N}
$$

Herea, isasumedanaproxinatdy contatcofficiet
Thetud bindngenegy of anudes of tamic number Z andmass number A is wittena

$$
E_{b}=E_{v}+E_{s}+E_{c}+E_{a}+E_{p}
$$

Seniappiricd BindingEnagyFamla

$$
\begin{equation*}
E_{b}=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z(Z-1)}{A^{1 / 3}}-a_{a} \frac{(A-2 Z)^{2}}{A}(\pm, 0) \frac{a_{p}}{A^{3 / 4}} \tag{12}
\end{equation*}
$$

Fromeq(11) Atomicnass ${ }_{Z}^{A} M_{\text {aom }}=\left[Z M_{H}+(A-Z) M_{H}-\frac{E_{b}}{c^{2}}\right]$

Senienpriced nasformla

${ }_{Z}^{A} M_{\text {atom }}=\left[Z M_{H}+(A-Z) m_{n}-\frac{1}{c^{2}}\left\{a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z(Z-1)}{A^{1 / 3}}-a_{a} \frac{(A-2 Z)^{2}}{A}(\pm, 0) \frac{a_{p}}{A^{3 / 4}}\right\}\right]$
A sefof constats $a_{v}, a_{s}, a_{c}, a_{a}$ and a_{p} havebeendateminedes

$$
\begin{aligned}
a_{v} & =14.1 \mathrm{MeV} \\
a_{s} & =13.0 \mathrm{MeV} \\
a_{c} & =0.595 \mathrm{MeV} \\
a_{a} & =19.0 \mathrm{MeV} \\
a_{p} & =33.5 \mathrm{MeV}
\end{aligned}
$$

Oher sets of contats have dso been develpeed by empirically fiting the doservedmess
Eq (13) is known a the semiempirica nass formala becase the contats $a_{v}, a_{s}, a_{c}, a_{a}$ and a_{p} aedłerminedenpuricelly by fiting doserved tamic nasses The semiempriced nass formola predds the bindng eneges which are revirkddy dose to the doserved values except those of very sinil A. The dscrepanies between predided mass values and doseved nass values are the leat

110IllustraiveExample

Exampe3Cdaltethetomic nass of ${ }_{4}^{9}$ Be . The ${ }_{4}^{9} \mathrm{Be}$ is 58.11628 MeV
Gventhtatonicmass $M\left({ }_{1}^{1} H\right)=1.00782 u$,
Massof natron $m_{n}=1.00866 u$ and ${ }_{1 u=931.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}}$
Sd. $\quad E_{b}=\left[\left\{4 M\left({ }_{1}^{1} H\right)+5 m_{n}\right\}-M\left({ }_{4}^{9} B e\right)\right] c^{2}$

$$
\begin{aligned}
\Rightarrow M\left({ }_{4}^{9} \mathrm{Be}\right) & =\left[\left\{4 M\left({ }_{1}^{1} H\right)+5 m_{n}\right\}-\frac{E_{b}}{c^{2}}\right] \\
& =\left[\{4 \times 1.00782 u+5 \times 1.00866 u\}-\frac{58.11628 \mathrm{MeV}}{c^{2}}\right] \\
& =\left[\{4 \times 1.00782 u+5 \times 1.00866 u\}-\frac{58.11628 u}{931.5}\right] \\
& =[\{4.03128 u+5.04330 u\}-0.06239 u] \\
M\left({ }_{4}^{9} \mathrm{Be}\right) & =9.01219 u
\end{aligned}
$$

Example4Cadatethebinding enegy of thelat natron in thenides ${ }_{8}^{17} O$. Giventhtatomicnmesses
$M\left({ }_{8}^{17} O\right)=16.99913 u, M\left({ }_{8}^{16} O\right)=15.99492 u, M\left({ }_{1}^{1} H\right)=1.00782 u$
Massof netron $m_{n}=1.00866 u$ and $_{1 u=931.49} \frac{\mathrm{MeV}}{\mathrm{c}^{2}}$
Sd. Thebindngenegy of anudemistheenegy requiredtorenovethtindeen fromthenudes
Bindngengy of thelatnetron

$$
\begin{aligned}
E_{b n} & =\left[\left\{M\left({ }_{8}^{16} O\right)+m_{n}\right\}-M\left({ }_{8}^{17} O\right)\right] c^{2} \\
& =\left[\left\{M\left({ }_{8}^{16} O\right)+m_{n}\right\}-M\left({ }_{8}^{17} O\right)\right] \frac{931.49 \mathrm{MeV}}{c^{2}} c^{2} \\
& =[\{15.99492+1.00866\}-16.99913] 931.49 \mathrm{MeV} \\
& =[17.00358-16.99913] 931.49 \mathrm{MeV} \\
& =[0.00445] \times 931.49 \mathrm{MeV} \\
E_{b n} & =4.15 \mathrm{MeV}
\end{aligned}
$$

111Sdf LemmingExacis-II

Q1 Whatisthevdueof nuerrmagion?
Q2 Binding enegy per nudeon is maximemfor iran isdope ${ }_{26}^{56} \mathrm{Fe}$. Is this stamettue?
Q3 Cadatethebindngenegy of nudes ${ }_{32}^{238}$. Alsofind the ${ }^{2}$. pernuden of thendes Gventhtatomicnasses
$M\left({ }_{92}^{238} U\right)=238.05076 u, M\left({ }_{1}^{1} H\right)=1.00782 u$
Massof natron $m_{n}=1.00866 u$ add $_{1 u=931.49} \frac{\mathrm{MeV}}{\mathrm{c}^{2}}$
Q4 Exdanthepainingeregyteminsemiempirica masfomula

12Summay

- Nudear radus $R=R_{0} A^{1 / 3}$
- Nuder nassdanityisof theordar of $10^{17} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$.
- Greatest posidecomponet of tod angiar mometumof anudesdangany drectionis $I_{z}=m_{1} \hbar$

$$
\mathrm{m}=-\mathrm{I},-\mathrm{I}+\mathrm{H}, \ldots, \mathrm{I}-1_{1},
$$

wherem=nagneictud anglar nonertumquartumunber.
 It is found that parity of nudes in a givenstareis reated to arditd quatum nunberl inthefallowingnamer $P=(-1)^{h}$

- QuachypdenomatQisdafinedas
$Q=\int\left(3 z^{2}-r^{2}\right) \rho d V$
whereis ρ thenuder dargedanity, $d V=$ vdumedereat, SI . unit of Q is C-M3
SonteinesQisdsodainedas $Q=\frac{1}{e} \int\left(3 z^{2}-r^{2}\right) \rho d V$
If the nudas has spheically symmetric darge dstribution then it hes no dectricquahuplenanetor hige dectricnants.
- Bindngenegyof thenudes $E_{b}=\left[Z m_{p}+(A-Z) m_{n}-\frac{A}{Z} m\right] 931.49 \mathrm{MeV}$

Hereall messesaretckeninuWhere ${ }_{u=931.49} \frac{\mathrm{MeV}}{\mathrm{c}^{2}}$

$$
E_{b}=\left[Z M_{H}+(A-Z) m_{n}-{ }_{Z}^{A} M_{\text {atoom }}\right] c^{2}
$$

The arve pltted binding enegy per nudean verus mass nunter has its maximumof ${ }_{8.8 \mathrm{MeV}}$ When the mass runter is 56 tht is an iron isdope ${ }_{26}^{56}{ }_{5 e}$ whichisthemotstdenudes

- Seniempirica bindngenegyforma
$E_{b}=a_{r} A-a_{s} A^{2 / 3}-a_{c} \frac{Z(Z-1)}{A^{1 / 3}}-a_{a} \frac{(A-2 Z)^{2}}{A}(\pm, 0) \frac{a_{p}}{A^{3 / 4}}$

113Gomay

Nuden: protorsandratrons

Even-ernnude: nude haingerenZanderenN

Parity: Theprity of a wavefundion ψ is idtedto thesymmery propaties of thewavefundion ψ. Parity qpertor P nehave $\hat{P}_{\psi}(\bar{r}, \mathrm{t}) \equiv \mathrm{P}_{\psi(-\bar{r}, \mathrm{t})}$ with eigen value $P=+1$

114AnsmastoSef LeamingExarcise

AnswastoSaf LemingExacisel

Ansi: Straigtline $\ln \left(\frac{R}{R_{0}}\right)=\frac{1}{3} \ln$ withsqee $\frac{1}{3}$.
Ans2 ± 1
Ans3 NudearradusR $=R_{A} A^{13}=11 \times 10^{15}(27)^{1 / 3}$

$$
=3.3 \times 10^{-15} \mathrm{~m}
$$

Mutud dectric potetid enagy $\mathrm{U}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{R}}$

$$
\begin{aligned}
U & =\frac{9 \times 10^{9}\left(13 \times 1.6 \times 10^{-19}\right)\left(13 \times 1.6 \times 10^{-19}\right)}{3.3 \times 10^{-15}} \\
& =3.75 \times 10^{\wp} \times 1.6 \times 10^{-19} \mathrm{~J} \text { ale } \\
& =3.75 \mathrm{MeV}
\end{aligned}
$$

 liesintherespedivesdetes ${ }_{2}{ }_{52}$
Hencel $_{n}=2$ andl $_{p}=2$

$$
P=(-1)^{l_{n}+l_{p}}=+1
$$

ArseastoSif LemingExacisell

Ans1: $\mu_{N}=\frac{e \hbar}{2 m_{p}}=5.05 \times 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}}=3.15 \times 10^{-8} \frac{\mathrm{eV}}{\mathrm{T}}$
Ans2 True
Ans3 Bindngeregy

$$
\begin{aligned}
E_{b} & =\left[Z M_{H}+(A-Z) m_{n}-{ }_{Z}^{A} M_{\text {atom }}\right] c^{2} \\
E_{b} & =\left[\left\{92 M\left({ }_{1}^{1} H\right)+146 m_{n}\right\}-M\binom{238}{92}\right] c^{2} \\
& =[\{92 \times 1.00782 u+146 \times 1.00866 u\}-238.05076 u] c^{2} \\
& =[1.93304] u c^{2} \\
& =[1.93304] \times 931.49 \mathrm{MeV} \\
& =1800.61 \mathrm{MeV}
\end{aligned}
$$

Bindingenergypernudean $\frac{E_{b}}{A}=\frac{1800.61}{238} \frac{\mathrm{MeV}}{\text { Nucleon }}=7.57 \frac{\mathrm{MeV}}{\text { Nucleon }}$

115Exacis

Q1 Wht is thevdueof the detricquochponemet of nudaswichles schericallysymmericchagedstribtion?
Q2 Whtistheardr of nudernmsdanity?
Q3 Magneicnonerts of detrons and nudes interat and this interation
spitstheatomicleadsuhichgivesrisetothe........... (finelhyperfine) stuxtureof thelines of thedomic spedra
Q4 Whatisthevdueof 1Ban?
Q5 Definemassdfectandpadking fration
Q6 Exdantheaymmery enegyteminsemiempinicd massfomula
Q7 Comprethe nuler dansity of ${ }_{1+}$ with its atomic dasity (Assume the tamicradusisequl tothefirst Bdrardit).
Q8 Witetheminfetures of aneof bindngeregy per nudenversismass number.
Q9 Findthespin-paity of thefdlowingnude
(i) ${ }_{99}^{9} \mathrm{~K}$
(ii) ${ }_{8}^{17} 0$
(iii) ${ }_{7}^{1} \mathrm{~N}$

Q10 Describethesemiempirice massformuaforthenudas

116AnsmerstoExarcis

Ansl:Zéo
Ans2 Nuder massdanityiscof theardar of $10^{17} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$.
AnE3 hypafinesturure
Ars4 ${ }_{1 \text { Bar }}=10^{-28} \mathrm{~m}^{2}$
Ans7: Oer 10^{4} inees

Ans9 (i)

	k_{12}	$1 \mathrm{r}_{32}$	$1 r_{12}$	11_{52}	z_{12}	$1 \mathrm{c}_{32}$
Protan	2	4	2	ϵ	<	3-2+
Natrane	$<$	4	$<$	ϵ	$<$	4

[^0]
ReferencesandSuggetedReming:

1 Herd A. Enge, Introdution to Nuder Physics (1966), Addson Wesey PudistingCompery.
2 BerardL. Cdnen Concepts of Nider Physics(2002), TataMcGrantill.
3 InvingKadan, Nuder Physics(SecondEdtion2002), NarosaPudishing Hase
4 RR. Roy\&B.P. Nigam Nudea Physics (200), NewAgeIntentiond (P) Ltd
5 KemethS. Krane Introditary Nuder Physics(2008), WileyIndaPut Ltd
6 Rdaat Esbag \& Rdbat Resick, QartumPhysics of Atons, Mdeales, Solid, Nude a adPatides (2006), JdnWles\&Sars(Asia) Pte Ltd
7. Arthr Beiser, Shdorit Manjan \& SRai Chachury, Conceqds of Modan Phyics(Searth Edtion2015), McGraw-Hill.
8 D.C.Tayd, Nuder Physics (Farth Edtion 2001), Himalay Pudisting Hase
9. RobatD. Evans TheAtomic Nudess (1955), McGrawHill Book Compeny ,Inc
10. J.B. Rajam,Atomic Physics (Sererth Edtion 2002), S. Chand \& Company Ltd
11 Yang \& Freedm, Urivesity Physics, (Elevath Edtion 2004), Peason Edraion Inc
12 Daid Halliday, Rdagt Resrick \& Kemeth S. Krame Physics Vdure -II (FifthEdtion2004) JdmWiley\&Sons(Asia) Pte Ltd
13. Marcdo Aluso \& Edhard J. Fim Physics (1999), Addition Westey Langran, Inc

UNT-2 TwoNudemSytemandForce:

SrutureoftheUnit

20 Ojectives
21 Introdution
22 Gered neuref thefrrcebeweennudeans
23 Sefflearingexerisel
24 Gened formof two nudeeninteration
25 Propaties of nuderfacce
26 Sefflemningexerisell
27 Summay
28 Glossay
29 Arsvestosdflemringexerises
210 Exerise
ReferncesandSuggetedReedings
200biedive:
After interating with the mateid preseted here studets will be ade to undastand

- gened ntureof nuderffrce
- proetiesof nuderfaceand
- thegred formof nuder peterid.

21Introductiar

Atthebegining of thetwertithcentry, thescienceof physicsknewdbatthre baic forces gavitdiond, dedric, and magtic All forces, whether they were "ationtadstance' orfiddforces, caldbedwassirtepreed ${ }^{2}$ oretheettree
frces andit wes bedieved that all dhe forces likedatic farees, collisionforces, eccaldbeundastoodintems of thesethreeforces
Bytheendof first quater of thetwertiethcertury aforthforcewesfound Wth detrostic, magnic, andgavitdiond forces, nerentcaldbemabinthe laboratry or an a maroscapic scde and the lans govering these farces were estddished But etiredy nawn mothon were required to study thenuder bindng farces; by the 1900s theformof the lans govering thesefarces hed not been edddishedonafirmbers

22Gansd Natureof theForcebshean Nudean

Wecanenuratethefdlowingrqperties of nuderffrceonthebasisof vaias doservaionsandempiricd fats

1 Nuderr farceis dvass atrative bedween tho natrons, or tho protors ar netronandproton Existenceof netronsand protorsina boundsteisitsedf an evidaceof this
2 Nuderr farceisshat ranged If it werent so, all thenudens indfferet nude will colesceinto omebignudes and eveything will probddy tumintoa huge nudes like a sper-natron sta, and there will be mo more a vaidy of denersinnture
3 Nuderr farceisvarytrang This is evidat fromthelagebindngenegy of nude (dbat 8 MeV per nudemn). The avacae bindng engy of eletrons in tonsisintherangeof EV to ke V aly.
4 Nuderr farcesturates This is actully anatconeof theshat ragenture of thenuder farce Earh rudeen in a nudes interats with its neghbors arly. As a realt thebindngenegy per nudeon rises ropidy for ligt mass nude and qidłysturtes
Figreshonsthemeremtsof theeregy neededtostripatanudenfroma nudes a a fundion of thenumber of nudens in thenudes, i.e theinding eregy per ruden rises radidy ip to A-10.20 and then leves off at aproximady $7.5 \mathrm{MeV} / n$ nden 2
If weass methetanudeaninteratswithdl theothernidensinthenudesthen thereshaldbeA(A-1)/2 pars of nude. Sincethebindng enegy incees with
then unter of interationsBE $\sim A(A-1) / 2$ ThenBE/A waidbelinær, whichitis btaly raghly uptoarandA-10.

Thebindng enegy a ve sugests thet nudems orly interat with their nerest nighbors Therangeof thefarcemotbeless thenthesizeof amas-10nudas, whichisaand $12 \times 101 / 3=26 \mathrm{fm}$ This propety isdescribedes sturdion of the nuderffarce
5. Nuder farce is dergesymeric It is sare for a pp add an n-n pair (ignaing the Calontr repulion beveen pp). As an example conside the fdlowingevidacefordargesymmy.

${ }^{-} \mathrm{H}$	${ }^{*}{ }^{\prime}$
Z $=1, \mathrm{~N}=$	$\mathrm{Z}=2, \mathrm{~N}=$
2r-npairsadlr-npair	2r-npairand1r-ppar
$\mathrm{BE}=048 \mathrm{MeV}$	$\mathrm{BE}=7.7 \mathrm{M} \mathrm{MEV}$

Thedfference in the BE beveen the two is $0.77 \mathrm{MeV} .{ }_{2}^{3} \mathrm{He} 1$ mssuming to bea unifontly darged sphere of radus 224 Femi, thedfferene is alnost etirely accantedfor byCalanberegy imdyingthatppandn-ninteradionissare 6 Nudear forceisdargeindapandat: Theforceissarefornpaitisfornn andppparsprovidedthen-ppar isinthesareisospinstde(T=1). A ppandan nn pair cancoupy isospinT=1 stdealy. If thenppair dso ccapies T= state thentheforceisthesare
Onecanot say frommirror nude aythingabatnnand ppforces comparedto npforces But if wegradally dangetheindvidd nudeantypes, aneby ane, into the other we genede a seies of nude with the sare mess, but a range dfferet numbers of protans and natrons. To make a far comparison for the stronginteration, wecanagincoreetfortheCalanbeffetsandthedfference intheprotonandnatronnmsses
Freeande theO+goundstes of $30_{s i}$ and 30_{s}, andanexited 0^{+}staein $30 P$ aed a very simila nassenegy. The 2^{+}stes of $30_{s i}$ and 30_{s} dso havean isdaric andogein 3PP, acbother leves Trasition podadilities and reation rdes besedanstrangirteradionsindvingthesestesdsoshowsimilaities
Considg thedanges ingring from $30_{s i}$ and 30_{p}. A retronturns into aproten We dready know that the nn and pp farces ae simila. So the experimentd smilaity of the 30Bi levd scherewithashbet of stes inthe 30P levd schere mot imdy that then-p force mit dso beof simila strengh Neder forces dspdaydargeindpperdarce
7. Nuderr farceisspindapandat: As aneamde datern inits gand state (andthearly boundstat) evistsaly inspintride stae Thespinsinge stateis unband Trispropety will befurther dsassedindraper 3
8 Nuderr farcehes a tessor neture The arangeret of nuden spins in a nudes- whether two nudens areplacedsidebysidea, oneantop of thedher ath ough todd spin is 1 in both the cees - makes a dfference in their bindng honscerersmal.
Thetersordapendanceisgernally exressedbytheterm,

$$
S_{12}=\frac{1}{r^{2}}\left[3\left(\vec{\sigma}_{1} \cdot \vec{r}\right)\left(\vec{\sigma}_{2} \cdot \vec{r}\right)-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) r^{2}\right]
$$

If σ_{1} and σ_{2} ae pardld tor and if the two are perpendala tor, the value of $\left(\sigma_{1} \cdot \sigma_{2}\right)$ is dfferet in the two cees even for the same value of the tod san i.e σ. Themanetic nomert of datern carnt beepdaned withat thetersor ntureof nuderfface
9. Nuderr farcealsohesvedoitydapandancear, adppendarceanthespin-ardit termItisgivenbeatermlike

$$
V_{12}=\frac{1}{2} \vec{L}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) V_{L S}(r)
$$

It is atradivewhenL andS $\left(\# / 2 /\left(\sigma_{1}+\sigma_{2}\right)\right.$) aepardld andrepisivewhenthey areati-padld.
10. Nuder farcehesanednngednader. This is a prely quatumfeture and nay be undastood by knowing the way ruder force is medited Tho nudeans, wheninterating witheachothe, canexchangetheir spin, isospin ora contintion of both Thesearerepreseted by Batlet (B), Heserbeg (H), and Majarar (M) tems which cartribte to the force accordng to the sigs given below.

	Evenl, + +epraty		Oodll, -veparity	
	$\mathrm{s}=1$	Sも	s=1	S \ddagger
n	H	H	+	H

B	\#	-]	H	-1
M	\#	H	-]	-1
H	H	-]	-]	H

Thesign dapends on thenature of stde (thel-vdue, svdueand the parity). W represertstheWgre termwhichismexdangetall. Batlettforceleadstospin exdange, Majorana force to isospin exchange and Hesenberg force to a contuntiono of sainandisospin

23Sdf LemingExacis-I

Q1 Exdaintheevidancefor dtrativentureof nuderforces
Q2 Drawbindngenegyperndeangach
Q3 Witedbwnthetemwhichrepreserthetersordapendanceof nuder farce
Q4 Definetheerchangedarater of nuderforce
Q5 Witedowntheprqpeties of nuderforces

24Genad Famof TuoNudeanInteradiar

Theirteration of tho nudernst lowenegy can bedescribed by a patetid of theform

$$
\begin{aligned}
V(r) & =V_{\text {cent }}(r)+V_{S S}(r) s_{1} \cdot s_{2}+V_{T}(r)\left[3\left(s_{1} \cdot r\right)\left(s_{2} \cdot r\right) / r^{2}-s_{1} s_{2}\right] \\
& +V_{\mathrm{LS}}(r)\left(s_{1}+s_{2}\right) \cdot L+V_{L S}(r)\left(s_{1} \cdot L\right)\left(s_{2} \cdot L\right)+V_{P S}(r)\left(s_{1} \cdot p\right)\left(s_{2} \cdot p\right)
\end{aligned}
$$

Where
rdandestherddivedstarceof thenudemswithspinss_ ands, pistherdaivenomertumand
Listhetad arditd anglar momettum
Theptertid negeets theimer struture of thenudens and is therfore vaid aly for boundstetes andfor loweregy NNscetteing fromwhichitsformcan bedaived Intepredionof thedfferettems

1 Cetral patetid.
2 Cetrd spin-spinirteration
3 Tersor (nonceatrd) patetid. It hes the same spin dapendance as the magdic interation of two mandic nomets This termis the only one which may lead to a mixing of dfferet arditd anglar monertumin the physicd stae
4. LScaping simila toatonicphyscs, at cased by thestrangface
5. and 6tems respet besic symmeties but nay dten be needected dether quadticdeperdanceonp
To describe nude, addiond many-body farces have to be token into accart, leadngtoasjill highe lede of sqdisiccion

25Prqpaties of Nuder Farce

Inthissedionwes mmaizethenrinfetures of theinter nudeonforce

Intradionbakeənnidenscansistiolonest ordr of andtradivecatrd potertial

In rost of nuder caldion we use a squrendl farmof paterid, which simplifies the calalitions and reprodrees the doseved dta failly well. Other nore realitic forms cald jut a well have been dosen bit the essertid condusionswaidnotchange(infat, theeffediverangappoximationis virually independat of theshapeass medfor thepterid). Thecommendarateistic of these patetids is that they depend aly on the inter rudeen dstacer. We therfarerepreset thisceatrd tema $V_{c}(r)$. Theeppeinetd progamto study $V_{C}(r)$ waid beto rearetheenegy dapendaceof nuden-rudeen paraters
 reprodresthoseparateas
TheNudeen-Nudemnirtractionisstrongyspindapandat
This doservaion fdllons fromthefailureto doserveasinge bound stereo the datern .and dso fromthemed dfferences beween the sing \pm and tride cooss setions (dsa ssedinCheder 3). What is theformof anaddtiond temtht mot beadded to the petetid to accart for this effect? Obia dy thetermmet dependonthespins of thetwonudeens, s_{1} and s_{2} atnotal posidecontindions
of s_{1} ands s_{2} aepermitted Thenuderffrcemet stify certansymmetries, which restict the posilde forms that the peterid cald have Examdes of these symmerie areparity $(r \sim r)$ andtinerearsal ($t \sim t)$. Expeimertsindcatethat, toahighdegeeof preision(orepatin10 for prity andmepat in $10{ }^{3}$ fortime revesd), theinter nudem potertid is invaiat with respeet to theseqpertions Undr the paity qeatar, wich indves spotid reflection angla monertum vedars ae unchanged This staenet may semsomenht surpising becase yponineting a coadnatesytemwe wald nturdly eppect all vetars dffined inthet cordntesytemto inet Hoverer, angla nomettumis not atneor polar vedor, it is a peacbor axid vedor that does not invet whenr $\sim r$ r. This fdlons dreetly fromthedfiritionr X par can beirferredfromadagamof a spirning djeet Under the timerevesd quertion al motions (indudng lineer and anglar mometun) ae revesed Thus tems such $\propto s_{1}$ or s_{2} or a liner contointionAs +Bs, inthepotertid would vidatetimerevess inveriaceand canot bepat of thenider patetid; tems such s_{1}^{2}, s_{2}^{2} ors $s_{1} s_{2}$ aeinvaiat withrespeet totimerevesd andaretherefrealloned (All of thesetems aredso invaiat withrespeet to paity.) Thesimpesterminduingbthnudenspirs is $S_{1} \cdot S_{2}$ Le's corsidg the value of $S_{1} . S_{2}$ for singet and tripde stes To ob this we evdutethetdd spinS $=S_{1}+S_{2}$

$$
\begin{aligned}
S^{2} & =S \cdot S=\left(s_{1}+s_{2}\right) \cdot\left(s_{1}+s_{2}\right) \\
& =s_{1}^{2}+s_{2}^{2}+2 s_{1} \cdot s_{2}
\end{aligned}
$$

Thus

$$
s_{1} \cdot s_{2}=\frac{1}{2}\left(S^{2}-s_{1}^{2}-s_{2}^{2}\right)
$$

To evaluethis expession, we mit reventer that in quatumnecharics al squedanglarmmaeduteas

$$
\begin{gathered}
s^{2}=\hbar^{2} s(s+1) \\
\left\langle s_{1} \cdot s_{2}\right\rangle=\frac{1}{2}\left[S(S+1)-s_{1}\left(s_{1}+1\right)-s_{2}\left(s_{2}+1\right) \hbar^{2}\right.
\end{gathered}
$$

Wthrudeensiniss ands of $1 / 2$, thevalueof $s_{1} . s_{2}$ is, fortipl $\ddagger(S=1)$ tates

$$
\left\langle s_{1} \cdot s_{2}\right\rangle=\frac{1}{2}\left[1(1+1)-\frac{1}{2}\left(\frac{1}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right] \hbar^{2}=\frac{\hbar^{2}}{4}
$$

adforsing $\ddagger(S=0)$ staes

$$
\left\langle s_{1} \cdot s_{2}\right\rangle=\frac{1}{2}\left[0(0+1)-\frac{1}{2}\left(\frac{1}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right] \hbar^{2}=-\frac{3 \hbar^{2}}{4}
$$

Thus a spin-dependat eyression of the forms $s_{1} s_{2} \mathrm{~V}_{s}(r)$ can be induded in the patetid and will havetheeffet of giving dfferert calalted cooss setions for sing \pm andtrid \ddagger stes Themagitude of V_{s} canbeaduted to givethecareat dffereces betweenthesing e andtripecross setions andtheradal dependance canbeadustedtogivetheproperdapendanceaneregy.
Wecalddso witetheptetid indudng V_{c} and V_{5} a

$$
V(r)=-\left(\frac{s_{1} \cdot s_{2}}{\hbar^{2}}-\frac{1}{4}\right) V_{1}(r)+\left(\frac{s_{1} \cdot s_{2}}{\hbar^{2}}+\frac{3}{4}\right) V_{3}(r)
$$

where $V_{1}(r)$ and $V_{3}(r)$ ae peterids that sppardely give the proper singe and triplebedaiars

Theirtar Nudem paratial inducts a noncatrd tam known as a tassor paterid

Evidance for the tersor force cones pinarily from the doserved quachpole norert of thegand state of thedatern (Cheder 3). Ansste($1=0$) vave fundianisscheically symmeric thededricquachpolemanet vaishes Wave fundions with mixed I stes met resilt fromnonceatrd patetids This tersor frcemat beof theform V (r), instedd V (r). Forasingenudeen thedniceof acatandretioninsporeisdbiady atbitray, nudemsdonotdstingishnath fromsathoreet frommest Theorly referncedreetionfor anudeanisitssan, and thusaly tems of theforms $\cdot r$ ors $X r$, whichreder to thedreetionofs s cancortribute To stisfy the requirenerts of perity inveriace, theremst bean evennumber of factors of r, andsofor two nudeensthepatetid most dapendon temssucha $\left(s_{1} \bullet r\right)\left(s_{2} \bullet r\right) \propto\left(s_{1} X r\right) \bullet\left(s_{2} X r\right)$. Using vetor idatities wecan show thet thesecond farmcan bewriten intems of thefirst and the addiond terms $\mathrm{s}_{1} \cdot \mathrm{~S}_{2}$, which weareedy induded in Mr). Thuswithat loss of geredity we canchoosethetersor cartributionto theinter nudem patetid to beof theform $V_{T}(r) s_{2}$ where $V_{T}(r)$ gives thefacetheproper radd dapendaceandmagitude, and

$$
S_{12}=3\left(s_{1} \cdot r\right)\left(s_{2} \cdot r\right) / r^{2}-s_{1} \cdot s_{2}
$$

whichgivestheforceits proper tensor charater anddso averagestozerover all anges
TheNuden-Nudenfarceisdargegmmeric
This mens that the proton-proton interadion is idaticd to the netron-natron inteation, fter we corred for the Calanlo force in the protanproton system Here"chage' refers to thedracter of thenideen (protonor neatron) and not to detric charge Evidancein sppat of this asetion cones fromtheequlity of thepp andmscatteinglenghsandeffectiveranges Of carse, thepp parnetes mot first be correted for the Caland interation When this is dne, the realtingsingepppraneetesae

$$
\begin{aligned}
& a=17.1 \pm 0.2 \mathrm{fm} \\
& r_{0}=284 \pm 0.03 \mathrm{fm}
\end{aligned}
$$

Thesearein very good ageerert with themedmparates ($\mathrm{a}=-166 \pm$ $0.5 \mathrm{fm} \mathrm{r}_{0}=266 \pm 0.15 \mathrm{fm}$), which strongy suppots the notion of dage symmery.

TheNudem-NudemFarcelsNaxhyCkergelndapandat

This mens thet (in andognsspinstes) thethrenuder farcesm ppandpn aridaticd, agincarredingfor thepp Cailonbforce Chageindppendanceis thw a stronger reqirenett than dragesymmery. Here the evidance is not so condusive in fat, the singe rp scattering lengh (- 237 fm) seens to dffer subtatidly from theppandmscatteinglenghs(-17fm).

Honera, we see from figre that lage reedive scotteing lenghs are etracdraily sensitiveto thender warefundionner $r=R$, andavery smal dange in ψ; can give a lage dange in the scatteing lengh Thus the lage dfference between the scattering lenghs nay correspond to a vey small dfferece(fordr 1\%) bevwentheptetids, whichiserily exdained by the exdangeforcemods.
TheNudean-Nudenintradianberonesrqulsiveatshotdstances

This condusionfollons fromqulitdiveconsidardions of thenuder danity: a addmorendeansthenudesgonsinsurhavey thatitscertrd danity remains rangly contat, and the samething is keeping thenudens fromaonding too dogdy togethe. Marequatitdively, wecanstudy ndeen-rudeen scatteing t higer eneges Figreshonstheded reedsinges suaveprestiftsfor nudeannudeen scedteing yp to 500 MeV . (At these enegies, phese shifts fromhigher patid waves, pand dfor examde, aso cortributeto the cooss setions Thes wave phees shifts can be exily etrated from the dfferetid scatteing maremits of $\mathrm{d} \sigma / \mathrm{d} \Omega \mathrm{vs}$ (θ becasethey do nd dependon θ.) At datat 300 MEV, theswarephereshiftbecones negtive, corespondngto adhangefroman ttrativeto a replsiveface To accart for therepulsivecore, wemit nodfy
theptetids we ure in ar caldiains Fr examde again choosing asquere well formtosimpifythecalalion, wemigttry

$$
\begin{aligned}
V(r) & =+\infty & & r<R c c r e \\
& =-V_{0}(\mathrm{R}) & & \mathrm{R}_{\text {cex }} \leq r \leq \mathrm{R} \\
& =0 & & r>R
\end{aligned}
$$

adwecanadut R coreutil weget stisfadary ageenert withthedosenveds wave prees shifts The value $\mathrm{Rexe} \cong 0.5$ fimgives ageemet with the dbserved presestifts

nanertumof thenudeas

Froces depending an veloity or monetumcand be represetted by a scelar puterid, bt we can indudetherefarces in a resondde rame by introdung tems liner in p quadtic in p, and so on with each tem induding a draaterisic Vr r). Undr the parity quertion $\mathrm{p} \rightarrow-\mathrm{p}$, and dso under time revesd $p \rightarrow-p$ Thus any termsimdy liner in p is unecceqddde becase it vidtes both paity and timeresesd invaiance Tems of theformr.por Xp are invaiat with respeet to paity, but sill vidat time revasd. A poside studurefor this termthat is first arda in p and inveriat with respect to both paity andtimerevesd is $\mathrm{V}(r)(r \times p) \cdot \mathrm{S}_{\text {, wher }}=\mathrm{S}_{1}+\mathrm{s}_{2}$ isthetdd spinof the tho nudens Therdaiveangla nomertumof thenudens is $I=r X p$ and therfarethistem, knownet thespin-arditterminandogy withatomicphysics is witten $V_{\text {so }}(r)$ I.S. Althaghtighe-arde tems nay bepreset, thisisthealy firstader terminpthtstaisfiesthesymmetries of both paity andimerevers.
Theexperinetd eidanceinsuppat of thespin-arbit interation cones fromthe doservaiontht scattered nuders can havether spins digned, or polaized in cetan drections The plaizdion of thendeans in a beem(or in ataget) is dfineda

$$
P=\frac{N(\uparrow)-N(\downarrow)}{N(\uparrow)+N(\downarrow)}
$$

whereN (\uparrow) and $N(\downarrow)$ refer tothenunber of nudeonswiththeirspinspairtedup
anddown, respeedively. Values of P ragefrom+1, fora100\%spin-uppdaized berm to -1, for a 100\%s saindown pdaized berm An uppdaized beem, with $P=0$, hesequl numbes of nudenswithspinspointingypanddown

Conside thescatteringeppeinertshowninfigre inwtich anurpdaizedberm (showna a mixture of spin-upand spin-downnudeens) is ingidatonaspin-up taget nuden Le's spposethenuden-nudeoninteration cases the inidat sainup nudeans to bescatered to theleft tange θ add theinidat sain-down nudens to bescdtered to therigt t ange- θ. Pat bof thefigre shons the saneepreinut vienedfrombedow dserdded 180° dat thedrection of the indidat beem Wecan dso irtepret figreb as thescatteing of an unplaized bermfroma saindown tage ndeen and ance agin the spin-up indadt nudeans scatter to the left and the spin-dbun nudears scatter to the rigt The realts wald bethesame, even in an unpdaizedtage, which waid cartana mixtureof spin-ypandsain-downnudeers whenanu rparizedbermisscdtered fromanupplaizedtaget, thespin-up scattred nuderns apper prefertidly at θ andthespin-downscettrednudenst- θ.

Although this sitution may apper supafididly to vidze reflection symmery (paity), youcanconvinceyoursdf that this is not so by skedringtheeppeimert anditsmincorimage Paity isconsevedif tange θ wedbservean \pm polaizdion P, whilectange- θ wedoservean \pm plaizdionof -P.
Nowle'sseehowthespinarditinteadion cangiverisetothistypeof scattering withpodaizdion

Figreshonstwo nudemswithspinupinidatanaspinuptage, sothat $\mathrm{S}=1$ (Scatteing that indudes .anly s waves most be scherically symmetic, and therfaretherecanbeno plaizdions Thep-wave $(t=1)$ scetteing of idaticd nuderns hes an ati symmetric spadid wavefundion and therefrea symmetric spinnovefundion) Le'sassmethat $V_{\text {so }}(r)$ isnegdive Forindidatrudeen $1, I=$ $r X$ p is down and therefrel. S is negdive becasel and S pairt in qposite drections Thecontingion $V_{\text {so }}(r)$. S is positiveand so thereis a replsivefare betweenthetage andindidat nudeen1, whichispushedtothelft For nideen 2 I paintsup, I• Sispoitive andtheirterationis atrative indatrudeon2 is pulled toward the tagit and aso appeas on the left side Spinup inidat nudems ae therefre prefertially scattered to the left and (by a simila agumet) spindown nudems to therigt Thusthespin-ardit farcecen prodre plaizedscdteredbernsuhenupplaized patidesaeinidatonataget
At loweregy, whereswavescatteringdbnindes, weeypet nopdaizdion As theinidat eregy inceses thecartribtion of puavescettering inceeses and thereshald beacorespondng inceeseinthepdaizdion Thegreed topic of
plaizdioninnuder reaciors isfar merecorplictedthen wehareindcaedin thisbrif dsassion

Figreshonssomerequeseldivenudennudeenpatetids

2f SeffeamingExarisf-II

Q1 Whatispdaizdion?
Q2 Witedountheeidanceforthetensorforce
Q3 ExdanthettheNudeen-Nudeenintrationissrongyspindaperdat

Q4 Witedownandeydainthegread formof twonudeonirteration

27 Summy

Inthis dapter wehavedsassed gened rature of nuder farce Wehavedso dsassed varias propeties of nuder faces with their evidances This chader dso gave a brif idea of the gered formof two nudeen interation which indulds ceatra, nonceetrd andveloitydapendatipaetidsterms

28 Goxay

Spir Spin is a daraterisic propaty of elematay patides Isopin: Patides apperr to arange thensedves in sts of patides of dfferet detric darge, but nealy the same nass They ae indvidally labeded with a quatumnumber of $-1,0,1$, ar dher maltiples of these Hadors havelsospin Leqtorshaveasimila arangeret andarelabded with"uek isosin" accordng totheir rdes intheStardadMMod. Thisisndthesaneaggneic "isospin"
Nuder farce Theforcethathdos thenudes together. Oiginally thanttobe theerchangeof pions, asuggested by Y Uava Pions arenowknownto not be eferetay thensdves, bitquakswichaehddtogetherbygurs
Nudear Thegeneic nemefor natrons and protars, refleting thefat that ther Strongliterationsareidaticd.
QuartumNumber: Qatumneedaricsisfull of integeswhichdescribecetan quatumstes Indons, thesequatumumbes conefromthesduions to the Sdroedngr equaion in whichthe pinciplequatumnumer, η is idaticd to theorigind idæof Bdr'sthttedronadits arefixedinrodusandenegy. There ae quatumnumers for anglar monetum, spin and dhe darateitics Trasitions arong stees follow "sdection nues" that redethebfore and atter values of thequatimnumbes of theatomic staes Indemetay patidephysics QuatumNumbers apper to beirheret to patiala patides and are "addtive" neeringthtinnany cresthey arecorserved. thet thes mbofreaninteration ordecay mitequl thesameones dter theinterationor decay. Thisisespeidly true in the Strong Interations, bt dso in the Weak Inteadions Examples of irheretquatumnumbersae BayonNumber, LeqtonNunber, Electric Chage, Isospin, andStrangeness

Pdaizatian Thepdaizdion of a waveis thedredioninutichit isosillding Thesimdest typeof plaizdion is liner, transease pdaizdion Liner means thet the waveosilldionis corfineddangasingeaxis, andtramevesemeanstht thewaveis osillatinginadrection pependalar to its drection of traw. Læer ligt is nost conmorly a wave with liner, transurse palaizdion If the læer beemtrands alng the x-axis, its dedric fidd will osillate ether in the y dretion or in the z-dreetion Gravitdiond waves dso have transerse palaizdion buthavearmerecondictedosilldionpattenthenlæel ligt

29AnsvestoSdf LefringExecis

Anserstosif LemingExacisel

Ansl: Existenceof netronsadprotorsinaboundsteistheevidarcefor ttrativentureof nuderforces
Ans2 SeeSetion22
AnE3 $S_{12}=\frac{1}{r^{2}}\left[3\left(\vec{\sigma}_{1} \cdot \vec{r}\right)\left(\vec{\sigma}_{2} \cdot \vec{r}\right)-\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) r^{2}\right]$
Ans4 SeeSetion22
Ans5 SeeSedion22

ArevastoSdfLemingExacisell

Ansl: SeGlossay

Ans2 The evidace for the tersor force cones prinaily fromthe doserved quachpdemmert of thegoundsteof thedatern
Ans3 Sedion25
Ars4 Sedion24

210Exarcis

Q1 Judify theexstenceof tersorforcesinthenides
Q2 Whataethepropaties of nuderforces?
Q3 Witeashatnteon
a Spándqpendanceof nuderforce
b Cragessmmety of nuderfface
c Chageindependmeof niderface
d Saturionpropety of nuderfacce ReferencesandSuggetedRexing:
1 Theoreic Nuder Phyics byj.M. BhettadV.E. Wésskif.
2 Nuder Phyisbby B.K. Agand 1989
3 Nuder Phsicshy RR RoyadB.P. Nogm 1999.
4 Conceqtof Nudert Phsicsby B.L. Conen 1088
5 Nuder Physisblyl. Kadnn 1093
6 NuderthysicsbyD.CTayd.
7. Introdutay NederPhyicsbyKemthS. Krae

UNT-E TheDatror

Srutureof theUnit

30 Ojectives
31 Introdution
32 Andysisof thegrandste(35 ${ }^{1}$) of dateronusingasqurewel petetid
33 Sefflermingexacisel
34 Exitedstdes of datern
35 Dateronstudure
36 Magneicnomert
37 Qachuplemenmt
38 Sefflemmingexerisell
39 Arbvestosff leqmingexacises
310 Execise
311 Summa
312 Gossay
ReferncesandSuggestedReedngs

3000jedive

Thenrinaimot this crepter is totudy the Baric propeties of datern viz, its bindngenegy, its size sain mandic andquach polemerts ec After ging throughthischaderyoushaldbeddeta.

- Undastandthevaiaspropeties of dateron
- Arayzetheevistenceof grandandexitedstes of dateron

311rtroduciar

Inthepreviaschader wehavedsassedvaiaspropeties of nuder forceand
paterid. Theactud propeties of thenuder peterid reqitecompicted We cenfindat daththepaetid intwo minvass Oneisscatteing of nudensof erch dhe of fromnude. Theother is to study any stdestas that migt realt fromthisinteration Thereareof carse3possibilities. pn pp, m Itturnat that aly one of these forms a stdde nudes We will dsass why, and what this meers Inthis instace we will tudy thendes ${ }^{2} \mathrm{H}$, the datern which is the nudesformedwhenapronandnatroncontine Itisthesimpest nudesand inasereisthenuder equivdet of theH atominatoric studes Urfatundedy, uliketheH atom, it does not haveary exdted stdes, so thereis mi informaion availddefromits spedroscopy. Noretheless thefat thatit isbounda dl reeds ald tbat thenuder farce (of carseif it werent bound, wewald't behere tostuly nuderphysics, sincethisnudesisthebasisforfusiontodl thehesier nude intheurivese)

SaneFadsabatthedatiron

1 Adateron(4Hudes) consists of anatronardaproton
2 It is the simplest bound stete of nuderns and therefre gives us an ided systemforstudingthenudemrudeenirteration
3 An interesing feature of the dateron is that it dbes not have exited states becaseitisaweak y boundsytem
4 In ardogy with the ga and stae of the hydogen atom, it is remondde to asme thet the gand ste of the dateron dso hes zero arbitd angla manertul $=0$
5. Howere thetdd anglar monertumis red to be $=\mathbf{1}$ (aneurit of $\mathrm{h} 2 \pi$) thusitfdlonsthat theprotenandmatronspinsaeperdll $\mathbf{s}, 1_{p}=\mathbf{1 / 2}+1 / 2=1$
6 Theimdicdionisthat tho nudens arent boundtogethe if their spinsare ati-padld, and this eydains why there are no protan-proton or netronnatronboundstas
7. Thepadld spinstaeisfardiddenbythePali exdusionprinideinthecæe of idatical patides
8 Theniderforceisthussentobespindapendat.

32 Antyeis of theGrand State(3') of Datisonusinga SqureWAl Pdertia

Thedateronisthesmpestsystemof bandnudeans Itsgondsteeistheany knannboundstaeof two
-Threarenobandstas bedweentwoprdars, respedively, twonatrons
-Exdtedstdes of thedaternareubound
Hence thesingebandstae of nudeans offer usorly vey retricted possibilities tostudy NN interations Nonthdess, thegound stdeprpaties of thedateron dreadytel ussoreimpatatfectures of thebindingforce

Prpartiesof thedation

Mes 1876139 MEV , dłemmined by mass spedroscopy uing perning trap tedriques
Bindingenerg: 225 MEV (i.e ~ 11 MEV per nuden), dłemined from neremat of thegammenegy in rodaive cadure, $\mathrm{n}(\mathrm{p}, \gamma) \mathrm{d}$ Compred to typicd lindngenegies per nudeen of heavier nude ($\sim 8 \mathrm{Md}$), thedateronis a weekly bound nuder sytem The binding is so week thet threarenoexited bandstas
Spirt J $=1$, ded reedfromdoserved number of hyperfinecomprets
Magnticnomet $\mu_{\mathrm{d}}=0.87393 \mu_{v,}$,
Thevdueis doseto the umo themagnic momets of thefreeproten and the freenatron

$$
\mu_{p}+\mu_{h}=2792 \mu_{N}-1.913 \mu_{N}=0.89 \mu_{N}
$$

This implies thet thedateronisesserially aste, wherethetwo spins $1 / 2$ of the nuderns aepardle adadito) $=1$ (rementher theqpositesign of theproten adnetronnagntic momets). Thiscorespondsto anSste(morditd anglar nometur).
Eledricquad Ypdenonert: $\mathrm{Q}_{\mathrm{d}}=286 \times 10^{27} \mathrm{~m}^{2}$, ded reedfromthenægnic fidd dependance of hypeafine lines of daterium The reeson for the datern beingnot scheically symmetric is anoncetrd pat intheNNforce, thesocelled tersorforce Itadhixesastewithaditd anglar mometumtothegandste,
mearing thet the datern is not a preS state Sincethestrongforce conseves parity (rementer thet thearditd anglar monertumof asteiirfluencesitspaity by a factor $(-1)^{\prime}$ '), theadhixturemitbeastdewithl $=2$ (i.e aDstate, indode toharethesarequatumnimes) ${ }^{p}$.
-Thesizes of both the mandic nomert and thequach in momert can be daivedfromanavefundion

$$
\Psi_{d}>=0.08 \beta \mathrm{~S}_{1}>+0.20 \beta \mathrm{D}_{\mathrm{l}}>
$$

wherethedateronisfa ndwith 4% probadility intheste ${ }^{3} \mathrm{D}_{1}$.
To smplify the ardysis of the datern we asme that the rudemrudeen paterid is attreedneniond squreudl, ashowninthefigre

Figrel

$$
\begin{array}{cc}
V(r)=-V_{0} & \text { for } \mathrm{r}<\mathrm{R} \\
V(r)=0 & \text { for } \mathrm{r}>\mathrm{R}
\end{array}
$$

Infigre2,herer represets thesepardionbedweentheprotanardthenetron so Risineffetamereo thedaneter of thedateron
The dyrenicd betavia of a nudeon mot be described by the Sdrödnge's equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(\vec{r})+V(r) \Psi(r)=E \Psi(\vec{r})
$$

Wheremisthenudeennmess

Figre2
If theputetid is not aietdiondly dapendat, aceatrd peterid, thenthewave fundionsdution canbespardedirtoradd andanyia pats.

$$
\Psi(r)=R(r) Y_{l m}(\theta, \phi)
$$

SubstitteR $(r)=u(r) / r$ intotheSdrödnga's equtionthefundionu(r) stisfies thefdlowingeqution,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left\{V(r)+\frac{l(l+1) \hbar^{2}}{2 m r^{2}}\right\} u(r)=E u(r)
$$

Thesdutionu(r) islabededbytwoquatumnumbersnandl sotht

$$
u(r) \rightarrow u_{n l}(r)
$$

Thefull sdution $\Psi(r)$ thencanbewittenas

$$
\Psi(\vec{r})=\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

with

$$
R_{n l}(r)=\frac{u_{n l}(r)}{r}
$$

Where
n thepincipal quatumnumerwhichdłemines
theenegy of aneigentde
I: thearditd anglar monetumquatumunner.
\mathbf{m} thenægneicquatumnumer, $-1 \leqq m \leqslant 1$.
Theanglar pat of the solution $Y_{\text {Im }}(\theta, \phi)$ is called the "spheicd hammic" of crdarl, mandstisfiesthefdllowingequtions.

$$
\hat{L}^{2} Y_{l m}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \phi)
$$

and $\quad \hat{L}_{Z} Y_{l m}(\theta, \phi)=m \hbar Y_{l m}(\theta, \phi)$
Where $\hat{L}^{2} \equiv-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]$
and $\hat{L}_{z} \equiv-i \hbar \frac{\partial}{\partial \phi}$
For the cæe of a three dmensiond squere well patetid with zero anglar monertum $(I=0)$, which weuseathemodl peterid for studing thegand steteof thedatern theSdrödnger'seqtioncanbesimplifiedirta:

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}-V_{0} u(r)=E u(r) & \text { for } \mathrm{r}<\mathrm{R} \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}=E u(r) & \text { for } \mathrm{r}>\mathrm{R}
\end{aligned}
$$

I. Whenr $<$ R

TheSdrödnge'seqdionis

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}-V_{0} u(r)=E u(r)
$$

Thisequiancanbererrangedinto:

$$
\frac{d^{2} u}{d r^{2}}+k_{1}^{2} u(r)=0
$$

Wth $k_{1} \equiv \sqrt{\frac{2 m\left(E+V_{0}\right)}{\hbar^{2}}}$
andthesdutionis

$$
u(r)=A \sin k_{1} r+B \cos k_{1} r
$$

Tokeepthewarefundionfiniteforr $\rightarrow 0$

$$
\lim _{r \rightarrow 0} \psi(r)=\lim _{r \rightarrow 0} \frac{u(r)}{r}=0
$$

ThecoeffidetBmatbesttozero. Therefretheacceqddesduianof physicd mearingis

$$
u(r)=A \sin k_{1} r
$$

II. Whenr>R

TheSdrödnge'sequionis

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}=E u(r)
$$

thesdutionis

$$
u(r)=C e^{-k_{2} r}+D e^{+k_{2} r}
$$

with $k_{2}=\sqrt{\frac{-2 m E}{\hbar^{2}}}$
Tokepthewavefundionfinitefor $\rightarrow \infty$

$$
\lim _{r \rightarrow \infty} u(r)=0
$$

ThecoefficietDnetbesttozeno. Therfaretheacceqdddesdution of physicd mearingis

$$
u(r)=C e^{-k_{2} r}
$$

Apdyingthecortinity condtionsonu(r) anddydr tr $=R$, weddain

$$
k_{1} \cot k_{1} R=-k_{2}
$$

Thistrascerdatd eqdiongivesardaionshipbeveen V_{0} andR
From eetron scatteing expeinets, the ms dage radus of the dateron is knownto bedbat20fmTaking $=20$ fmwermy sd vefromaboveeqtion the vilueof thepereatid datth V_{0}. Theresult is $\mathrm{V}_{0}=36 \mathrm{MeV}$. Fromthe doserved bindingeregy, thesizeof thedateon canbedfined by $\frac{1}{k_{2}}=4.3 \mathrm{fm}$, whichis
doat twice thet of the range of the potetid. This eydans the fat that the dateron is a loosdy bound stete (Its binding energy is 1113 MeV per nudeen compredwiththeavagevdueof wer8MeV pernideninnude.)
Sice $V_{0} \gg E$

$$
\cot k_{1} R=-k_{2} / k_{1} \cong-\sqrt{E / V_{0}}
$$

Hence $\quad \cot k_{1} R \cong 0$

$$
k_{1} R \cong \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots
$$

वr $\quad V_{0} R^{2} \cong \frac{\hbar^{2} \pi^{2}}{4 M}, \frac{\hbar^{2} 9 \pi^{2}}{4 M}, \ldots$
u(r) candtemeanoceinsidethewdl, forthis waid indctethtu (r) andhence wave fundion is not the lonest (gand) enegy lead (Contradidion of ar hypthers)
Hercearlythefirstermetaried and

$$
V_{0} R^{2} \cong \frac{\hbar^{2} \pi^{2}}{4 M}
$$

This rediondipisknowna Rangedathrdationtip Thegrandstewave fundion together with the rage and dath of the patetid and the gand state bindngenegy of thedateronareshowninfigre

Figre3

33SafLaming Exacis-I

Q1 Stedealy thedfinition of nuderquach polemomet
Q2 Drantreedmeniona squrewel nudeenrudemptertid.
Q3 Witedunthebasic cropeties of dateron
Q4 Daivetherangedathredionslipof theDateron

34ExutedStaesof Datror

Extendng the callions of the bandste to cres wherethearita anglar quatumunherl isgeater thenzeoleadsto arealt that daterncarnotejstin therestdes For theetrerecos, bindngenegy $E_{B}-0, k_{1} R$ is sill aly sigtly geeter then $\pi / 2$, simethebindngeregy E_{B} of thegrandstaehes dreedy been fandnedigidecompredtothepdertid well depth V_{0}. For thefirst exditedstae ${ }_{k} R$ waidhavetobegeter then $3 / 2$, sincethenevefundionu(r) waildhaveto havearadd nodeinsidethendl. But fromequion k_{1} R mot catainly beless then π fordll positivevdues of bindngenegy.
Weshdl hereprovethet for $(1 \neq 0)$ no boundsteeisss It shall beassmed that the peterid is ceatrd and of squerendl type Thedfferetid eqution to be used inthis cese $(\mid=0)$, is whichthraghthesubstittion $u(r)=n \psi(r)$ takes the form

$$
\frac{d^{2} u(r)}{d r^{2}}+\frac{M}{h^{2}}\left[E-V(r)-\frac{l(l+1) h^{2}}{M r^{2}}\right] u(r)=0 .
$$

Wthr $>\boldsymbol{R}$

Figre4

On comparing these eqdions, we find that it is equivelet to an S-waverada equionwithpotetia

$$
V_{e f f}(r)=V(r)+\frac{l(l+1) h^{2}}{M r^{2}}
$$

ThesecondtemonR.H.S. iscalledthecentrifugd paetid aitsspacedaivalive gives the dasicd certrifugl force This paterid is repusive, there forces ' 1 ' invees thebindingenegy of thelowestbondstederess
Reuring bak toequion andsetting $\mid=1$, thenert acceqdde vilue of \mid fter 0 , wethengł,

$$
\frac{d^{2} u(r)}{d r^{2}}+\frac{M}{h^{2}}\left[\frac{2 h^{2}}{M r^{2}}\right] u(r)=0 .
$$

Now $E=-E_{B}^{\prime}$ the bindng energy of datern in the pste ($\mid=1$) and uing a squarendl patetial $\mathrm{V}=\mathrm{V}_{0}^{\prime}$ for $\mathrm{r}<\mathrm{R}$, for thep state equionnay bewittena
for $<\mathbf{R} \quad \frac{d^{2} u(r)}{d r^{2}}+\frac{M}{h^{2}}\left[V_{0}^{\prime}-E_{B}{ }^{\prime}-\frac{2 h^{2}}{M r^{2}}\right] u(r)=0$
adforr $>\mathbf{R} \quad \frac{d^{2} u(r)}{d r^{2}}+\frac{M}{h^{2}}\left[E_{B}+\frac{2 h^{2}}{M r^{2}}\right] u(r)=0$
Nowleting
and

$$
\begin{array}{r}
k_{1}{ }^{\prime}=\sqrt{\left[\frac{M}{h^{2}}\left(V_{0}{ }^{\prime}-E_{B}{ }^{\prime}\right)\right]} \\
k_{2}{ }^{\prime}=\sqrt{\left(\frac{M E_{B}^{\prime}}{h^{2}}\right) .}
\end{array}
$$

Thedboveeqdionnaybewittena

$$
\frac{d^{2} u(r)}{d r^{2}}+\left[k_{1}{ }^{12}-\frac{2}{r^{3}}\right] u(r)=0
$$

Forr $<\boldsymbol{R}$
and $\frac{d^{2} u(r)}{d r^{2}}-\left[k_{2}{ }^{12}-\frac{2}{r^{3}}\right] u(r)=0$
for $r>R$

Theleat well deth jutreparedtoprodrethisboundstae, istheoneforwhich the bindng enegy E_{B}^{\prime} is jut equal to zan, i.e, when $k_{2}^{\prime}=0$ and

$$
k_{1}^{\prime}=\sqrt{\left(M V_{0}^{\prime} / h^{2}\right)}=k_{0}(\mathrm{say}) .
$$

If wept $k_{8} R=x$, thewareeqdionredresto

$$
\frac{d^{2} u(r)}{d x^{2}}+u(r)-\frac{2 u(r)}{x^{2}}=0
$$

for $\quad x<k_{0} R$
and $\frac{d^{2} u(r)}{d x^{2}}-\frac{2 u(r)}{x^{2}}=0$
for $\quad x>k_{0} R$
Thesdution of equition withthecoreetbonday condtionberones
$\mathrm{far}^{x>k_{0} R, \quad u(r)=A_{2} x^{-1}, ~}$
Tosdveeqtion, werakethesbbstition $v=x(r)$, sothat

$$
\frac{d v}{d x}=x \frac{d u(r)}{d x}+u
$$

and $\quad \frac{d^{2} v}{d x^{2}}=x \frac{d^{2} u(r)}{d x^{2}}+2 \frac{d u(r)}{d x}$
aditcanthenberewittenafdlons

$$
\text { for } x<k_{0} R . \quad \frac{d^{2} v}{d x^{3}}-\frac{2}{x} \frac{d v}{d x}+v=0
$$

Differetiaingthisequtionwithrespectox, wegł

for $x>k_{0} R \quad \frac{d^{3} v}{d x^{3}}-\frac{2}{x} \frac{d^{2} v}{d x^{2}}+\frac{2}{x^{2}} \frac{d v}{d x}+\frac{d v}{d x}=0$
Dividngthisequaionbyxthraghat, negł
for $x<k_{0} R \quad \frac{1}{x} \frac{d^{3} v}{d x^{3}}-\frac{2}{x^{2}} \frac{d^{2} v}{d x^{2}}+\frac{2}{x^{3}} \frac{d v}{d x}+\frac{1}{x} \frac{d v}{d x}=0$
Nowsince

$$
\frac{d^{2}}{d x^{2}}\left(\frac{1}{x} \frac{d v}{d x}\right)=\frac{1}{x} \frac{d^{3} v}{d x^{3}}-\frac{2}{x^{2}} \frac{d^{2} v}{d x^{2}}+\frac{2}{x^{3}} \frac{d v}{d x^{\prime}}
$$

thentheequionnæy berewittena
for $x<k_{0} R \quad \frac{d^{2}}{d x^{2}}\left(\frac{1}{x} \frac{d v}{d x}\right)+\frac{1}{x} \frac{d v}{d x}=0$
Nowsince $(r)=x^{1}$, mat varishfor $x=0$, thesdution of dboveequitionisfand tobe
for $\mathrm{x}<\mathrm{k}_{0} \mathrm{R} \quad \frac{1}{x} \frac{d v}{d x}=A_{1} \sin x$
Integdingit, negł
forx $<k_{8} R$
$v=x u(r)=A_{1}(\sin x-x \cos x)$
To sctisfy cortinuity condtion tt the bounday ($r=R$ or $x=k R$), these sdutions yidd
t $\mathrm{x}={ }_{\mathrm{k}}^{\mathrm{o}} \mathrm{R} \quad \frac{d}{d x}(\sin x-x \cos x)=0$
$a \quad x \sin x=0 t x=R$
$\sigma \quad k_{8} R$ ink $R=0 t x=k_{8} R$
Thesmallest positiveroot of thisequionis $k R=\pi$. Herceaboundstede the deteron for $\mathrm{I} \neq 0$ can eist aly if $k_{8} \mathrm{R}<\pi$ and this cartrodds the previas staenert that $\mathrm{k}_{\mathrm{g}} \mathrm{R} \simeq \pi$. Therfore we condude that mo bound staes eist for dateronuhenl $=0$, i.e, daterondosend possessany eritedstate

35DalfronStucture

Thedaternis thealy boundsteof 2nidems, withisospinT $=0$, spin-paity $=1+$, and dinding eqegy $E_{B}=2225 \mathrm{MeV}$. For two sponhalf nudeans, orly tod spins $S=0$, 1arealowed Thenthearbitd anglarmantumis restricted to $\mathrm{J}-1$ $\left\langle<j+1\right.$, i.e, $I=0,1 \propto 2$ Sincetheparity isn $=(-)^{\prime}=+$, alyl $=0$ andl $=2$ aedlowed thisdsoimpliesthetwehaveS $=1$
If thehaniltorianis

$$
H=-\frac{\hbar^{2}}{M} \frac{1}{r} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2}}{M} \frac{L^{2}}{r^{2}}+V_{C}(r)+V_{T}(r) S_{12}
$$

usingthefdlowingredtion

$$
\begin{aligned}
& S_{12} Y_{001}=\sqrt{8} Y_{211} \\
& S_{12} Y_{211}=\sqrt{8} Y_{011}-2 Y_{211} \\
& L^{2} Y_{011}=0 \\
& L^{2} Y_{211}=6 Y_{211}
\end{aligned}
$$

wefindtherada equaions

$$
\begin{aligned}
& {\left[\frac{\hbar^{2}}{M} \frac{d^{2}}{d r^{2}}+E-V_{c}\right] u_{s}=\sqrt{8} V_{T} u_{D}} \\
& {\left[\frac{\hbar^{2}}{M}\left(\frac{d^{2}}{d r^{2}}-\frac{6}{r^{2}}\right)+E+2 V_{T}-V_{c}\right] u_{D}=\sqrt{8} V_{T} u_{s}}
\end{aligned}
$$

Thereequianscanbesdvednumically.
Oher importat ifformaion on the stucture of the datern cones from the velues of themandicnomet μ andquachplenometQ.

$$
\begin{aligned}
& \mu=0.8574 \mu_{\mathrm{N}} \\
& \mathrm{Q}=0.2857 \mathrm{e}-\mathrm{fm}^{2}
\end{aligned}
$$

Since $\mathrm{Q} \neq 0$, thedaterncarnotbeprel $=0$. Butgeredlyl $=0$ isenegetically facredfor acertrd peterid. Therfore, wewitethedateronvevefuntionesa linerccontindionco SadD- waves

$$
\begin{aligned}
& \psi=a \psi_{3 S_{1}}+b \psi_{3 D_{1}} \\
& =\left[a R_{0} Y_{011}+b R_{2} Y_{211}\right] \psi_{00}^{T}
\end{aligned}
$$

where a and b are contats with $\sqrt{a^{2}}{ }^{3}=1 R_{0}$ add R_{2} are the reda nave fundions, theisoginuavefuntioniswitten a

$$
\psi^{T}{ }_{00}=\frac{1}{\sqrt{2}}\left[\chi_{p}(1) \chi_{n}(2)-\chi_{n}(1) \chi_{p}(2)\right]
$$

36Magnelic Manal

 qperdor is

$$
\mu=\mu_{N} \sum_{i}\left(g_{s} s_{z i}+g_{l} l_{z i}\right)
$$

whereg $=477_{\mathrm{i}}+088$, wherethefirstermisisovetar, andthesecondtemis
isosceda. $g=\left(\tau_{i}+1\right) / 2$ Sincethedatermisaniso-scdarpatide letusconsida aly theisoscedarmenticmonet. Then thedoweequianberones,

$$
\mu=\mu_{N} \sum_{i}\left(0.88 s_{z i}+0.5 l_{z i}\right)
$$

 μ

$$
\begin{aligned}
\mu & =\mu_{N} \sum_{i=1}^{2}\left(0.88\left\langle S_{z i}\right\rangle_{M=1}+0.5\left\langle L_{z i}\right\rangle_{M=1}\right) \\
& =\mu_{N}\left[0.88\left\langle S_{z}\right\rangle+0.5\left\langle L_{z}\right\rangle\right] \\
& =\mu_{N}\left[0.88\left\langle S_{z}\right\rangle+0.5 M\right] \\
& =\mu_{N}\left[0.88\left\langle S_{z}\right\rangle+0.5\right]
\end{aligned}
$$

wherewehaveused thefat thet thesurg thetworditd anglar monertacan bedeconposed intothesur of thecente-of-mass anglar merettumandredive
 Leusnowcdalathentuixdenetof S_{2}

$$
\begin{aligned}
& \left\langle Y_{011}^{`}\right| S_{z}\left|Y_{011}^{`}\right\rangle=1 \\
& \left\langle Y_{211}^{`}\right| S_{z}\left|Y_{011}^{`}\right\rangle=1 \\
& \left\langle Y_{211}^{`}\right| S_{z}\left|Y_{211}^{`}\right\rangle=\sum_{M_{s}}\left|\left\langle 2\left(1-M_{s}\right) 1 M_{s} \mid 11\right\rangle\right|^{2}=-\frac{1}{2}
\end{aligned}
$$

Thus, for prel $=0 \mathrm{orl}=2$ stes wewald havethevdues $\mu=0.8 \AA_{4}, 0.34_{4 N}$. Moregereally weddaintheredaion

$$
\mu=\left[a^{2}(0.88)+b^{2}(0.31)\right] \mu_{N}=\left(0.88-0.57 b^{2}\right) \mu_{N}
$$

Therefre, theerperimetd value $\mu_{b}=0.85 \pi_{N}$ implies that $b^{2}=0.04$. However, in more sachisicated treatrets one finds that it is quatitdively impotat to exdidtly indudetheeffets of mesonexhangesonthemmegic memet

37QuachupdeMonet

Nowweconside thequech polemenert thedatern Usingthedffirition of

$$
\begin{aligned}
Q & =e \sqrt{\frac{16 \pi}{5}} \int \psi_{J=M=1}^{*}\left[\sum_{i=1}^{2} \frac{\tau_{3 i}+1}{2} r_{i}^{2} Y_{20}\right] \psi_{J=M=1} d^{3} r \\
& =e \sqrt{\frac{16 \pi}{5}} \int \psi_{J=M=1}^{*}\left[\frac{r_{i}^{2}}{4} Y_{20}\right] \psi_{J=M=1} d^{3} r
\end{aligned}
$$

Herewehare used thefact tht for erch nudeanthedstamefromthecrter of massisaly haf thedstacebedwenthem, $r_{i}=/ 2$ Nowlingtheexpressionsfor thewarefundionintrodredabove

After evdutingtheanyla integdsandputingintheCGcofficiets, anefinds

$$
Q=e \sqrt{\frac{16 \pi}{5}}\left\{\frac{\sqrt{2}}{10} \operatorname{Re}\left(b^{*}\right)\left\{\left[r^{4} R_{0} R_{2} d r\right]-\frac{\left|b^{2}\right|}{20} \int\left[r^{4} R_{2}^{2} d r\right]\right\}\right.
$$

To proeed further we need to evdutetheradd integds, so wewaid need to solvetherodd Sdrodngerequion andddaintheradd vavefundions Cealy, for agivenpatatid moda this is(in priniple) posilde Forarpuposes, wewill usearknowedgethatb $=0.2$ < 1 fromthemagnic momertadysis andkeep aly thefirst tem This will giveus an aproximate epression that we canst equal totheeppeinetd value $\mathrm{Q}_{\mathrm{p}}=0.286$ effintodtaintheresit

$$
Q \cong e \frac{0.2 \sqrt{2}}{10} \int r^{4} R_{0} R_{2} d r=0.286 e \mathrm{fm}^{2}
$$

Sdvingfortheuknownradd integd yidds

$$
\int r^{4} R_{0} R_{2} d r \cong 10.1 \mathrm{fm}^{2}
$$

for the radd integd. This value seens qite resondle given that the meen squeeddrageradusof thedateronis $40 \mathrm{fm}^{2}$.

To duridte the effect of thetersor (non certrd) frocen the sturure of the dateronle's conside thequachpdemomert, forwhichweneedto ueetheM =

1sde ThedominatS-Dintaferenceteminthequachpolenumerthes $M_{5}=1$ Sothespinsof boththetwo nudersarepredtrinartly digedpadle toz Led's simply toke $\sigma_{1}=\sigma_{2}=$ tz, and then $\sigma_{1} \cdot \sigma_{2}=\sharp$ Then we need to cansidg the rediveaietdiono r, andwewill foos(eeFig ontwoedrenecess (a) Il $\operatorname{and}(b) r \perp z)$.
Incæe
(a) $\sigma_{1} \cdot r=\sigma_{2} \cdot r=1$, sowehare $S_{12}=+2$ forthisgeonemicd arangenet Thisis aprdtecorfigrdionsoweexpedQ $>$ Offrcee(a).
(b) Incæe(b) wehave $\sigma_{1} \cdot \mathrm{r}=\sigma_{2} \cdot \mathrm{r}=0 \mathrm{soS}_{12}=-1$ and the oblate shape relative tothezaxiswaldimply $\mathrm{Q}<0$
Since experimetally $\mathrm{Q}>0$, case (a) mat be eregedically favred which coresponds to $\mathrm{V}_{T}(r)<0$ This thengives andtrativefarcenhenthecarfigrdion issurthth $\mathrm{S}_{12}>0$ (cæe(a)) andareplivivefrcenhen $\mathrm{S}_{12}<0$ (cæe(b)).
Gven $V_{C}(r)$ and $V_{T}(r)$, thisisaneigendueprddemfor k^{2} withafreepranter to bedtermined therdiobla Itwesshownby RaitaandSchwinge that lagedass of peteridscansdvethereeqdionswiththeconsraints $\mathrm{E}_{\mathrm{B}}=225 \mathrm{MEV}$ add $\mathrm{Q}=0.286 \mathrm{efm}$.

38Sdf LemmingExacis-II

Q1 Deinenagnicnamet
Q2 Exdanthti"noboundstesevisfordatern".
Q3 Calaltethemageic andQuch podemanetof Datern

39AnswertoSedf LeaningEvercisf

AnsertoSdf LemingExacisel

Ansl: SeGossay

ArevartoSdf LeamingExacisell

Ans2 SeeGossay

310Exarcs

Q1 SolvetheSdrodngrequtionforthedaterninaS-stdeundr the
asampionof squarevell paterid.
Q2 ShowthatateronhestheD-starachixture

311Sumray

After going troagh this copter, you nould be ade to afieve the acresad djectives Nownereed wht weharedsassedsofa.

- Wehaveleant thebaric propeties of datron its chage(+e), nass (-2014 amil) itsradus (21 femi), its lindngengy ($=2225 \pm .003 \mathrm{Me}$), Sinnand stdistics (BoseEnstein) and the dedric quachuple manet $\mathrm{Q}_{\mathrm{d}}=0.0082$ ban
- Thestudy of datern prdden, athagh hopdesdy limited in \equiv much ∞ datron posseses arly the gand stae and noexited stes evist for the bound natronproton system gives invalude dues abat thenture of the nuderfarce
- Weleartthatnatronandprotoncanfarmstdecontination(dateron) aly inthetrip \ddagger stemearswhenthen\& psins arepralld. Thesinge stee, i.e astaeof atipardle npspansbéngurband
 for datron suggest thet t lees a pat of thenatron protonforceating in datronisnoncentra.

312Goany

Bam A untof cooss setion abamisequl to $10^{28} \mathrm{~m}^{2}$.
Cromestion a mere of the likdihood of a given pocess ocaming it an acceledor. Theidæaisthet twodjedswithalagr coosssectiond aeearemore likdy to hit one andher. So, large coosssedions meen thet a process is more likdy to coar. Crosssetions ae neared inbam, $10^{28} \mathrm{~m}$. A bam is an etrendy lage crosssedion in patide physics Many interesing aosssedions aemredindo(picdoans), wichareequl to 10^{12} bams
 thedgeet'stendany todignwithamannic fidd Itisavetorquatity, withthe
positivedrediondfined by theney thedjeet responds to anmentic fidd The dgeet will tend to dignitseff sothatits negneic manert vedor is padld to the magneic fidd lines Therearetwo sarces for amaneic nomert themotion of detric charge and spin angla monertum. For eamde alopof wire with a areatrumingthoughitwill haveanagneicmonetpropationd to theamet andaeaof thelog, pairting in the dretion of yar rigtt thumbif your finges aearling in the dretion of the arret Altemdively, an dedron, which is a spin-1/2femion, hesanintrinsicnageic remetpropriond toitssoin
QuachupdeManet thequarity thet daraterizes thedaridionfromsdericd symmery of the eledrica darge dstribtion in an tomic rudeas It hes the dmenion of aearnd is usally expressed in sq om For scheicd symmery the nuder quachple mometQ $=0$ If a nudes is etenced dang the axis of symmery, thenQis a positivequatity, bt if thenudes is flatened dang the axis, itisnegdive Thevdueof theniderquach polemmertveriesoverawide range

Reference andSuggetedReming:

1 "TheTwo NudeenProdem" by M. SugweraandHuthen

2 "Nuder ThoBody Prodens andElemets of Nuder Forces" Expaimetd NuderPPysicsbyN. F. Ramey.

3 LecturesonNuder TheorybyLanda, Penum
4 Elemetay NuderTheary, 2^{d} ed by BetheandMorison
5. TheAtamicNudasbyRD.Evars

6 AtamicandNuder PhysicsbyBrijld andSudraininyan
7. NudeaPPysicsbyD. CTayd.

8 Nuder PhysicsbyIvingKadan

UNT-4
 Nudenn-NudenScattering andPdatids: Par-I

Stuctureof theUnit

40 Ojectives
41 Introdution
42 Natronprotan scattering at low enegy msuning ceatral patetid with squared shpe
43 Resltsof lowenegyn- pscatteing
44 Sefflemmingerrisel
45 Saindependaceandscetteinglengh
46 Ccheret scatteing of netrons by protars in atho and Para hytogen noleales
47 Condusions of thereardysis reyadryscatteinglengths
48 Sefflemningexacisell
49 Sumiay
410 Glossay
4.11 Ansmestosedflemmingexerises

412 Exerise
ReferncesandSuggested Reednos
4001jedive:
After interatingwiththen\#teid prestedheresudatswill beadeto

- Lemnnpscatteing tloweregeswithspeeificsqureval patetid.
- Compardively tudytheresltsof lowenegynpscatteing
- Knowthesaindepandareandscatteinglengh

41Intrcdutior

Haingacatainedthatnude arequatumeeharicd sytenscomposedf nudeens, it is qite pasibe to sudy the ruder forces under the simplet posside condtions Thesimplet cerein which the nuder force is effedive is wher
1 Whenthetwo ndeans areboundtogethe. Thethreposideboundstes of a two rudeen sytem, d-ratron (m), d-prton (pp) and dateron (rp), nturehesprovideduswithorly thedateron andthedher two are untdde
2 Whenthetwo nudeans ae in freesteand ore is nadeto impingeon the ther, i.e Thescatteing rocesses
In pratice, it isnot possideto makeanatrontarge andtherforescattering expeinerts are linited aly to natron proton (rp) scatteing and protorproton(pp) scaltaing
Thefirs cæewedsassed in previaschader andsecond cæewewill dsass in ar ypocringtwodapess Inthischader wewill foasoly anrpscatteing
Thefirs question aises in ar mind is that, What is Scatteing? The amber is, when a nittereand collinted bermof nuders is bombarded ontage nude theinterationsbedveenindatrindes andtaget nude tokspaæe Asarealt nemby doservethefdlowingtno posibilities
1 The inteation does not dange the insidat patides, i.e, incorning and atgaing patides are the sare The dange is in the path of inconving nudens, i.e, theyaredeitedfromtheraigind poth Thisprocessisknown a scatting In scedteing processes the atgaing patides nay have same enegy athto of indadt patides or may havethednagedenegy vdue The farmer iskownadaticscatteringandltter isknownaindaxicscdteing
2 The second possiblity is thet the atgoing patides are dfferent from the indartpatides Thentheinterationpocessisknownanuder readion In nuder reationneharetnodterdives
It should berenenbered tht ay of the doweatternivenay ocar, ether doreorwithdher competing processes
Arangthendeen-rudeenscatteing netronproten(n p) scatteingisthe
simplest one, beease here the comdictions de to calanto forces are not prest Thenatronnetron($n-n$) scetteringis nd pradicelly posidebeeaseof thenonavailddility of neatrontage (becasenatronderaysinto prtaninafew mintes). Hoverr, their aeevidances to supprt if n nnforces aesimila to pp forces aboundstafortwonatronscandeist

42 Natror-Proton Scattaring at Low Energy azuming Catral Pdatial withSqureWell Shape

Inrpscatteingratron pratensytemisardyzedinthestaco positiveeregy, i.e, inasitution whenthe aeffre Intheepresinet, abermof netronsfriom an accededar is allowed to impingeon atage contaring nany essetidly free
 likettin nylon shee and parffin are ued Herce it is natud to thirk that in tage praters ae not freebt ae bound in noleales The noleala bindng eregy is so swall abat lev, theefare, for the inminging netrons of eragy
 affet the proces beearethey are to ligt to careany apreiddetrable to inconingreticre Whennetronsimpingeonndetrs saneof themarecadured toformcateron and badacreof eregy is radded intheformof γ rass bet the geetmajority of natronsundergodaticscctlering Intheprocess theinteation
 innagitucexuel कindretion

Natron- PdotonSctleringat LowEnages

In the low enegy range not of the naremets of scatering cooss sectionaredeto Mdkarianand Rainnetered. A beryliumtage bonbardedt bydaternsaccelededinacyddron, providedthenatronbermwhichues shot tatage contaningfreeprotas
Resitsfromfigre1 showthat thescatteringarosssetiondepends verymarhan theenegy of theinidat natrons At lowengies bodow10Mev, thescatteing is essetially deto natronshaingzeo angla manetum $(1=\theta)$ and hancein the ceatre of mass sytem the anyia dstribtion of scattered natrons is iscropic IncrdstoavidcompicdionsdetoCalannforcesweshall conidar
the scatteing of reatrons by free protars viz those not band to rodeales Howeve in praticethe protnsaeof carse band to rdeales lat the molealarbindngeregy isaly dbat01ev. Threforeif theinidatnatrons haveaneregy geter thendatlev. Theprdarscanberegardedæfree

Figrel: ppsctleringrosseation
In describing dadic scatteing evers like the scatteing of netrons by free protors it is more converiet to use the cetter of nass sytem The quatum meeharica prddemdescribingtheintarationbedveentho patides, intheceter of nasssytem, isequivdet totheprddenof interationbedneen a red reednmess such a the system Although while wording at thefdlowing theary we shal thirkintems of anatronbeingscdtered by aprdonbtit apdies eqully ydl to spinless, redreednmess patidewtichisberngscdtered by afixedforcecenter.
Leusspposethet thenetronandtheproteninteat viaasdarically ysmmeric frceefidd whosepaetial function is $\mathrm{V}(\mathrm{r})$, wherer is the dstace beweenthe patides
TheSdrodngr equionfor aceatrd patetid $\mathrm{V}(\mathrm{r})$ intheceter of masssiten, forthenpsytemis

$$
\left[\nabla^{2}+\frac{M}{h^{2}}\{E-V(r)\}\right] \psi=0
$$

WhereMistheredrenms of then-psytem
To ardyze the sedtreing evert, we have to sdve this eqution under proper banday condtions Intheimmedtevidity of thescatteing cetter, theation
will bevidertandits descoipdionisdffialt At a consideddedstacefromthe scatteing cetter wherethe expeimetdist lies in wait for the scattered patides, things will hovere besimple. For scattering the banday condtion is thet t lagedstancesfromthescattering certer theweveshaldbenrabup of twopats
1 an ingidat dare wave that describes the usectlered parides and superimposed yponit,
2 an atging scattered scheicd wave which enaries from the scatteing certer. Tosdveinaymptacform,

$$
\psi=\psi_{i c c}+\psi_{s c}
$$

The wavefundion that descibes an indidat dare wave (a bermof patides) mavinginthepositivez-drectionis

$$
\psi_{i n c}=e^{i k z}=e^{i k z} \cos \theta
$$

Where $k=\sqrt{\left(\frac{M E}{h^{2}}\right)}$
whichisasdution of thewaveequtionwith $V(r)$ stequaionzen,

$$
\left[\nabla^{2}+\frac{M E}{h^{2}}\right] \psi_{i n c}=0,
$$

Setting Vr) equl to zeo in this mame actally a arounts to switcking off the scatteingptertid adthrebydinindescatteingsothat thetud wavefundion becomesidaticd with theindidat wavefundion The wavefundion represts onepatideperuitvduresincethesquaref thewavefundionisequl tourity. Having known the formof the indidat wavefundion, the net prodemis to daiseasitddeformfor thescattered werefundion Thisdbia ly is

$$
\psi_{s c}=f(\theta) \frac{e^{i r r}}{r},
$$

For lager $f(\theta)$ inthisexpressionindcteamditudeof thescattered wave in the drection θ. Thiswavefuntionis a neeessay consequarceof theass mptiontht thescdtere simdy scattes thepatides andobes not dbsorbthemtall.
The probadility darity and hace the number of scedtered patides per unit volureshall bepropationd to $\left|\psi_{s c}\right|^{2}$. If scatteing is considred to beiscropic, the danity (number per unit vdume) of scattred patides thragh a lage scheicd shal of redur is invesdy propationd to r^{2} sincethevduneof the
schericd shall, beinggivenby $4 \pi r^{2}$ dr, ispropariond tor anddanity therefreis propationa to $1 / r^{2}$ whichis aso proparional to $\psi^{\left.\psi_{s c}\right|^{2}}$. Hence $1 / r^{2}$ dependanceof $\psi_{s c}$.
Therefrethewevefuntion, in aformweareatully irterested viz aympdtic, maybewittenळ $\psi=\psi_{i n c}+\psi_{s c}=e^{i k z}+f(\theta) \frac{e^{i k r}}{r}$.
Now, in Farier andysis we dten eppand as alditray fundion into a sense of hamricfundiars of vaiasfrequanies So weeppand theinidat planevave fundiond ${ }^{1 / 2}$ interms of LeegandePdy ynomidsP ($\cos \theta$) and write

$$
\psi_{i \text { inc }}=e^{i k r c o s \theta}=\sum_{l=0}^{\infty} B_{l}(r) P_{l}(\cos \theta)
$$

wherel is aninteger represetingthevaias patid waves This patialar wey of witingthewavefundionistermedathepatid waveeparsion
Theradd fundions $B_{1}(r)$ inthisequaionaegivenby

$$
B_{l}(r)=i^{l}(2 l+1) j_{l}(k r),
$$

Where J(K) is the Schricd Basd function which is redted to the ordray Bessd function throghtheformla

$$
j_{l}(k r)=\left(\frac{\pi}{2 k r}\right)^{1 / 2} J_{l+1 / 2}(k r)
$$

andcanberequesetedæ $j_{l}(k r)=(-k r)^{l}\left[\frac{1}{k r} \frac{d}{d(k r)}\right]^{l}\left(\frac{\sin k r}{k r}\right)$
Whenceasmpdically

$$
j_{l}(k r)_{r \rightarrow \infty} \frac{\sin \left(k r-\frac{l \pi}{2}\right)}{k r}
$$

Asympdicaly, B(r) fromisgivenby

$$
B_{l}(r)_{r \rightarrow \infty} \rightarrow i^{l}(2 l+1) \frac{\sin \left(k r-\frac{l \pi}{2}\right)}{k r}
$$

$$
\left.\cong \frac{1}{2 i k r} i^{l}(2 l+1) \cdot e^{i\left(k r-[\pi / 2)-e^{-i(l-r-r / 2)}\right]}\right]
$$

TheSchaicd Bessed fundionJ,(kr) for vaiasvalues of I aegivenbdow

$$
j_{2}(k r)=\left[\frac{3}{(k r)^{3}}-\frac{1}{k r}\right] \sin (k r)-\frac{3 \cos (k r)}{(k r)^{2}} .
$$

TheerfunctionsaepldtedintheFig,

Similaly $f(\theta)$ may dso be expanded in tems of the Legande Pdynamids as fdlons

$$
f(\theta)=\frac{i}{2 k} \sum_{l=o}^{\infty} f_{1}(2 l+1) P_{1}(\cos \theta) .
$$

Subsitutingfromequtioninequtionweddain

$$
\psi=\psi_{i n c}+\psi_{s c} \approx \sum_{l=0}^{\infty}\left[i^{l}(2 l+1) j_{l}(k r)+f_{l} \frac{e^{i k r}}{r}\right] P_{1}(\cos \theta) .
$$

Since each temin the eqution with a speefic value of the orbitd angua nonertumquatumnumber I, represels a solution of the wave equition in spheicd plar coardntesfor constat patetid engy. Therforetheeparsion
dasifiesthepatides inthebermaccordngtothar anglar momertawtichis of geet praticd importance since t lower enegies bdow 10 Mev , not of the scattering is de to $l=0$ patides, i.e the number of patid waves is seardy linitedinthiscæeanditsufficestostudy thescatteingalyforl=, i.e S-nave
Forl=0

$$
B_{0}(r)=\frac{\sin (k r)}{k r} \approx 1-\frac{(k r)^{2}}{6}+\ldots \ldots .
$$

adforl=1

$$
\begin{aligned}
& B_{1}(r)=3 i\left[\frac{\sin (k r)}{k r}-\frac{\cos (k r)}{k r}\right] \\
& \cong 3 i\left[\frac{k r}{3}-\frac{(k r)^{3}}{30}+\ldots \ldots .\right] . \\
& \therefore\left|\frac{B_{1}}{B_{0}} \frac{(r)}{(r)}\right| \cong(k r)^{2} .
\end{aligned}
$$

We have found at the rdio of the squere since the probadility density is dteminedby B^{2} (r). Tohaveanidła of thenæyitudeof this anetron of engy 1 Mev intheL-sytem, it will be05Mev intheC-M system Natronmonertumthenis

$$
\begin{aligned}
& p=(2 M E)^{\frac{1}{2}}=\left[\frac{2 \times 1.67 \times 10^{-24} \times 1.6 \times 10^{-6}}{2}\right] \\
& =1.63 \times 10^{-15} \text { gm.cm. } / \mathrm{sec} .
\end{aligned}
$$

aditswavenunber $k=\frac{p}{h}=\frac{1.63 \times 10^{-15}}{1.0545 \times 10^{-27}}=1.55 \times 10^{12} \mathrm{~cm}^{-1}$
If weassurethenuderf forcestohewearager $=2$ Femm, then

$$
\left|\frac{B_{1}(r)}{B_{0}(r)}\right|^{2} \cong(k r)^{2}=\left(1.55 \times 10^{12} \times 2 \times 10^{-13}\right)=(0.31)^{2}=0006,
$$

i.e taneregy of 1 Mevorly doat 9% of thescatteingisdetonatronswith IA Sinila caldaionfor a natron of enegy 10 Mev rases this pece tageto tout 49\% Therfareintheenegy ragebdow 10 Mev . S-wavescatteing $(1=0)$ ispredoninat

43Realtsof LowEnggyr-pSedtaing

Thethery for thescattering cooss sediondadqued intheprevia ssedionis in fat a theary for thephessift δ_{l}, whichintum depanos up antheassmpions regading theneture of thescetteingpatetid $\mathrm{V}(\mathrm{r}$). Wenow proceedto cary at thecdaldiansfor thesmeredanglar petetid well ∞ wes assmedinsections forthedaterngoundstae
The radd Scroodnger eqution for $1=0$, viz eqdion inside and atside the ruder squaretertid wal maybewittena

$$
\begin{aligned}
& \frac{d^{2} u(r)}{d r^{2}}+\frac{M}{h^{2}}\left(E+V_{0}\right) u(r) \quad \text { for }<\nabla_{0} \\
& \frac{d^{2} u(r)}{d r^{2}}+\frac{M}{h^{2}} E u(r)=0 \text { for }>r_{0}
\end{aligned}
$$

Sinceinthepreset cæeof npscateing thenegdivebindngenegy is redaxed by asmill poitiveenegy E wichismorhstaller thenthewell-deth V_{0}. These equtionnæybewittenas

$$
\begin{array}{ll}
\frac{d^{2} u_{i}}{d r^{2}}+K^{2} u_{i}=0 & \text { for } \triangleleft_{0} \\
\frac{d^{2} u_{0}}{d r^{2}}+k^{2} u_{0}=0 & \text { for }>r_{0}
\end{array}
$$

Where y isthewavefundioninsidethenell and uthetatside thewell and

$$
K^{2}=\frac{M\left(E+V_{0)}\right.}{h}, k^{2}=\frac{M E}{h^{2}} .
$$

Equtionhesthesdution $u_{i}=A \sin \mathrm{Kr}$
Andequtionhesthesdution $u_{0}=C \sin k r+D \cos k r$,
Whichmabewittena $u_{0}=B \sin \left(k r+\delta_{0}\right)$.
In arder to undastand the sigificance of the phæestift δ_{0}, the Sdrodngr equition waild be eqution $\mathrm{V}(\mathrm{r}$) set equa to zea, the sdution of which woild havetobeof theform

$$
u(r)=\sin k r .
$$

Sinceitmat varishar=0. Thesduionwhichhddsgoodaly atsidethewal.
Thus δ_{0} isthepheeshifttlagedstances introd reedbysnittcing on the
scetteingpatetid.
Wenow requrethet the sdution andjoinsmodtly $\mathrm{tr}=\mathrm{r}_{0}$ i.e thelogeithmic daivaivemetbecontinasdr $=F_{0}$ viz,

$$
\left.\frac{1}{u_{i}} \frac{d u_{i}}{d r}\right|_{r=r_{0}}=\left.\frac{1}{u_{0}} \frac{d u_{0}}{d r}\right|_{r=r_{0}}
$$

Thiscondtion withthead ${ }^{\text {a }}$ equtiongives

$$
K \cot K r o=k \cot \left(k r_{0}+\delta_{0}\right)
$$

This resltmay becompred withthecartinity condtionequtionfor thegrand steref thedaternviz

$$
\frac{\sqrt{\left\{M\left(V_{0}-E_{B}\right)\right\}}}{h} \cot \left(\left[\frac{\sqrt{\left\{M\left(V_{0}-E_{B}\right)\right.}}{h}\right] r_{0}\right)=-\gamma
$$

where $\gamma=\sqrt{\frac{M E_{B}}{\hbar^{2}}}$
Tosimplify thematchingcondtianin cæeof npscattering weassmethatinside theudl, thescdteing wavefundionisnotmorhdfferetfromthedaternverve fundion This appersqiteremand esincethetwo situtionsdffer aly intht thetode engy E in this caredthough small, is positive wheres the datern bindngenegy E_{B} issmall, but negdive Wetherefreasymethat thelogeithic deivative K cot K_{0} of the inside wave fundion for scattering cald be
 fundionof dateronviz γ. Hencefiom

$$
k \cot \left(k r_{0}+\delta_{0}\right)=-\gamma
$$

At this poirt weintrodreandher aproximation that r_{0} is very swall (posildy zepo) compred to $k=\sqrt{(M F / h)}$ so that k_{0} nay be reedected in the doove equitionandthen

$$
k \cot \delta_{0}=-\gamma \quad \alpha_{\cot } \delta_{0}=-\gamma / k
$$

Nowthetdd scatteingorosssedionforl=Ofromequtionisgivenby

$$
\sigma_{s c, 0}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0}=\frac{4 \pi}{k^{2}} \cdot \frac{1}{\left(1+\cot ^{2} \delta_{0}\right)}=\frac{4 \pi}{k^{2}} \cdot \frac{1}{\left(1+\gamma^{2} / k^{2}\right)}
$$

$$
=\frac{4 \pi}{k^{2}+\gamma^{2}}=\frac{4 \pi h^{2}}{M\left(E+E_{B}\right)} .
$$

Wherenehaveshosititedthevalues of K^{2} and γ^{2} fromequations and respectivedy.

44Saf LeamingExarcs-I

Q1 WhtisScatteing?
Q2 Dravanatronprdanscedteingaosssetiongad
Q3 Wite down the Sdrodnger equion, for the np system, for a ceatrd peterid $V(r)$ inthecerter of massytem
Q4 Disassindłal thereslts of lowengy rpscatteing

45Spin LepandanceandScatteringLengt

Spindapandance

E. P. Wgre sugested thet the inter-rudeen forces re spin-daperdat. Since netronandpronae $\frac{1}{2}$ spinpatides, therforeinn-pscotteringthenetronand prons spins may ethe bepadle or ati pardle. Indaterontheboundstar of thenpsytem whosebindngenegy E_{B} thenetronand prdanspinsarepardld andtherforethisequion possildy hdosgoodfor pardld saincæe
The state of pardle spins, is a tiple stae and hes a stiticicd weigt 3 corespondng to thethread loned cietdions of the angla nomertumvedor undr aneteral magneic fidd Thesteof ati pardld spinsisasingestaten accort of the non arietddility of a vetor of zero lengh and hes a stdistica weigt
In a sedtering experimert in gererd reatron and proten sains ae randontly cietedandsoarethespins of netronsintheindidatbermandtherforesing \ddagger andtripestateof then-psytemwill ocar in propationto thestdistica weigt fatarsfor therestaes whichare $\frac{1}{2}$ and $\frac{3}{4}$ respeetively. Thetdd scetteingcooss section therefre shall be made up of two pats, $\delta_{t, 0}$ - the crosssection for scatteing in the triple stae and $\delta_{s, 0}$ the scatteing crosssection in the singet stae exfdlons

$$
\sigma_{0}=\frac{3}{4} \sigma_{t, 0}+\frac{1}{4} \sigma_{s, 0}
$$

Wetherforetake $\sigma_{\mathrm{t}}=46 \mathrm{~b}$ and using them red vaue of $\sigma=204 \mathrm{bfor}$ the lowenegy crosssection wededre

$$
\sigma_{\mathrm{s}}=67.8 \mathrm{~b}
$$

This cadaldion indcates that there is anenomus dfferencebedveen the aoss sections in the singet and tripet staes that is, the nuder force mot be sain deperdat
Fromarävepoint of viek, inarandomdstribution of sainsa innpscatering thetwospinsareadten pardle matipardle givingequl stdisice weigtsto the two stes Honever quatum medarically, the sain dreetion carnt be dffinedæuriquly a avedor in spoceardhemethestdemet'spinpoirtingu' simdytells thet thesain vetor points soneaheredongaconeaoundtheveticd dretion The following figre depids scherdically the far equally likdy situtionsfor therddivespinsof thetwopatides
(1)

(2)

(4)

$=$

Figres (1) and (4) carespondtoatod spinurity corespondngto themagndic quatum number values il and -1 respedively. In coses (2) and (3) the $z-$ componetsadduptozeobutsincethespinsaenotdigreddangthez-dredion they may adduptozeroasincæe(2) realtinginasingetstear may adluptoa todd spinperpendala tothez-axisaxincee(3) givingrisetoatripdeste ScattringLegth
Femi and Mashall introdreed avery uefu concedt the'scateringlengha' for thedsassion of nuder scatteing tverylowindastnatroneregy.

$$
\text { [i.e. } E \rightarrow 0 \quad \text { andhence } k=\sqrt{\left\{\left(\frac{M E}{h^{2}}\right)\right\} \rightarrow 0}
$$

whichisdfinedafdlows

$$
a=\operatorname{Lim}_{k \rightarrow 0}\left(-\frac{\sin \delta_{0}}{k}\right) ;
$$

Wththisdafinition equtiongivingthetad scatteing coosssedionformS-wave ($=$ (=) may bewittenforverylowindidatnatronenegyas

$$
\operatorname{Lim}_{k \rightarrow 0}\left(\sigma_{s c}\right)=\operatorname{Lim}_{k \rightarrow 0}\left(\frac{4 \pi \sin ^{2} \delta_{0}}{k^{2}}\right)=4 \pi a^{2}
$$

Equionthenindcctestht' 'a' lesthegeonetricd sigificameof beringtheradus of a hard sphere surandng the scatteing certer from which natrons are scatteredandsohesthedmersionsof lengh, hercethenarescatteinglengh
Now it is to bended fromequian tht $\infty_{k \rightarrow 0}$ (i.e,) ∞ the enegy E of the indidatnatronaproaches $0, \delta$ mit aproad ether O_{π} othewisetheass section tzer matron eregy waid beconeirfinitewhichis physicdly dosurd Therfareat verylowinidatnatroneneges ($E \rightarrow 0$), equion redresto

$$
a=-\frac{\delta_{0}}{k}
$$

Thent very lowinidat natroneregies, thewarefundionatsidetherangeof nuderfacceaeyressedbyequtionnæy bewittena

$$
\operatorname{Lim}_{k \rightarrow 0} u(r)=\operatorname{Lim}_{k \rightarrow 0}\left(r \psi_{0}\right)=\operatorname{Lim}_{k \rightarrow 0}\left[e^{i \delta_{0}} \frac{\sin \left(k r+\delta_{0}\right.}{k}\right]
$$

Theequionthengives asimplegadicd interpredion of thescatteing lengh Thisequionrepresets astragtlinefor U(r) andthescatteinglengh'd isthe inteceptonther-axis ThisisindcdedinFigre
Haing dafined the scatteing length by mens of eqtions an inquistive readr may ak qitenturdly wht is thesigificanceof positiveor negdivescatteing lengh? or whtis thesigificanceof attadingapositiveor anegdivesignwith tthescatteinglengh? Ittellsuswhethe thesysemhes aboundor anubound sta

Fromfigreit is dert that positivescatteing lengh indcdes a bound stexand negdivescatteinglengh indcaes a virtud or unbound stae Sincethedatern waveundion i.e, the wavefuntionfor theboundsteof npsytem mot anve tonards the r-axis in crdar to match the exponetidly decaing sdution (cf. equion i.e $r x_{0}$ will give riseto a poitive intercet on the r-axis indcaing thereby a positive scatteing lengh For unbound stethe wavefundion hes to natch with an inceesing solution atsidethe rager r_{0} and then exrapolition of $U(r)$ shal prodrea negdiveintercet onther-axis imdying therey a negdive scetteinglengh

46 Coheret Scottering of Natrons by Protens in Ortho andParaHydrogenMdeales

vie con venty ar conduans anat the singe and inpe cooss setions in a vaidy of wass Onemethodistoscatter very loweregy natrons frombyctogen
noleales Mdeala hycogen hes tho forms known as athdyytogen and pardydogen In athdydrogen the two proton sadin are pardle, while in pardydocoenthey ae aatipardld. Thedfference betwernthenatron scatteing coosssedions of atho and pardydogenisevidanceof thespindependet pat of therudeen-rudeenforce Or dsassion of theaross setionfor netrontroten scetterng is inedequtefor ardysis of scateing of netrons fromHR moleales Vey lowenegy natrons ($\mathrm{E}<0.01 \mathrm{E} \mathrm{V}$) haveadeBrogiewavdenghlagr than 005 m , thus geter thenthesppadion of thetwo protonsinH2 Theuncetaity pindidereqires thet thesize of the ware packe thet describes a patidebeno swalle than its de Brogie wavdength Thus the wave paked of the ingidat neatronovelapssimeltaneady with both protansinH2, eventhoughtherangeof thenuder forceof theind vidil netron-proteninterations remins of theadar of 1 fm The scattered netron waves $\psi 1$ and $\psi 2$ from the tho protens will therefre contrine ccheretty, that is, they will intefere, and the cross seetion depenos on $\psi \psi 1+\psi 2^{2}$, nt $\mid \psi \mathcal{1}^{2}+h \psi 2^{2}$. We cand therfaresimdy add the cossseetions fromthetwoindvidd scatteings (At highe enegy, wherethede Brogie wadengh waild beswill campred with thesepraion of the protans,
 dredty. Theremanfor dhoosing to wark at very lowenegy is patly to doserve theintafernce effet and patly to pevet thenatronfromtranfering enagh enegy to theH ${ }_{2}$ molealetostatitrdaing whichuaidcomdicatetheandys Theninimumrdtiond enegy is dat 0015 eV , andso netrons with enegies intherangeof 0.01eV dontexiterdtiond states of themdeale)

47 Condusions of theme Anelysis regiroing Scottoring Lengins

To andyze the inteffernce effet in proders of this sat, we introduce the scatteringlengha, dfinedsunthet theloweregy orosssetionisequl to $4 \pi \mathrm{a}^{2}$ $\lim _{k \rightarrow 0} \sigma=4 \pi a^{2}$
$a= \pm \lim _{k \rightarrow 0} \frac{\sin \delta_{0}}{k}$
Thechiceof signisalditray, butitisconvetiond todhooetheminussign

Eventhagh the scatteing lengh hes thedmension of legth It is a praneer that reperests the strengh of the scatteing not its range To seethis, we nde fromaboveequtiontht δ_{0} mot aproach 0才 loweregy in arde thet areman firite Thescotteredwavefundioncanbewittenforsiall δ_{0} ळ

$$
\psi_{\text {scatered }} \approx A \frac{\delta_{0}}{k} \frac{e^{i k r}}{r}=-A a \frac{e^{i k r}}{r}
$$

Thusagivesineffet theampitudeof thescdteredvave

Thesign of thescotteing lengh dso caries physicd informion Figreshons represetdions of thetripe andsing e scattered wavefundions u(r). Thetripl wave fundion for $r<R$ looks jut like the bound state wave fundion for the dateron $u(r)$ "Lums ove" for $r<R$ to formthebound ste The value of a is therefrepositive Beaseethreisnosinge bandstae u(r) does notumover for $r<R$ solt reades thebounday at $=R$ with positivesqpeWhen wenake the srocth cormetion t $r=R$ to the wavefundion begond the patetid and edrapdatetou(r) $=0$, wefindthata, thesing escatteinglengh is negdive
Orestinte $\sigma_{\mathrm{t}}=4.6 \mathrm{~b}$ fromthepropeties of thedateronlead to a $=+61 \mathrm{~m}$, andtheesiniteof $\sigma_{\mathrm{s}}=67.80$ neededtoreprodreethedservedtud cooss setion gives $a_{5}=232 \mathrm{fm}$
Thetheory of natronscedteingfromartho and pardyctogengives

$$
\begin{aligned}
& \sigma_{\text {paa }}=7\left(a_{a}+a_{5}\right)^{2} \\
& \sigma_{\text {atto }}=\sigma_{\text {paa }}+129\left(a_{a}-a_{5}\right)^{2}
\end{aligned}
$$

wherethenumiced ©efficiatsdependonthespeedf theinidat natron

Them red cosssetionscorretedfor dbsontion fornetronsof thisspeedare $\sigma_{\text {paa }}=32 \pm 0.2$ band $\sigma_{\text {atto }}=108 \pm$ l If thenider farcewereindapendat of sain we waldhave $\sigma_{\mathrm{t}}=\sigma_{\mathrm{s}}$ and thusa $=$ a; thus $\sigma_{\text {paa }}$ and $\sigma_{\text {atro }}$ waild bethe
 dso suggest thet al andas mothevedfferetsigk, sotht $-3 a_{9}=a_{3}$ in crder to make $\sigma_{\text {pas }}$ siall. Solvingequtiorsforas ardagives

$$
\begin{aligned}
& a_{s}=2355 \pm 0.12 \mathrm{fm} \\
& a_{a}=+535 \pm 0.06 \mathrm{fm}
\end{aligned}
$$

consisert with the values ded reed previa ly from σ_{t} and σ_{s} Therearesaved other expeimets that aeseritive to the sing et and tripd scatteing lenghs, these indude neatron dffration by crystds that cortain hyotogen (such a hyctidss) ∞ well a thetud reflection of natron beens t small anges from hydogerrich mжerids (such a hydocabons). Theeetertriques give realts in goodageemetwiththedbovevduesforas adal".
The theory we have attined is vaid aly for I =0 scatteing of loweregy indatat patides Thel $=$ Orestridionrequired patides of indartenegiesbodow 2OMeV, whilear othe lowenegy aproximaions requiredel a keV enegies As weinceretheeregy of theincidat patide wewill vidteo lang bfore wereacherages of 20 MEV . Wetherforesill havel=0 scatteing but theer
 This cæe is gereally treted inthe effetive range aproximłtion, in which we take

$$
k \cot \delta_{0}=1 / a+1 / 2 r_{0} k^{2}+\ldots
$$

add wheretens intigher powes of karenedeced Thequatity a is thezeroeregy scatteing lengh we dreedy dfined (and in fat, this redrees to $a= \pm \lim _{k \rightarrow 0} \frac{\sin \delta_{0}}{k}$ inthek~Olinit), and thequatity r_{0} is anevperameer, the effective range One of the advatoges of this repeesetdion is that a and r_{0} drarateizethenuder paetid independet of its shape, thet is, wecald repert dl of thecolaldions drreinthis setion with a potetid the then the square
well, and we would dedre idaticd values of a and r_{0} from andyzing the exprinetd cross setions of carsethreis an accompaning dsedvatagein thet wecanlemlitteabat theshpeeof thenuder poterial fromanardysis in whichcdaltionswithdfferetpotetidsgiveidaticd realts!
Likethe scattering lenths, the effedive range is dfferet for singe and tride staes Fromavaidy of scatteing expeinmis we candedrethebestst of $I=0$ praneetesforthenatron-protoninteration

$$
\begin{aligned}
& a_{s}=23715 \pm 0.015 \mathrm{fm} \\
& r_{o_{05}}=273 \pm 0.03 \mathrm{fm} \\
& a_{a}=5423 \pm 0065 \mathrm{fm} \\
& r_{a}=1748 \pm 0.006 \mathrm{fm}
\end{aligned}
$$

As a find commert regardng thesinge and tride netronproton interations, we can try to estinte the enegy of thesinge n p staredive to the bound tridestaea-222MeV. UsingEqutionswewaiddedrethttheenegy of the singesteisabat +77 keV . Thusthesingestateisalysigtly urbaund

48Seff LamingEvacisell

Q1 Whichsteisknownætiplestde
Q2 Definescatteinglenghanditsphysicd sigificance
Q3 Exdanthathenuderffrcemetbespindependat
Q4 Disass Coneret scatteing of netrons by protors in atho and Para hydogenndeales

49Summy

 paterid. Wedsodsassedthet thenider forces arespindapendati.e, nuder farces not aly dapend yon the separdion dstance bat dso ypon the spin drietdions of tho nudeens They are indeperdat of the shape of nuder patetia.

410Glofay

Anglar Monertum A Amed themonetumo a booy in indiond
motiondbatitscertre of nass Tedricelly, theanglar monetumof abody is equd to thenmssof theboly moltiplied by the coss prod it of theposition vedtor of the patide withits veloity vetor. Theangla monertumof asytemis the sumf theanyia momertaof itsconstituat patides, andthistod isconeeved unessatedonby anatsidefare
Natron: Oneof thetwo main buildng dods (dang with the proton) of the nudas t the certre of an atom Natrons have essetidly the sare nuss a a prom (vey digtly lages) bit modetric charge, and aemade upof one " 4 " quak and two "dwn"qaks The number of natrons in an domdłemines theistopeof anderet Otsideof anudes, they are untdde anddsintegte withindauttenmintes
Nudas The tigt duter of nudeans (positively-darged protans and zerodragednatrons, orjut asing eqrdoninthecæeof hydogen) tthecetreof an tom cortaring morethen 99.9% of the atomsmass Thenudes of atypicd atamis tant 100,00 smalle then the tadd size of the atonrdeperding on the indvidel tan).
Proton: One of the two man bildng dods (dang with the neatron) of the nudest thecertre of andom Protans cary a positive letricd darge equl and qposite to that of dedrors, and are mack up of two " 4 " quaks and one "down" qakk Thenumber of protors inandam's nudes dłemmines its tomic nunter andthwswichchericd demetitrepresets

Spir Spinisadaraterisic propaty of devertay patides

411AnserstoSaf LemmingExercis

AravastoSff LamingEracisel

Ansi: When anittereand collinzedbernof nudensisbombardedntagt nude the interadions beveen inidat nudas and tage nude takes pare Theirtaradion cbes not dangetheindidat patides, i.e, inconing and atgaing patides arethesare Thedangeis inthepath of incorning nudents, i.e, they ae cavized fromther crigind path This process is knownescetteing
Ans2 setion4.2

AnE3 $\left[\nabla^{2}+\frac{M}{h^{2}}\{E-V(r)\}\right] \psi=0$

AnsustoSaf LemingExacisell

Ansl: Thestae of pardle spinsiscalledtripastate
Ans2 'a' hes thegeantricd sigificanceof being theradus of ahard sphere suraundng the scedteing cetter fromwtich natrons ae scattreed and so hesthedmensiors of lengh, hancethenerescattainglengh

$$
a=\operatorname{Lim}_{k \rightarrow 0}\left(-\frac{\sin \delta_{0}}{k}\right) ;
$$

AnE3 $\sigma_{0}=\frac{3}{4} \sigma_{t .0}+\frac{1}{4} \sigma_{s, 0}$
where $\sigma_{\mathrm{t}}=46 \mathrm{~b}$ add $\sigma=204 \mathrm{~b}$ (for the lowenegy aross setion), we dedure $\quad \sigma_{\mathrm{s}}=6.8 \mathrm{~b}$
This colaldionindcdes thet thereis anemorrusdfferencebedveenthe rooss sedions in thesinget andtride stees that is, thenuder forcemit besaindapendat.

412Exaris

Q1 Whiteshatnteonscatteringlengh
Q2 DisassNatron-prdenscatteringtloweregy.

ReferencesandSuggested Resing:

1 ElemertayNuderThearyby BetheandMorison
2 TheAtomicNudesby RD.Evars
3 AtomicandNuder PhysicsbyBrijld andSudraininyan
4 NudeaPPysicsbyD.CTayd.
5 Nuder PhyicsbyIrvingKadan
6 Introdutary Nuder PhysicsbyKemehS. Krae

UNT-5 Nudenn-NudenScattering andPdertiak : Par-II

Sructreof theUnit

50 Ojectives

51 Introdrtion
52 BosanExdangePdetids
53 BaicPdetids
54 HanadajdntonPoteriad
55 YadeGrapPatetia
56 Redb8ardRéd-DayPdertids
57 Seff lemmingerecisel
58 OneBosonExdangePdertiad
59 Sefflemningexerisell
510 Summay
511 Glossay
512 Arsnestosdflemingexerises
513 Exerise
ReferncesandSuggetedReedngs

500biedive:

After interating with the matend peested here stuatis will be ade to undastand

- Harrada Jdnstanhardccreptertid
- Reidrardcareandsoftcareptertidsand
- OnebosonExdangePdetids

51Introdutior

The interation between two nudens is besic for dl of Nuder Physics The tradtiond god of Nuderr Physics isto undastand propaties of atomic nude in tems of the "bare" interation between pars of nudeens With stating of QuatumCromoDynamics(QCD), itbeeareder that theNNirterationisnot fundermetd. Nevethdess, even today, in any approach towards a nuder stuctreprodemoneas mesthenudenstobedenertay patides Thefailure orsucess of this aproachnay thenteachussorethingabat therdevarceof sb nuder cegees of freedmA A lagen mber of physidsts, al oer the world have invesiggted the NN intration for the past 70 yeas. This interation is the empirically best knownieceof stronginterations infat, for mother sampleof strongfoceacomprddeanout of experinetd dtahesbeenacamided The ddest attent to exdan the netre of the nuder force is de to Yukana Accordngtothistheary massivebosons (nesons), nedtetheintradionbetween two nuderns Althagh in the ligt of QD, neon theary is not perceived a fundaretd anymere themesonerchangecrocet continus to represer thebest norking modl for aquatitdiveNudeen-Nudeenptetid. Mostboicquetions werestlled inthe 1900 s and 70ssurhthet in reert years wecald concertrate anthesthtleies of this pealiarforce

52BosonExhangePdartids

Theptetid ating bedweenapar of patides detotheexcangeof a meenhes a range of the crodr of the reson Compton wavdengh thet is invesdy propationd to themesonnass Sincethem meonisthelightest bosonthat can beexdanged bedveenapairof nudems, theOPEP d\&teminesthelongrangepat (beyondthepionCompton wavdengh) of thetwo-nudeonpatetid. If ore wats informiononthetwo-nideen paterid tirtermedte andshat-ranges oneis thenfreed with thecomptaion of the peterid aising from theerdangeof the heavie bosons and two, three. . . pions Sincethis compution is compratively moredffialt, thust the paterids constuded besed onsymmetries (eg, Bret andconakes paterid), itisdłermined phenorendogicelly, whilet themeson theory of thetwo-ndemptetid, thereednanges areconsidared exdiditly. It is undastood that miti-meson sytens mot atten have strongy correted
resonencestdes banaingasaingeboson It istherforespealded that soreof these multi-neson rescrances, when exdanged between two nudeens nay doningtetheintermedte andshat-rangebdeaia of thetno-nudeen patetid. The potetiad compted in this way is called the orebosonerchange potetid (OBEP). Beides theerdangeof onem neeon dso dher exdanges havebeen exdiditly cansidged in the OBEP. A main dfference arongt warkes on the neonthererictuo-nudempterid liesinther name of tredmet of thetwopion system An aproad in which the effet of the thopion sysem is pardmeteizedthraghoneortwoisoscdar ($\mathrm{T}=0$), scdar ($\mathrm{j=}=$) mesonsiscresurh treatret In andher daldquert of the theory, the effet of theS-stae of the tho-pionsytemis parmeteizedthroghthescatteringlength and effectiverange In yet andher thent the effet of two-pion continumis considzed in nore dtail andtheresltart potetid tokenirtoaccourteydidtly. Variasathorsdso dffer inthedłalls of their method of compting theptetid. Broady spedking converiond fiddthererical tedriques and the dspetsion theoreic nethod are thetwo pinipal methoos of solving the prodemthat we do not expers theere methoos in dEailshere Therefre, in cher ward, theboson exdangeptertids are besed an effectivefidd theory and ae eypanded to nudennideen, piannudeen and pian-pion intrations Thesenodds do not any referceto QCD, butthebayon andmeanfiddsharebernconsidaed atheaympdic statesthat dosab all effets fromquak-duon dyrenics Thedscovery of the spin-oreor vector mesars ρ and ω with the mases aand 70.780 MeV wes provided a progess and led to the expasion of the OBE patetids In these rodds, the urreted singeexchangecortribtions of the psenbscar nesors $\pi(138), \eta$ (549) andthevetor means $\rho(769), \omega$ (783) कudl athescdar meson δ (983) havebernconsidreedanditertedintothescatteringeqution Inaddtion thetwopion exdange assoited with the fidiond scdar signa meon with the nmess aand $400-800 \mathrm{MEV}$ wes denenstraded The care region wes firally pardmeteized by thepherorerdogicd formfadas redtedtothemeonnudeen vetices Findly, thoseformfatarsformed thesubsucture of QD. SurnOBE paterids provided the first quetitdive aproxindion of dta Many rodas of thesepteridsexist theterchearounsdafiniteandseparddefetures Itisnow known the these aethestandad NN patetids, of carse A feverandles are

Njimegn, Pais, and Bom paterids Broady speaking inthis qark-atiquak pair (\#feson) exhangemoda, wehavethefdlowingfetures
a Itissimilatoquak edrange(jutrevasedretionof onequak).
b Itgivesavey gooddesoripion of may appeds of NN putetid.
c Itis preferedbeeasenesonstes aredarnatrd andheveredivelylow mass(lager range).
d ItstudesOPEP andgeredizestocther mesons sofaraly nodel thatgives pefectageemetwithdta, espeidlyfor longrangepat

53BasicPoterlials

The range of the nudeenrudeen interation is dvided to the three pats the shat-range ($r \leq 1 \mathrm{ff}$), the intermedterage ($1 \mathrm{fm} x \leq 2 \mathrm{fm}$), and thelong range ($r \geq 2 \mathrm{fr})$. For thelongrangepat, anepionexchange(OPE) hes us illy been considred The shat-rage pat hes often been dsassed phencrendogicaly, insorenodds, formfatarsaeintrodreedto reglarizethe paterid tthearignuheress indhermads ahadcoreis seed Thefirstlogicd aproach to describe the intermedterange region wes to indude the two-pion exchange (TPE) contributions Howerr, these TPE rodds dd not give a stisfatary descipion of the NN scatteing dat mainly de to a lak of a suffidet tspin-arditforce Gammed, Cristian adThder hirtedtheneressity of a spin-ardit force, when theytried to fit al of thedta availdded that time witha

$$
V \neq V_{C}(r)+N_{T}(r) S_{12}
$$

for each of for spon and isospin contintions and they failed $\operatorname{In} 1975$, the simeltaneusconstudion of thepurdy pheromerdogicd patetids by GarmedThile and the seri-pheromendogicd Singel-Mashak patetia, where both rodis introdreed phencrendlogicd spin-arbit patetids, begen TheGanmeThile rood gave a good fit to scatteing dta up to 310 MeV . The SingellMashak nodd, consising of the TPE Gatertas patatid together with a phenomendogicd spinardit force, wes sucessfu up to 150 MEV . OkboMashak showed that the nost gered two nudeen patatid, corsidaing symmerycondtions, iswfdlows.

$$
\begin{aligned}
V\left(r, \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right) & =V_{0}(r)+V_{\sigma}(r)\left(\sigma_{1} \cdot \sigma_{2}\right)+V_{\tau}(r)\left(\tau_{1} \cdot \tau_{2}\right)+V_{\sigma \tau}(r)\left(\sigma_{1} \cdot \sigma_{2}\right)\left(\tau_{1} \cdot \tau_{2}\right) \\
& +V_{L S}(r)\left(\tau_{1} \cdot \tau_{2}\right)+V_{L S \tau}(r)(L \cdot S)\left(\tau_{1} \cdot \tau_{2}\right) \\
& +V_{T}(r) S_{12}+V_{T \tau}(r) S_{12}\left(\tau_{1} \cdot \tau_{2}\right) \\
& +V_{Q}(r) Q_{12}+V_{Q \tau}(r) Q_{12}\left(\tau_{1} \cdot \tau_{2}\right) \\
& +V_{p p}\left(\sigma_{1} \cdot p\right)\left(\sigma_{2} \cdot p\right)+V_{p p \tau}(r)\left(\sigma_{1} \cdot p\right)\left(\sigma_{2} \cdot p\right)\left(\tau_{1} \cdot \tau_{2}\right)
\end{aligned}
$$

whereL, S, and Q_{12} aespin-ardatandquadticspin-ardit- qpertars, respectively.

$$
Q_{12}=\frac{1}{2}\left\{\left(\sigma_{1} \cdot l\right)\left(\sigma_{2} \cdot l\right)+\left(\sigma_{2} \cdot l\right)\left(\sigma_{1} \cdot l\right)\right\}
$$

Tudvetems aegiven by tudverada fundiars $\mathrm{V}_{0}(r)$, Wecandatan the V (r)'s fromar knowedgefromthebesic neture of thenuder forcesurn x the meson exchange and or from the semi-empiricd procedre by fiting some sarmed forms of the radd dependace to expeimentd data When ar undestanding of QOD is fully davdqued in the future it will be posside to deeminethesefundionsfromfirst pingides Thefirst far tems arethecetrd farce tems and in this cese, L and S ae the good quatumnumess In the preserce of the cher tems, tho-ndeensytemisinvaiat only inthe contrined spereof LardSlabdedby);

$$
V_{l s}(r)=V_{L S}(r) L . S+V_{L S \tau}(L . S)\left(\tau_{1} \cdot \tau_{2}\right)
$$

The reson for these tho terms cones from the possiblity that the radd dependarceof theisospindelpendat and of theisospin-independat pats may be dfferet fromeach dhe, for example a the resit of dfferet nesons being exchanged Thesix and theserenterm are thetersor force The rinth and the terthquadtic spin-adittemseter ally wenthereismaretumdapendacein theptertid. Thelæt twotems aredtendoppedsincefor datic scadteing they can be expressed ∞ a liner contrindion of dhe terms Ther cortribuions therfore carnot be dłermined uing datic scedteing for which nost of ar irfardion anNN interationiscrived Then soondter, better paterid forms were consturted Sonee eamples are Harmakjdinton, Yde, and the vaias harc andsof-corenoddsconstuctedby Red Befregaingintothetreamertof other paetids, it is usefu tomertionthat nost of theerperimentd datic phese sifts areetratedfromthepp andrpdfferetial arosssetions Inthesenods, the dta ae fitted up to the eregy range 0350 MeV , beease, as dreed
metioned intigner enegies (with the theshdd 270 MeV) the pionprodiction and ther redtivisic effets beerme impatat and the Sdrödnger twonudeen equitionistherforenolangrsffidiet
Hanwatd dintan andYdegappterids reprodreall thetwo-body scattering dta(indudngthepdaizdion paraters) mafundion of engy ove theenegy range of seard hunded MEV. The Yde patetid wes espeidly dexigned to reprodre the phese shifts in varias two-ndeen stes as srodh fundions of eregy. As a first step, the phæe paraters (phere shifts, and the mixing parameter inthecereof capledstdes) weredteminedæafundion of enegy by dred fit to all thescatteing and plaiztiondta Thestting ypof thepetertid withits parmeers adutedtorequodrethep weeprantersmay beregadedas thesecondstepinthistypeof wark Thefirststep, ravely thedtermintion of the pheep parmetes a a fundion of enegy hes been praticed very fficiertly by seared gaps of norkes indudng the Yde, Liverore, add dher- teens The achel proedre, now almot standrdzed etails expressing the scattering ampitudeathes mover patid waves upto acetain naximemarbitd anglar nonertum nax (theusid valuedosenfor $I_{\text {nax }}$ ismarear less5). Thecantribution of all higre patid wavesisthentakentoberepresented bytheonepianerchange cartribaion(OPEC) to thescatteing amplitude TheYdegaptook theOPEPas agivencomponet of theptertid and then d\&eminedtheres of thepatetial by fitingtheenegy-dapendacephweprameersuptol ${ }_{\text {nax }}$.

54HanadE-JdnstonPdarlia

TheHariadajdinton (H) poterid is aleædng pheromendogicd NN (pp+p here) eregy-indapendat petertid. Itdescribed well thescatteingd\#abdow350 MeV and dateron propaties as wll as the effetiverange parates The gereal formof H pateriad reads

$$
V=V_{c}(r)+V_{t}(r) S_{12}+V_{l s}(r) L . S+V_{l l} L_{12},
$$

where

$$
\begin{aligned}
& S_{12}=3\left(\sigma_{1} \cdot r\right)\left(\sigma_{2} \cdot r\right)-\left(\sigma_{1} \cdot \sigma_{2}\right), \\
& L_{12}=\left(\delta_{l j}+\sigma_{1} \cdot \sigma_{2}\right) L^{2}-(L \cdot S)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{c}(r)=0.08\left(\frac{1}{3} m_{p i}\right)\left(\tau_{1} \cdot \tau_{2}\right)\left(\sigma_{1} \cdot \sigma_{2}\right) Y(x)\left[1+a_{c} Y(x)+b_{c} Y^{2}(x)\right] \\
& V_{t}(r)=0.08\left(\frac{1}{3} m_{p i}\right)\left(\tau_{1} \cdot \tau_{2}\right) Z(x)\left[1+a_{t} Y(x)+b_{t} Y^{2}(x)\right] \\
& V_{l s}(r)=m_{p i} G_{l s} Y^{2}(x)\left[1+b_{l s} Y(x)\right] \\
& V_{l l}(r)=m_{p i} G_{l l} x^{-2} Z(x)\left[1+a_{l l} Y(x)+b_{l l} Y^{2}(x)\right]
\end{aligned}
$$

inwtichm ${ }_{3}, x$ and M aethepionnass (139.4 MeV), theirter nudeandstance mared inthe urits of thepion Compton's wadengh ($\left.r_{0}=1415 \mathrm{fm}\right)$, and the nudeonnass (tkentobe673u), respedively. Nctethat

$$
\begin{aligned}
& X=\boldsymbol{N}, \mu=\mathbf{n} \mathbf{C h}={ }_{0}^{-1} \\
& Y(x)=\frac{e^{-x}}{x}, Z(x)=\left(1+\frac{3}{x}+\frac{3}{x^{2}}\right) Y(x)
\end{aligned}
$$

We should note thet thequadtic spinardit petetid wes maily introdred to describerpd\#asdisataily.
For ther lagee angh $V_{c}(r)$ and $V_{t}(r)$ redreeto the well-known OPEP with the psenb vetorcaplingcontartof 0.08
The cofficiets a, b, a and b represert the paterid dvesion fromOPEP at small r's

- G_{s} isthestrenghof theshatrangedspinarditpotetid $\mathrm{V}_{\text {bs }}(\mathrm{r})$ andisdepended ontheparity of ste
- G_{1}, $\boldsymbol{\infty}$ thestrength of $\mathrm{V}_{\|}(r)$, cigintedfromspeeid eductions, isdłemmined pheromerdogically.
All thecofficiets aredłemineelfromthedłailedfittoscdteingdta
Thehad cores areconsidgedfor all stetes withtheir radust $x_{c}=03 B 3$. TheH pateriad, acriginally propeed indudedastronglangrangequedaic sain-abit patrid intriptevenstes, anddsoastrongshat-ragespinarat patetid in tripd ($(=j)$-odd stdes, whereit is known thet thelatter does not eist So, the patatid for triple-odd tedes nes nodfied as fdllons It wes dfined to be$0.2674 m_{3}$ aand $x_{e}<x \leq 0.487$ andby dowestandad redtionsfor $x>0.487$. Thevalus of thebindng enegy, eledric quadic nomet, effediverange, D
state probadility and the aymptdic D-wave to S-wave rdio of dateron were detemined by the peterid to be $2226 \mathrm{MeV}, 0.285 \mathrm{fm} 3,17 \mathrm{fm}, 697 \%$ and $\mathrm{A}_{\mathrm{A}} / \mathrm{A}_{5}=0.02666$, respedively.
An impovenert of H peterid wes mace in (we call it Massachusetsgrap paterid) to red aceminly theH hadcores (for $x \leq x_{\text {) }}$) by fintesqurewell ccres Otsidethesqurewdl radus (for $x>x_{C}$), theptertid is thesareaH excett for a few danges in paratas such a considring the pion mass

 independat lreaking (aB) whileCS is sill preserved Now, m_{3} is redaced by theeffedivepionnmessand $x_{c}=0.4852$, whichintumimdiesthelaggr coreadus of 07 fm DesciibingNN scdtering daanddateron properies withtheptertial neregood Indeed theminaimto form theldter poterid wes to show that the hard cres were nt neressay sincedl dtacald bedesoribed by thefinitesatcrepetetids

55Yak-GrapPderial

The Ydegap potetid is a pptrp phenomendogic petetid smila to H paterid that is fitted to its time phere parates a well. There an one pion exchange patetid (OPEP) is induded dredly and the quadtic spin-ardit paterid is considred in a somenht dfferet formthenthet of H . Thewhde NNptetial reads

$$
\begin{aligned}
& V=V_{\text {opEP }}^{(2)}+V_{c}(r)+V_{t}(r) S_{12}+V_{l s}(r) L . S+V_{q l}\left[Q_{12}-(L . S)^{2}\right], \\
& {\left[Q_{12}-(L . S)^{2}\right]=(L . S)^{2}+L . S-L^{2}}
\end{aligned}
$$

where

$$
V_{O P E P}^{(2)}(r)=\left(\frac{g_{p i}^{2}}{12}\right) m_{p i} c^{2}\left(\frac{m_{p i}}{M}\right)^{2}\left(\tau_{1} \cdot \tau_{2}\right)\left[\left(\sigma_{1} \cdot \sigma_{2}\right)+S_{12}\left[1+\frac{3}{x}+\frac{3}{x^{2}}\right] \frac{e^{-x}}{x}\right.
$$

This OPEP is used for the dstances lager then neally 3fm with the same pranterdefinitionsainH petetid. Forthecaplingconstat, $g_{p}^{2} / 14=0.94$ is usedinsingdeevenstes and 1 tsenkre Forsing \ddagger even andtriple-oddstes, thenatrd-pion mass $\left(\mathrm{m}_{\beta}=\mathrm{m}_{0}\right)$ is used whilefor sing \ddagger-odd and triple-een
staes, amenof thedageet andnatrd-pion nases $\left[m_{\beta}=\left(m_{0}+2 m_{ \pm \pm}\right) / 3\right]$ is used Thehard-creradusisconsidaredt $x_{c}=0.35$, andexcept intheOPEP pat, dl theradd fundiors $\mathrm{V}_{\mathrm{G}} \mathrm{V}_{\mathrm{t}} \mathrm{V}_{\text {Is }} \mathrm{ad} \mathrm{V}_{\mathrm{q}}$ aetakena

$$
V=\sum_{n=1}^{7} a_{n} \frac{e^{-2 x}}{x^{n}}
$$

Theptetid's parnetes aredemined by fiting to datafor vaiaustates and indved paterids It isdsondddethtH andYdeptetidsareOPEPforL > 5 , andthet theYdepatetid sts $\mathrm{V}_{\text {IS }}=0$ for $\mathrm{J}>2$

56 ReidBandReic-DayPdatids

ReidBeBtartial
Arang thefailures of H andYdehactccreptertids werethat they cald not reprodrereemonderesitswhenapdyingtonany-body calaldions It appered that theReidsof-corepotstidswerebettr.
The Red patetids ae staic and locd phenmendogicd patetids simila to those of H and Yde Red diemined the potatid for ech thonudeen stae indeperdat of the ther staes So, one nay suppose that this aprooch is proderaic in that, with many two-ndeen staes ech with its own patatia, fiting the experinetd data cald be probady neeringess But, becase the highet enegy in the andyes wes dbat 300 MEV , jut the tho-nudean staes withJ ≤ 2, whichaemareimpotat innuder cadaldion, wereconsideedin padice
Redusedaly acestrd paterid inthesingetanduncoupledtide-steeswhile, forthecapledtind \ddagger-sdes, heused

$$
V=V_{c}(r)+V_{t}(r) S_{12}+V_{l s}(r) L . S
$$

whichhesthecentrd, tersor andusd spin-abit componets FortheLR pat, he used theOPEP of कatail atached to the patetid, with $g_{\mathrm{p}}^{2}=14, m_{p}=13813$ $\mathrm{MEV}, \mathrm{M}=938903 \mathrm{MEV}$ add $\mu=0 . \mathrm{Fm}^{1}$. Onthedhe hand to removethex ${ }^{2}$ and x^{3} bedavias t snall dstances, anshat range[SR] paterid wessidratedfrom theterser pat of thepeterid. For themedumrange[MR's], theptertids were expessed lathesums of theY Ykand'sfundions of $\mathrm{e}^{\text {"x } / x}$, wheren wes anirtegr. TheSR repulions were dso some contindions of thespreehact-creand the

Yukanasft-coreptertids-It is mertionddetht theciterionfor a paterid to besaf-coreis that the wavefundionsob not varishinnorzero raduses For the harctcreradus, when needed theraduses of $x_{s} \leq 01$ cald be used there One shald of carse notethet becase of fiting theptertids to the eregies often badow350MEV, findnga uriqueformilismfor theSR pat wes dnost dffialt Finally, it is notdde that the Reid patetids dd not describe well sane of the scatteringdtarndatteron propetiest thatime It wesdso hintedtheneedfor vacoity-deperdanceand non locdity in NN paterids, imposed by expeimertd da

Raid-DayPdartia

TheRéd68saf-creputerids uptothehiger patid vavesto sdvethrebody eqution in nuder matter codaldions In fat, he used three twonudeen patetids incdaldions Thefirst cre(cdled V_{2}) wesjut thecertrd pat of the Redbs paterid in $3 S_{1}-3 D_{1}$ darnd for al staes The second one (celled $V_{6}($ Redd) hadfor forms for thefar (S, T) stass Inceed inthelater cæes, for al
 Orespedively) wereused neenwhilefor all $\mathrm{S}=1$ sdes, jutthocetrd $\mathrm{V}_{d}(\mathrm{r})$ and thotersor $V_{\text {I }}(\mathrm{r})$ patetids (RedB8 $3 P_{2}-3 \mathrm{~F}_{2}$ and $3 \mathrm{~S}_{1}-3 \mathrm{D}_{1}$ for $\mathrm{T}=1$ andT $=0$ respedively) were used The third ore (cdled Ful-Reid petetid that we cell RedDay patetid) ueed the arigina Reid68 patetids for all $\mathrm{J} \leq 2$ staes, neenwilefor thestdes withJ ≥ 3, hest upthepaetids besed ontheReid38 ones drost raghly. Clerly, for the stes up to J $=5$, the paterid stuutures weresmila tothearignal Reidb8ones Foreamde inthecapedsteof ${3 D_{3}-}^{-}$ $3 \mathrm{G}_{3}$, heued

$$
\begin{aligned}
& V_{c}(r)=-10.463 Y(x)-103.4 Y^{2}(x)-419.6 Y^{4}(x)+9924.3 Y^{6}(x) \\
& V_{t}(r)=-10.463\left[Z(x)-\left(\frac{12}{x}+\frac{3}{x^{2}} Y^{4}(x)\right)\right]+351.77 Y^{4}(x)-1673.5 Y^{6}(x) \\
& V_{l s}(r)=650 Y^{4}(x)-5506 Y^{6}(x)
\end{aligned}
$$

where $=07 r$, andristheirter nudendstancenealinfmesusd. Forall dhe not derly mertionedstaes, heusedtheV ${ }_{6}$ (Red patertids Therfore, that rev eparsion wes not bosed on any funderertd undlying agumet on NN
interation, andwesjut toskeof apdyingthewerted peteridsinsorenuder codaldians

57Sdf LeamingExecise-I

Q1 WhtistheekratemwhichindundedinYdeptertid oreH potetid
Q2 Whatisthephysicd sigificanceof Comtonvardengh?
Q3 Witedownthedfferetrangeof nudeenrudeeninteradion
Q4 WitedbuntheexressionforH patetid.
Q5 Whatisthefaliureof H andYdeptetid.

580reBosonExdengePdartial

 dapicedinfigure

Theceatrd pat of thenideen-rudempotertid consiss of ashatrangerepulsive pat, anintermaterangedtrative andalang rangepat Innrodan redtivisic puterids boeed an fiedd theary this interation is described by the exdange of vaias nesons which at a exdange bosans The most importat aethenonstrage means π, ρ, ω and σ. The todd NN-interation is given by the sperposition of the cartribtions from the varias mesens These cartribtions aredraxateized by thecapling strenghg, themeson massm madthedarater of thenesonutichd\&eminestheLoretz stucture of themesonnideenvetex Γ_{i} (scdar, vetar, ...).

Capdingstrengh g withsign atrative+
readsive-
Mesonniss midteminestherange
Mesonnudeenvetex Γ_{i} dłerminestheLaretzstucture
First of all wegiveashat overven of thedfferetmesonsandthecoresponding capdingropaties

- π-ntan $\mathrm{m}_{\pi}=138 \mathrm{MEV}$, spanS=0, isoganl=1
psedbscelar caping wherethetersor forceis themost imparat pat, lang rangeinteation
$L_{\pi N N}=\frac{f}{m_{\pi}} \bar{\psi}(x) i \gamma_{5} \vec{\tau}(x) \bar{u}(x)$
- σ-meson $m \approx 55 \mathrm{MeV}, \mathrm{S}=0,1=0$
scdarcaping tradive intemedzerangeinteradion
$L_{\sigma N N}=g_{\sigma} \bar{\psi} \mu(x) \phi(x)$
- ω-mesor m $\mathrm{m}_{\mathrm{h}}=783 \mathrm{MEV}, \mathrm{S}=\mathrm{I}, \mathrm{I}=0$
vedtorcaping repulive, shatrangeinteation

$$
L_{\omega N N}=-g_{o} \bar{\psi} \gamma_{\mu} \mu(x) \omega^{\mu}(x)
$$

- ρ-mesorm $\mathrm{m}_{\beta}=70 \mathrm{MeV}, \mathrm{S}=1, \mathrm{I}=1$
vetor andtersor capling shat rangeirteration

$$
L_{\rho N N}=-g_{\rho} \bar{\psi}(x) \gamma_{\mu} \vec{\tau} \psi(x) \rho^{\mu}(x)+\frac{g_{\rho}{ }^{T}}{2 M} \bar{\psi}(x) \sigma_{\mu \nu} \vec{\tau} \psi(x) \partial^{\nu} \rho^{\mu}(x)
$$

Mesorswithisospinl $=1$ areisovedor patides and coude to theisogon of the nudeen i.e they dstingish beween protors and natrons, nesors I $=0$ are issocelar andob not dstingish The ρ-meanhes a vetor capling and atensor copding Thepionnudeencaplingstrenghf isdłemminedby somefunderetd QOD redions (Effective dird QOD Lagangian). For al ther meens the caplingtrenghsg arefixedfromenpiricd nudeen-nudeonscdteingdta ModenBoson-Exdangeptetidsdescribe NN -scatteing dta with high
preision Such patertids were dadqued in the mid eigties Typicd eandes
 theNjimeeg (Netheland) reseach graps In additionto the mesons dsassed abovesurh petetids cortaninaddtion anisoscdar pearbscdar meson, thesocalled η-meson andanisovetor scedar men, theso-cdled δ-meson Thusthey
 qak cortert) with mases badow1GeV. Thenodd praneets, i.e the meson nudeen copdingstrengths (and addtiond praneters for formfatas) arefitted to NN-scetteing dta (dbat 3000 dta pairts for proton-proten and protenretronscatteing).

Figre2 Schanticrepresatctionof theonebosonednangedagam Spinstutureof ${ }^{\text {mebosonednangepdertials }}$
Aneyparsionin1/Mtoleadngards yiddsthenon-redivisicformof thescdar andveetorpatetids
1 Scdarpdetid, genededbytheo-meson

$$
V_{s}(r)=-\frac{g_{s}^{2}}{4 \pi} \frac{-e^{-m, r}}{r}+\frac{g_{s}^{2}}{4 \pi} \frac{1}{2 M^{2} r^{2}} \frac{d}{d r}\left(\frac{e^{-m, r}}{r}\right) L . S
$$

whereS $=1 / 2\left(\sigma_{1}+\sigma_{2}\right)$ isthetad spinandL thetdd anglar nomettumof thetro-nudeonsytem
2 Vedorptetid, represatedby ω-and ρ-mescons

$$
\begin{aligned}
V_{V}(r)=-\frac{g_{V}^{2}}{4 \pi} \frac{e^{-m_{v} r}}{r} & +\frac{g_{v}^{2}}{4 \pi}\left(3+4 \frac{g_{T}}{g_{v}}\right) \frac{1}{2 M^{2} r^{2}} \frac{d}{d r}\left(3+4 \frac{g_{T}}{g_{v}}\right) \text { L.S } \\
& +\frac{g_{v}^{2}}{4 \pi}\left(1+\frac{g_{T}}{g_{v}}\right)^{2} \frac{m_{v}^{2}}{4 \pi}\left(\sigma_{1} \times \nabla\right)\left(\sigma_{2} \times \nabla\right) \frac{e^{-m_{v} r}}{r}
\end{aligned}
$$

Morertumqpacerquesentaionof theOBE patalials

Wewartnowfirst to ediutetheFeymandagamwhich corresponds to acoe nean exchange For the nomert wedsregard the isospin In the two-nudean certer-f-mass sytem the inconing nudeans have mometa $\pm q$ the atgoing nudershavemurnta $\pm q^{\prime}$. Thenudeensareonshdl andtherforewehave

$$
\begin{aligned}
& E=\sqrt{M^{2}+q^{2}} \\
& E^{\prime}=\sqrt{M^{2}+q^{\prime 2}}
\end{aligned}
$$

Siceweconidraly labicscatteing enegy-meretumconsevaionimplies

$$
\begin{aligned}
& \left|q^{\prime}\right|=|q| \\
& E=E^{\prime}
\end{aligned}
$$

ApdyingtheFermannlesfor eddutingthemesonexchanceptetid $\mathrm{V}_{\alpha}(\mathrm{qq})$ wheretheindex α stanosforthevariastypes of posididemesorsextanged $\alpha=\pi, \sigma, \rho, \cdots$, , onefinds

$$
V_{\alpha}=g_{1} u_{1}\left(q^{\prime}\right) \Gamma_{1} u_{1}(q) D_{\alpha}\left(q-q^{\prime}\right) g_{2} u_{2}\left(q^{\prime}\right) \Gamma_{2} u_{2}(q)
$$

D_{u} represents the reson propegita. The neeson propegtor is dfferet for (psemb)-scedarandvedor patidesandreads

$$
D_{\alpha}=\frac{P_{\alpha}}{\left(q-q^{\prime}\right)^{2}-m_{\alpha}^{2}}
$$

whereP ${ }_{\alpha}$ depandsonthetypeof interchangedmeson:

$$
P_{\alpha}=\left\{\begin{array}{cc}
1 & \text { (pseudo) scalar meson: } \sigma, \pi \\
-g^{\mu \nu} & \text { vector meson: } \omega, \rho
\end{array}\right.
$$

The Γ_{12} matrices arethesocalled vater-fundions or mesonndean caplings whicharegivenby
Patide: σ - meson Pion ω-meson
$\Gamma \quad: \quad 1 \quad \gamma_{5} \quad \gamma^{\mu}$.

Wenowgivea besic eampeto illustrte ar findngs Considg theceretht a scar meson (σ) is excanged This is the simdet examde, but the other
amplitudes canbeerdutedinan andogas wey. Wedsass datic, i.e an-shdl scatteringwith

$$
\mathrm{E}=\mathrm{E}
$$

Inthiscose V_{σ} becores

$$
V_{\sigma}(q)=g_{\sigma}^{2} \frac{u_{1}\left(q^{\prime}\right) u_{1}(q) u_{2}\left(-q^{\prime}\right) u_{2}(-q)}{-\left(q^{\prime}-q\right)^{2}-m_{\sigma}^{2}}
$$

TocompteV ${ }_{\sigma}$, weuse

$$
\begin{aligned}
\mathrm{u}_{1}\left(\mathrm{q}^{\prime}\right) \mathrm{u}_{1}(\mathrm{q}) & =\mathrm{u}_{1}^{\dagger}\left(\mathrm{q}^{\prime}\right) \gamma^{0} \mathrm{u}_{1}(\mathrm{q}) \\
& =\sqrt{\frac{\left(E^{\prime}+M\right)(E+M)}{4 E E^{\prime}}}\left(1, \frac{-\sigma \cdot q^{\prime}}{E^{\prime}+M}\right)\binom{1}{\frac{-\sigma \cdot q^{\prime}}{E^{\prime}+M}} \\
& =\frac{E+M}{2 E}\left(1-\frac{q^{\prime} \cdot q+i \sigma_{1} \cdot\left(q^{\prime} \times q\right)}{(E+M)^{2}}\right)
\end{aligned}
$$

andweinsatfdlowingredion

$$
(\sigma \cdot a)(\sigma \cdot b)=a \cdot b+i \quad \sigma \cdot(a \not a b) .
$$

Nowneintrodrethenamenturanfer

$$
k \equiv q^{\prime}-q
$$

andthecenter-of-nessmaretum

$$
P=1 /\left(q+q^{\prime}\right)
$$

Thevector proditreabinterms of cmmometumandmamtumbranfer

$$
n=q \times q \equiv P \times * .
$$

Futhemrere inthenorddivisiclimitwith $\mathrm{E} \cong \mathrm{M}$, aneddans

$$
E=\sqrt{M^{2}+q^{2}}=M\left(1+\frac{q^{2}}{2 M^{2}}+\ldots\right)
$$

Thetod matrix derert for thescdar σ exdangecontans two vetices of type $\overline{\mathrm{U}} \mathrm{u}$ and the meson propagator. The latter is taken in its static form $(-1) /\left(\mathrm{k}^{2}+\mathrm{n}^{2}\right)$. Altogether, thisyiddsinthenan-redivisticlimit, thescedar potetial of form

$$
V_{\sigma}(k)=-\frac{g_{\sigma}^{2}}{k^{2}+m_{\sigma}^{2}}\left[1+\frac{\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)(-i) k \times P}{2 M^{2}}\right]
$$

WerecogizeandtradiveY Yavap putatid add thespinarat putetid whichis the seecond tem in brakks It conesponst to O_{4} of the condee qeador epariongivenbdow.
The conder OBE patetids a eg the Bam patetids can be redred to a noreddivisicicreperertdionby eppardngthefull fiddthereticd OBE Ferman ampitudssirtoastof spinandisogejnqperdas

$$
V=\sum_{i}\left[V_{i}+V_{i}^{\prime} \tau_{1} \cdot \tau_{2}\right] O_{i}
$$

Theqpardars datanedinthisloweregy eparsion, wamingidaticd patide scatteinganddargeindeperdace, aedafinedas

$$
\begin{aligned}
& O_{1}=1 \\
& O_{2}=\sigma_{1} \cdot \sigma_{2} \\
& O_{3}=\left(\sigma_{1} \cdot k\right)\left(\sigma_{2} \cdot k\right) \\
& O_{4}=\frac{i}{2}\left(\sigma_{1}+\sigma_{2}\right) \cdot n \\
& O_{5}=\left(\sigma_{1} \cdot n\right)\left(\sigma_{2} \cdot n\right)
\end{aligned}
$$

Where

$$
\begin{aligned}
& k=q-q, \\
& n=q \times q \equiv P \times k
\end{aligned}
$$

$\operatorname{adP}=1 / 2(q+q)$ istheareagenomettum
Thepotertid forms V_{i} aethenfundions of k, P, nand the enegy. In arder to peformanon-redivistic redution usdly theenegy E is eypandedink ${ }^{2}$ adP P^{2}

$$
\left.E(q)=k^{2} / 4+P^{2}+M^{2}\right)^{1 / 2} \simeq M+K^{2} / 8 M+P^{2} / 2 M
$$

andtemstoleadingade ink $k^{2} / M^{2} \operatorname{and}^{2} / M^{2}$ aretkenintoaccart Themean propagdars $D_{\alpha}\left(k^{2}\right)$ are approximated by their static form $(-1) /\left(\mathrm{k}^{2} \mathrm{Hf}^{2}\right)$.

$$
\begin{aligned}
& O_{1}=1 \\
& O_{2}=\sigma_{1} \cdot \sigma_{2} \\
& O_{3}=S_{12}=3\left(\sigma_{1} \cdot r\right)\left(\sigma_{2} \cdot r\right)-\sigma_{1} \cdot \sigma_{2} \\
& O_{4}=L \cdot S \\
& O_{5}=Q_{12}=\frac{1}{2}\left[\left(\sigma_{1} \cdot L\right)\left(\sigma_{2} \cdot L\right)+\left(\sigma_{2} \cdot L\right)\left(\sigma_{1} \cdot L\right)\right]
\end{aligned}
$$

Thee queadas ae the well known certra, spinsoin tersar, sginarat ad quadric sainatit quados, respetives. The tad angla nomentim is dendedby $L=r \times$ Pardtheted sing $=1 / 2\left(\sigma_{1}+\sigma_{2}\right)$.

59Sdf LemmingExecis-II

Q1 Davtheschendicdagamof nidennuleen(\mathbf{N}) irtaation
Q2 Give a sat wevien of dfferet neans and coneponding copling propaties
Q3 Exdanithenemertumppecerepreattionof theOBE pdetid.

510SUmay

In this dader we dsassed vaias types of nuder petetids This chader stated with theirtrod trion of nuder potetids and fallowed by H , Redand OBE.

511Gosay

Nuder farce Thefarcethathdos thenides togither. Oiginally thanttobe theexchange of pians, essuggested by Y Mana Pions arenowknownto not be eferetay thenselves, atquakswicharehddtogether bygurns Bosar A patidehaingspinthtisanirtegarmoltipeof \hbar.
Mesor A patide(surhathepian) madeof quak-atiquak pairs
Interation:IIfluenceof aphysicd boolyonandher boolyorthecaplingbeween a fied and its sarce Interations can be of the noet dverse types eg gavitdiond inteation dedromagic inteation weak interation strang intration

52AManestoSaf LemmingExacise

AmevestoSaf LemingExacisel

AnEl: OPEP

Ans2 Comptonwardenghiskindof thequatumrecharicd atoff - thelengh scdebdowntichquertummedericscannotbesimplyigncedinfavor of dasicd aproxinations
Ans3 Rangeof thenudeonnudeoninterationisdvided to thethreepats the shat-range $(\mathrm{r} \leq 1 \mathrm{fm}$), theintemedterage ($1 \mathrm{fr} x \mathrm{r} \leq 2 \mathrm{Zm}$), andthelang range $(r \geq 2 r r)$.
Ans4: Setion54
Ans5: Failure of H and Yde hactocre pdetids were that they cald not reprodreremondderestlsuhen apdyingtonany-bodycalalions

AnsestoSif LemmingExacisell

Ans1,23 SeeSedion57

513Exeris

Q1 Witedowntheepressionfor OPPP.
Q2 Witeastatndeon

- OBEP
- HenadajduntanPdetial
- Rédptetia

ReferencesandSuggeted Remding:

1 AdWancesinNudear PhyicsBy Midd Baragr, ErichVogt, 2012
2 Concepts of Nuder PhysicsBy Berad LeenadConen 1971
3 The Nudeenrudeen Inteation and the Nuder Many-body Prodemby GerddE BrownardT.T.S. Kı02010

UNT-E Intradion of Radidionand ChergedParidevithMelts

Stutureof theUnit

60 Ojectives
61 Introdution
62 Lavof dbsondionandattendioncofficiet
63 Inteadionprocesses
64 Tagitandproediledapendanceof dl threprocesses
65 Sefflemningexerise I
66 Interations of dargedpatideswithnatter
67 Enegyloss of dargedpatidesdetoiarizaion
68 Brenstrdlung
69 Sefflemningexerisell
610 Summay
611 Glossay
612 Arsvestosdflemingexerises
613 Exerise
RefermesandSuggestedReedings

G.OObective

 photons, darged patides andmatrons caninterat with matter andtheconceqts, such x risss attenution coefficiet, staping poner and rage, that have been inveted in order to ad tht undastanding Theseidem arethebasisfor thelater study of the ffeets of x rass, gammaraddion and dhe ianizing raditions on livingthings

61Introdutior

Gamarays, x-rays, newns, and neuninos al heve mo ne cage-they are dectrostdically ratrd. Incrder to daect thentheymstinteratwithnatter and prodrean enegetic darged patide Inthecose of gammand x-rass, a photodedronis prodreed Inthecaseof natrons, aproanisgivenkindicenegy ina billiadball likecdlision
Knowledge of gammaray interations is impotat to the Non Dentudive Assaist(NDA) in crder to undastand gemmaray dteetion and atention A gemmaray mot interat with adsedto incrar tobe "sen" Althay themajor istopes of uraiumand dutoriumenit gammaras t fixed enegies and rdes thegenmaray intersity nerred atide a sample is duass dten ted becare of gammarray interations with the sample This thendion mot be crefully considsed when uing gammaray NDA instrumts This chader dsasses the exponetid ttendion of gammarassinbilk mateids and describes themajor gemmaray interations, gammray stiddng filteing and collindion The treatretgivenhereis neessaily ybif.

62Lanof Absoptionand/AtherutionCofficien

Gammaraswerefirstidatifiedin1900by Becquad andVilladesacomponet of theraddionfromuraiumandradumthat hedmuchhiger pencradility then dpha and beta patides In 1909, Soblly and Russel fand that gammaray thenution followed an exponetid law and that the raio of the thention cofficiet to the darity of the attenuting mateid wes nerly constat for al nteids
Lanof GammaRayAtheuction

$1=I_{0} e^{-\mu_{l} L}$
Figrel

Figrel illustrdes a simde ttention expeinett When ganmar radaion of intersity I_{0} is indidat on an dosorber of thidness L, theererging interity (I) trasenilted by thedbsarber isgivenbytheeppretid expession

$$
I=I_{0} e^{-\mu_{l} L}
$$

where μ, is the attention cofficiet (expressed in m ${ }^{1}$). Therdio $\mathrm{I} \Lambda_{0}$ iscalled thegemmaraytrasmission

Figure2
Figreillustates exponetid attention for threedfferet gammaray enegies and shons that thetransmission incees with inceesing gammray enegy and dereeses with inreeeing dbsaber thidness Meerrentitswithdffere tsarces and dbsorbess show thet theattenution cofficiet μ, depends onthegammaray eregy and the atomic number (Z) anddanity (ρ) of theabsarber. Thereeipocd of theatterntion cofficiet $1 / \mu$, hesurits of lengh and is oftencelled themen freepth Themeenfreepth is the veregedstareaganmaray trads in the dbsaber before interating it is aso the dssarber thidness that prodices a transissionofl/e a0037.

MesAthentionCofficiet

Theliner atenution cofficiet is thesimplest absondion cofficiet to mere eperinutdly, bt it is not usadly tdal ted becase of its dependarce on the dansity of the dbsarbing mateid. For eample, t a given enegy, the linerr tterutioncoefficiets of vate, ice, andstermareal differt, eventhougthe samenłerid isindved
Garmar ras interat primaily with atomic elecrons, therefre, the atention cofficietmet bepropationa to thedectrondasityP, whichis propationd to thebulk darity of theabsording mateid. Honever, for agivennateid therdio of the eledrondensity to the idk danity is a constat, Z/A, independet of bulk danity. TherdioZ/A is neely consat for all except theherviet denerts and hydogen

$$
\mathrm{P}=\mathrm{Z} \rho / \mathrm{A}
$$

where
$\mathrm{P}=$ dedrondanity
$\mathrm{Z}=$ =tanicnunher
$\rho=$ massdanity
$A=$ Aomicmass
Therdio of theliner dtendion cofficiet to the danity (μ / ρ) is called the nass attention coffidiet μ and hes the dmenions of area per unit nass $\left(\mathrm{m}^{2} / \mathrm{g}\right)$). Theurits of thiscofficiet hirt thatonemaythirkof ita the effedive orosssectiond areaf dedrons per unit nass of absorker. Thenass aten dion coffidiet canbewittenintems of areationcoosssetion, $\sigma\left(\mathrm{m}^{2}\right)$:

$$
\mu=\frac{N_{0} \sigma}{A}
$$

where N_{0} is Avagado's nunher (602×10^{3}) and A is the atomic weigt of the dbsaber. The cooss sedion is the probadility of a gamma ray interating witha singeatomThenmsttentioncoffidiet, canberevittenas

$$
\begin{aligned}
& I=I_{0} e^{-\mu \rho L}=I_{0} e^{-\mu x} \\
& x=\rho L
\end{aligned}
$$

Wherex \equiv mass thickness $\left(\frac{\mathrm{cm}^{2}}{\mathrm{gm}}\right)$

63IntradionProwere

 protodetic dzsapion Conten scattring and pair poodtrion and fall in the
 loses al of its eregy increitteation Theprobsdility for this pucess depends vey strongy on germmaray eregy E, and acovic number Z In Condan scattring the garmm ray loses aly pat of its eregy in creintaction The probdility for this pocess is wedty daperdatonE andZ Thegrmmaray can logeall of its eregy increpai-podutioninteration Honere, this pocess is
 MeV.

PholosatricAbsoption

A garmaray moyinteat vithaboundatmic, eetroninsurhaveythatitloses al of itseregy andeestoeistangmmay (Figre3).

Figre3
Soneof thegammay enegy is used to weccmethedectron bindngeregy, and nost of therenainde is tranfered to thefreedecton a kindic enegy. A verysmill amourt of recal enegy remainswiththedomto conservemonertum This is called phoodectric absontion becaseit is thegammaray andog of the process dscovered by Hetz in 1887 whereby phtons of viside ligt liberte dedrars frioma medd suface Phoodedric absantion is importat for gamat
raydeetionbecasetheganmaraygivesupdl itsenegy, addtheresitingpulse fallsinthefull-enegy peck
Theprobadility of photosedric dbsondiandependsonthegammaray enegy, the dedron binding enegs, and the atoric number of the atom The prodadility is geeter the rore tigtly band the electorn, therefore, K deetrons are nost affeded (over
8% of the inteations indve K dedrons), provided the gammaray eregy exceed theK-dedronlindingenegy. Theprdaddility isgiven approximady by Eqution
$\tau \propto Z^{4} / E^{3}$
which shons that theinteration is noreimportat for heay ators likeleod and uriumandlowenegygamaras:
where $=$ =phoodectric, massattenutioncofficiet
This propariondity is aly aproxinate becase the exponet of Z varies in the range 40 to 48 As the gammaray enegy derees, the probadility of phoodetric dsondion incees rapidy. Photodetric dbsondion is the predminat inteationfor lowenegy ganmaras, xras, andbrenstratlung The eregy of the photodectron E_{e} relemed by the interation is thedfference bedweenthegammaray enegy E_{l} andthedectronlindngenerg E_{b} :

$$
E_{e}=E_{\gamma}-E_{b}
$$

Innost dtedtrs, thephtodedronisstoppedquidły intheativevdureof the dtedtr, which enits asmall atpit pulsenhoseanditudeis propationd to the enegy daposited by thephtodetron Thededronkinding enegy is not lost bit appers ∞ daraderisic x rays enitted in cainidance with the phdodetron In mot caes, these x rays are dbsarbed in the dłetor in cainidance with the phodederon and the reslling atpet plseis propationd to thetad energy of the indad gama ray. For lowenegy gamma rays in vey small dedats, a suffidiet number of $K \times$ rasy can escapefromthedłedor to careescapepeds in the doser ved speetrum, the peaks apper bodow the fulleregy peak by an amortequd to theenery of thexray.

Figre4
Figreshonsthephoodetric mastlenutioncoefficiet of leed Theinteration probadility inreeses rapidy werrgy dereese, lat then becomes much sniller t a gamm ray eregy jut balow the bindng enegy of the K dectron This dscortinuity is calledtheK edbebdowthis enegy thegammaray does nd have sufficiet enegy to dsloche a K dectron Below the K edbe the interation prodality inces aganutil theeregy dopsbdowthebindngenegies of the Leledran thesedscontinities arecelledtheL, L_{11}, add $L_{I I}$ edges Thepresence of these dbsandion edges is impatat for daritometry and x-ray flurescence nemerets

ComptonScedtering

Compton scatteing is the process wherby a ganmar ray interads with a freeor weakly bound detron $\left(\mathrm{E}_{l}>\mathrm{E}_{0}\right)$ and tranfes pat of its eregy to the edetron (Figres).

Figre5
Conservaion of enegy andmonertumallonsaly a partid enegy tranfer when thededronis not bourdtigtly enaghfor theatomto dbsarb reedil enegy. This inteation indvestheater, leest tig'tly band detrons inthescotteing dom Thededronberonesafreededronwithkindicengy equl tothedfferenceof theenegy lot by thegammay ray the dectron binding enegy. Becare the dedron linding eregy is very small compered to the germarray enegy, the kineic enegy of thededronis very nerly equd to theenegy lost by thegamma ras.

$$
\mathrm{E}_{\mathrm{e}}=\mathrm{E}_{1}-\mathrm{E}^{\prime}
$$

Where $E_{e}=$ enegy of scatteredeledron
$\mathrm{E}_{\mathrm{l}}=$ =
$\mathrm{E}^{\prime}=$ enegy of scattered gammara.
Tho patides lemetheinterationsite thefreedectron and thescatteredganma ray. The dreetions of the dedron and the scedtered garmar ray deperd on the arout of enegytrafferedtothededrondringtheirteation

$$
E^{\prime}=m_{0} c^{2} /\left(1-\cos \phi+m_{0} c^{2} / E\right)
$$

Equtiongivestheenegy of thescatteredgarmmray.
Whereme ${ }^{2}$ = estenegy of detron $=511 \mathrm{kEV}$
$\phi=$ angebaveenindidatandsctteredgammarass
Thiseregy isminimufor a heedoncollisionuherethegammray is scattered 180° and the ledron noves forward in the dredion of the indadat garmaray. Forthiscretheenegy of thescatteredgarmaray isgivenby

$$
\begin{aligned}
& E^{\prime}(\min)=m_{0} c^{2} /\left(2+m_{0} c^{2} / E\right) \cong m_{0} c^{2} / 2=256 \mathrm{keV} ; \\
& E>m_{0} c^{2} / 2
\end{aligned}
$$

andtheenegy of thescattereddedronisgivenby

$$
\begin{aligned}
& E_{e}(\max)=E /\left(1+m_{0} c^{2} / 2 E\right) \cong E-m_{0} c^{2} / 2=E-256 \mathrm{keV} ; \\
& E>m_{0} c^{2} / 2
\end{aligned}
$$

Forveysmall angescattaings $(\phi \cong 0)$, theenegy of the scatteredganmaray is aly sightly less than the eregy of the indidat garmar ray and the scettered dedrontikes very littleenegy anay fromtheinteration Theenagy giventothe scdtered dectron ranges fromner zerotothemaximengivenby doweeqution

Pair Prodution

A ganmaray with anenegy of tleat 1022 MEV canceteandectron-positron par when it is under the irfluence of the strong eletronagneic fidd in the vidrityof andes(Figre).

Figre6
Inthis interation the nudes reerives a very small arout of read enegy to consevenonertum but thenudes is thewise undanged and thegammay dsappers This interation hes a thesthd of 1002 MEV berase that is the nirimemeregy reaired to crete the dedron and positron If the garmaray enegy exceeds 1022 MeV , theexcess enegy is shared bedween the ededron and positronakindicenegy. Thisinterationprocessisrddive y urimpatatfor nudern\#teid zsay beeasenostimpartatganmaraysigitures aebalow 102 MEV .
Thedectron and positron frompar prodution are radidy sowed down in the dbsaber. After losingits kindic eregy, thepositon contines with andedronin
an arihildion process which rees tho ganmaras with enegies of 0.511 MEV . Thee lone erey germar ras noy inteat futhe with the dsoating nđerid ormay eccape Inagammary dtedr, tisinteationotengivestree peaks for a tigheregy gammar ra. The lineic eregy of the detion and
 may eccapefromthedłedor or they may bath bedsorbed If bath arvilition germmays ae dsanted in thedtedar, the interation cortributes to thefulleregy peek in the nerred spectrm if oreof the aribildion geamm ras ecapes frim the detedor, the inteation cartibutes to the singeescape peak
 interation cortributes to the duddeescape perk locted 1022 MeV balow the fill-eregy peak Therddivehed'sof thetheepeds, dependontheeregy of
 when samples of inradded fius, thrium and 232 bre meared becase thee

64TagtandPrgedileDapandanceof al threPRoeme

 eregy of theinidat phten and the natureof the dracting niteid. Ingered temsthephdodedric effet ismostimporatatlowerrges Athiges eneges Compton scatteing beecomes the main eregy loss medarism At till higes phaton eragies Contan scattring is less effecive Above 11 MeV pair podrtion beecones poside and isthedrnirat effet for enagies geter thena fevMeV. Wecanspeify theereges awhidrddiveimpoterceof theffeds drangs by dfiring the eregy t wich they harethe sane vdueof thenass attentioncofficiet, μ_{m}
Le E(peC) betheeregy a which anindat phtan loses eregy at hesane rteby bothtrephotodetic (p e) add Compten(C) ffeds It vavueisgivenby the poirt a which the photosedtic and Conton a wes cooss on the gad of attenutioncofficietanderegy (Figre).
Similaly $\mathrm{E}(\mathrm{C}$, pp) is the stmerteby both Condenscatteing ard by par poodtion (pp). Thevalues of theechangever erejes dppendonthendureof thenderid; bath E(peC) ad

E(C,pp) vary with the taric number, Z, of the dosarding mateid, a shownin figre8

Atomic number of absorber

Figre8
Thetdd mass dtendioncofficiert isjust thesumof al thecartilationsfrom thedfferetprocesses

$$
\mu_{n}[t \mathrm{tc}]=\mu_{n}[p e]+\mu_{n}[C]+\mu_{n}[p p]
$$

This todd mass attencion coffidiet descoibes the dereeme of the origiral inidatradtion Thetdd lineer attenutioncofficiettisgivenby
$\mu[t d]=\mu_{r}[t d x] p$.
Comptonscetteing prodres aphtonof redreel enegy which neath dess may inteat agin Similaly the dedrans and positrons prodreed in pair prodicion nay have lage enages which they cary with themdeger into the marid. Hence the exponetid dereese law uing the mass atenution cofficiet undresimatesthetdd arout of raddionenegy pendraingmateids

65Sdf LemingExacis-I

Q1 Whichrocessof dtentioniscominatfor 10MEV phons?
Q2 Witedownthelaw of dosondion
Q3 The nass atention cofficiets for phtars in lead are shown in the accompanying dagrm Labd the arves accordng to the process they represet

Figre9
Q4 Par produtionby phans hestwo retricions Thefirst is thet theenegy of thephotors mit begeeter then 102 MEV and the second is thet pair podition can caar olly nerr a heay darged patide Exdan the remansbedindthemerestidions

66Intradiansof ChargedPartideswithMethr

Chaged patides, such a dedrons, protors and dpha patides, interat with natter dedromegnically orthraghoref thetwokind of nuder interations,
the weak interation or the strang interation The edectronagetic interation indving collisions with detrons in the absorking mateid is by fa the nost cormon Natrd patides such a the natron can interat orly through the nuder interations Thus darged patides can be dłeted dreetly by their dedranagnic interations wheres reatral patides have to suffer nuder interationswhich prodredarged patidesbefretheir presercecanbedzeted

Eletranagnticirtsations

Thedectramencicinteation consiss maily of two medarisis (a) exitdion andiarizdion of atons, and (b) brensstrdlung theevission of detronmendic radition (phtars) when a chaged patide is severdy acceleded usdly by inteation with a nudes A third kind of inteation prodring Cherekov radition, while paying an importat rde in the dłection of very tigh eregy draged patides, absarbsaly asmal amart of enegy. Thecartribution of erch nedarismdependsonthedarge, nassand speed of theinidat patide wall कtheatomic nunbers of thederertswhichrakeupthedsorkingmateid.

Inokidud interadians-scettering

Unike phons, each darged patide suffers many interations dang its path beforeitfinally conestorest, butaly asmal fradionci itsenegy islost tean intaration For example, a typicd apha patide migt make fifty thasand collisions before it tops Hencethe eregy loss can usally be considzed as a continus process Chaged parides aredfletedor scatteredteachinteration Althougthearout of scatteing tech collision may besmall, theamlaive ffect nay bequite a lage dange in the dreation of trad. Occaionally an indat patide will pass very ner anudes and thentherewill beasingelage dfletion This nuder scatteing ffed is nost pronnced for ligt ingidat patidesintaraingwith heaytagetnude.

Stppingpone:

There are selerd wass of desciling the net effeds of dargedpatide interations, therdeof enegy loss dang the patides p th $-\mathrm{CE} / \mathrm{Cx}$, being noest impatat. HereE is thepatides enagy and xis thedstacetradled This rate of eregy loss with dstance trawlled dapend on them*erid and is called the lin¥r stqpingpone, S, of themateid:

$$
S_{l}=-\frac{d E}{d x}
$$

A common urit for liner stapping pover is MeV.m. In gened the staping poner will vary arthepatide losesenegy soit dapendsonthedracged patidds enegy. The liner stopping poner of a mateid dso depenos on the darity of
 well ∞ theeregy of the patide So a morefunderetd way of describing the rate of enegy loss is to speify therteintems of thedansity thidness, rather thenthegearetricd lenghof thepath Soenegyloss rates areatengivenathe quatity calledtheneestappingponer.

$$
S_{l}=-\frac{d E}{d(\rho x)}=-\frac{1}{\rho} \frac{d E}{d x}
$$

wherep isthedanity of them*erid and ρ xisthedanity-thidness

67EnagyLossof ChargedParidescuetolaization

Thedominat meederismof enery loss alowe (nonredivistic) energes is the dedramedic interationbetventhemaing chaged patideandatons withn the dsorting mateid. Since the edetromandic interation etends ver some dstace, it is not neessay for thedraged patidetonakeadreet collisionwith an tom, it can tranefer enegy simply by pessing doæeby. Honerer, simethe interd enegy of andomisquatized aly catanrestrided values enerycan betranfered Theindadat patidecantraser enegy to thedom raisingit to a higer enegy ledd (exitdion) or it may tranfer enagh enegy to removean dedron from the tom attogether (iaristion). Althaigh this fundenertd meedarismopertes for all kinds of darged patides, there ae considadde dffereces in the verdl pattems of eregy loss and scetteing between the passage of ligt patides (dectrons and postrons), heay patides (moms, protans, aphapatides andligt nude), adheay iars (patidly or fuly iorised tons of highZdenerts). Most of theredfferences aisefromthedyranics of the collision process In gened, when a massive patide collides with a mor ligter patide thelansof enegy andmonetumconservaion predd thatalya srall fration of the nassive patides enegy can be transered to the less massive patide The actud arout of enegy tranfered will dapend an how
dosdy the patides aproach and restricions imposed by quatizdion of enegy leds Thelagestenegytranfesccarinheedoncollisions
In nonredaivisic neatorian dyrenics, when an djeet A (nass M) hits a stionay djeet B (nussm) headonthelans of dyranics preddthat theeregy lostbytheinidat patideis

$$
K_{\mathrm{B}}=4 K_{\mathrm{A}} \frac{m M}{(M+m)^{2}}
$$

where K_{A} isthelinetic enegy of theinidat patide For the \ldots M $M \gg$ mthis becones

$$
K_{\mathrm{B}}=4 K_{\mathrm{A}} \frac{m}{M}
$$

Theeregy tranfered is a vey small fraction of theindidat patides enegy. Howere when $M=m$ thenall thelindic enegy istranfered tothetarg $\left(K_{B}=\right.$ K_{A}) and theprojedilestops This resit is tridy truealy for patides tradling withspeeds morhlessthenthtof ligt (non-redivistic speed) intsimila reests aeddaineddsofor redtivisic patide speedk Whenthecdlisionis not heacton theenegy tranfer to thetarg is less and df carsetheenegy loss of theindidat patideiscorespondingylessळuel.

Enagylosbbyhaypartides

Whenanmssivepatidecdlides with andetrontheenegy lost terchcollision isredively snall. Forearmde asowalphapatidehitingandetrontranfersa maximmof aly 0.5\%of its enegy tothededron Sinceheod-oncollisionsare rae, usdly the enegy loss is mod lowe. Many collisions are needed to sigificatly redretheinidat patides enegy. Therfore we can considg the enegy losswacortinuosprocess Althoughtheenegy givento andectonnay beasmall fration of theindidat enegy, it may besuffidet to iarizetheatom and for the geded detron to trand sore dstace asay from the interation point, leaing a tral of exited and iarized tons of its ann These "knock-on' detrons can leave trads colled datia rays Mostly, howere, the knodkon dedranswill losether enegy withinavey shatdstaceof theinteration pairt
Theenegy dapendance of therde of enegy loss (staping pover) by exitdion and iorizdion of heay patides for sometypicd mateids is shown in figre

Thisgadhisadd of theenegy-loss raewafundion of thekineic enegy of the ingidatpatide

Figre 10
Notethat thestopping powe is expressed usingdanity-thidknessurits Todatan the enegy loss per path length you waild need to meltiply the eregy loss per darity-thidkess (shown on the gadh) by the darity of the matrid. As for phon
interation, it isfound that whenegressed ∞ loss rateper danity-thidness, the gachis nerly thesamefor most mateids Thereis, hovera, asmal syternic vaidion theeregy lossissidtly lowe innateidswithlager danic numbers Thedagamshonstherteof enegy lossfor theedrenecase of cabon ($Z=$ = and leod ($Z=82$). At high indidat enegies there is aso some varidion with density of thesarenterid beeaseahigher danity of domic lectrons protets themoredstat detrons frominteradions withtheingdat patide Tris reatts inlower enegyloss rdesfortignerdasities
For loweregies thestapoing poner vaies aproxinatdy as thereiprod of the patideskindic enegy. Therteof enegy loss reaches aminimm, theminimem iarizdion poirt, and thenstatsto inceesesowly withfuther inrees inkindic enegy. Mirimmiorizdionocarswhenthepatideskindic enegy is dant25 times its rest enegy, and its speed is dant 98\%of the speed of ligt in vaum Althoughtheenegy loss ratedapenos orly yonthedargeard speed of theinidat patidelat not onits mass it isconveriet to ueekineic eregy and mass rther
thanthespeed Atminimumiorizdiontheeregylossisdat0.2MeV. $\left(\mathrm{kgm}^{2}\right)^{-1}$ $\left(=3 \times 10^{12} \mathrm{~J} . \mathrm{m}^{2} . \mathrm{kg}^{1}\right.$ in S units), dereesing sigtly with incereing tomic nunber of thedssordingmateid. Thedstacethtapatide penerdes anterid beforeitlosesdl itskindicenegy iscelled therageof thet patide Enegy loss dangthepthisshowninfigrell

Figrell
Therisener theend of thepth is de to the incered enegy loss rate tow indartenegies Atvey lowspeedstheindidartpatidepids supdageefromthe mateid, beocmesnatrd andisabsabeedbythemateid.
For agivennteid therangewill bethenealy thesamefor all patides of the sarekind with the sameinitid enegy. Thenumber of patides a afundion of dstancedargthepthisshowninfigrel2

Figre33 Rangeandstragging
A small varidionintherange, calledstragying is detothestdisicd ntureof theenegy loss proess which consists of alagenumber of indvidal codlisions

Theatud number of collisions is dwas subjed to sorefludution Inspite of thet, theavercerangecanbeused tod deminetheaveageenegy of theinidat patides

Enagylosbydeatrasandpoitras

Eedrons and positrons dso lose enegy by inizdion but there are saved dfferences Thereis asigt dfferencebetweentheinteations of positrons and dectrons, realting in a sidtly tigher enegy loss for the positrons Both hoverr, havelowe loss rdes t highenegiest then heavier patidestradling t the sare speed Becare of its ligt mass an dectron is exily scettered in collisions with othe deetrons The reslling erdic path will belonge then the lineer penertion(rage) intothemateid andtherevill begeater stragging.

68Brensirdiunc

The reme lrensstrding comes from the Gemant the literd transtion is "braing raddiorl. It coars when a darged patide is accelected - that is whenever its speed or dreetion of motion danges The ffeet is nost ndicedde whentheindart patideis accelerdedstrongy by thededric fidd of anudes inthedbsarbing naterid. Anaccederteddarged patideradates detronagntic eregy (photass). Sincetheeffet ismorhstrongefor ligter patides, it ismorh noreimportat for beda patides (dectrons add positrons) thenfor protans, dpha patides, and heaier nude. At patideenagies bedowabat 1 MeV theenegy loss de to raddion is very small and can benedeted Radaion loss stats to becore impatat aly at patide enegies udl above the minimmiarizaion enegy. At redivisic enegies the raio of loss rateby raddion to loss rate by iorizdion is aproximatdy propationa to the produt of the patides kindic eregy andthedomic number of the ebsarber. Sotherdio of stapingponessis

$$
\frac{S_{[}[\mathrm{rad}]}{S_{m}[\text { coll }]}=\frac{1}{E^{\prime}} Z E
$$

where E is the patides kindic enegy, Z is the reen damic nunher of the dbsorber andE is apropariondity constat; $\mathrm{E} \approx 80 \mathrm{MeV}$.
The kindic enagy at which enegy loss by raddion equls the enegy loss by collisionsiscalledthearitice enegy, E. Approxin\#ty

$$
E_{c} \approx \frac{E^{\prime}}{Z} \approx \frac{800 \mathrm{MeV}}{Z}
$$

Andher quatity of interest is theradidianlength dafined as thedstanceover whichtheindidat patides enegy is red cedby afatore²(037) detoradtion lossesdane Sonetydicd vaus aregivenintdde

Matria	Oriticd enag $\mathrm{E}_{\mathrm{c}} / \mathrm{MEV}$	Radition lengh L/m	Dasityx radidionlangh ρ L/kgm2
Air	10	20	$3{ }^{3}$
Weta	9	03	31
Aluniou	5	008	24
Irar	Z	OOKE	1K
Lex	95	000\%	6

Brensstrdlungby ahighenegy detron realts in a higheregy photon ∞ ull कahighenegy detron Pärprodntionby tighenegy photarseevltsinahigh enegy detronandahigheregy positron Inboth ceestwohigheregy patides aeprodreed fromasingeinidat patide Futhemorethe produts of oneof these processes can be the indidat patides for the dhe. The resit can bea caccad of patides which inceese in number, whiledereering in eregy per patide, until the avergekindic enegy of the eletrons falls bodow theariticd enegy. The cascade is then dosarbed by iariztion losses Surh coscades ar shoves, canpendratlagedadts of matrid.

69Sdf LemmingExacis-II

Q1 Definelinerrstappingpone.
Q2 Drava‘Rangeandstragdingarvé.
Q3 Exdan thephecomerabetind theenegy loss of darged patides deto iorizdion
Q4 Exdainwhy "brensstrdlung' is a moreimpatat enegy loss meedenism for dectronsthenfor protonstradlingthraghnatter.

610SUmmay

In ths creper he ascussea vanous ineramon phencera a radalon and draged patide with matter. This chader stated with theintrodution of law of dbsontion and ttenution coefficiet fdlowed by phton interation with matter viaPhdodedriceffect, Comptonscotteingand pair prod ition After that wedso dsassedtheirteration of dargedpatide withnatter. At lat wedsodsa ssed theBrentrdlungeregy wichisndthinglatthe'brajingraddion.

611Gomay

Eletronagntic raditian Radtion consising f eletric andmagnic naves thetrawd thespeed of ligtt Examdes ligt, redowaes, gammaras, x-rays Gammara ray : A higly pencraing type of nuder radition simila to x raddion except thet it conesfromwithinthenudesof antom, and ingened, lesashater wavdengh
InizingradiaianRaddion thet is capade of prodring ions either dreetly or indredty.
ScettringA process that danges a patides trgiedtry. Scattering is cased by patide collisions with anns, nude and ther patides or by interations with detric or magnic fidd If thereis modangeinthetad kindic enegy of the sytem, theprocess is colled datic scattering If thetad kindic energ danges detoadnangeininterd enegy, theprocessiscdledindaticscotteing

612AmenastoSeffeamingExarise

Ansestosefleming Exacis

Ansl: Parprodution
Ans2 SeeSedion62

Ans3ASeeSetion63

AnavastoSaf LamingExacise II

Ansi: Therdeof enegy losswithdstancetrad leddapenobonthemłerid and iscaledtheliner stappingpowe, S, of themateid

$$
S_{l}=-\frac{d E}{d x}
$$

A cormmunitfor linerstapóngponerisMeV.m².
Ans2,3 SeeSetion67

Ars4 SeeSedion68

613Exacis

Q1 Definestragling
Q2 Exdanuhy eregy loss rdeby "Brensstrdlung' is geter for detrons trael lingthachleedthenfor eetranstradlingtrang wetr.
Q3 Whiteashatndean
1 Photodedriceffet
2 Pairprodution
3 Comptanffet

RefertnesandSuggeted Rexding:

1 TheAtomic Nudesby R. D. Evars, 1955
2 RaddionDetetionandMemrenertbyG F. Kndl, 1979.
3 ElemetaryNuderTherybyBetheandMarison
4 Nuder PhysicsbyD.CTayd.
5. Nuder PhysicsbyIIningKadan

6 Introdutary Nuder PhysicsbyKemethS. Krare
7. R.R. RoyandB.P. Nigam Nuder Phyics, 1979.

UNT-7 Ddeators-I

StuctureoftheUnit

7.0 Ojedives

7.1 Introdation
7.2 IarizdionMethodsforMeesurenetof Raddion
7.3 Iarizdiondanter
7.4 Propariond Cartes
7.5 Géger-MulerCanter(GMCanter)
7.6 Selflemmingexerise-।
7.7 SárillaionCanter
7.8 Sefflemingexacis-II
7.9 Arsvestosdflemningexerises
7.10 Exerise
7.11 Summay
7.12 Gossay

RefermesandSuggestedReedngs

7.0 Objedives

Aftergingthraghthislesson younaldbeddetoundastand
1 sare of the most usefu procedres for the dłetion and nereme of raddionslikeAlpra\&Beapatides
2 thewayinwtichthemenertsof radionsarecariedat.

7.1 Introduciar

Experinerts in Nuder adPatidePhyics capendy ponthedeedion d pinary radidia/patide and that of the podit patides if ayy. Thedsedion is made
possible by theirteradion of nuder raddion with tomic dectrons dreetly $o r$ indredty.
Thesaredeetor may be ueed to sudy dfferet types of radtion accarding to dfferet phencmera Thus, GM. canters regter all sats of darged patides throigh iarizdion effets Sointilltion carters detet ganma rays by phaodetric effet, Comtan scatteingo pair prodution depending anganma ray eregy.
The detetion efficiency of an insturett is of geat considation in an inestigtion Thedłetion ffidiency which is the prodadility of dłedion when thepatide cosses it, vaies widdy. Innost of the reectiorizng radaion it is nealy 1 After anerat is deected not of theinstumets losether sensitivity for cetantimecalled" "Deedtine". Inorde thet the canter ffidiency behigh it is imparat that the dead time be smalle than the meen time irterva beveen successiveerets If r is the carting rate and t_{d} is the dæd timethen for high effidercy, thecondtionit $\ll l$, motbestisfied
A pafectdsetor migtheavethefdlowingdarateistics
i. 100 pacestdłetioneffidiency
ii. high-speedcartingandtimingadility
iii. gooderegyresduion
iv. linerity of response
v. apdicdiontovitualytoal types of patidesandradaions
vi. lagedyremicrange
vii. virtally molimittothehigherteregy dzeddde
vii. reanddylagesdidanges of acceqtance
ix dscoininstionbetweentypes of patides
x dretiond infomation
x. lowbakgrand and
xi. pidurizdion of theevert

7.2IariztionMathoobfor Mearerentof Radidian

Differettypes of deetarscanbedarateizedby thentureof theinteration of
radition with matter. Gas filled dteetars qpate by uilizing the iariztion prodreed by rodidion a it pesses thragh ages Such acanter corsists of two dedrodestowtich acetaindectricd peatid is apdied Thesparebetweenthe dedrodes is filled with a ges Iavizing radition pessing thraigh the spece betweenthededrodes dssipates pat or all of its energ by geneding eletronion pairs They aedarge caries thet nove unde theinflumce of thedetric fidd Thisindressaurestanthedectrodes whichnay beneer eedarthraigh apropizedectraics, the chageprodreed by theraddion may betranformed into aplse inutich cese patides aecarted indviddly. A ndearic pilse origintes astraiet voltagednangeaross theatpet end of aradaiondłedor, marealtof dagedaposited inthedłetor by thepessageof iarizingraddion Radition deetor genering a darge plse can be represented by a dirait dagamshownintheFig

Figre4 Thededroricarait of iorizdiondranher
PdationshipbayeenHighVdtageanddergecolleded
A radoativesarceof contat intersity is placed t. afixeddstancefromages cante. Thehighvaltage(H) apdiedtothecarter may bevaied withthehdp of a poterioneter. An apropridemear nedargecdlected per unit tire If theHV apdiedtothecarter issteedly inceesed thedargecdlectedpes unitineckangesshowninFig

Figre2 Charaderisics of agesfilleddłedtor
Reginl : Whenthe vitoge is very low, thedetric fidd in the canter is not strong electrons and ians nove with redtively sow speed, and their recontinntion rateisconsidadde AsV inceese, thefidd beconesstrongr, the caries novefater, andtheir reconthindion ratedereeses uptothepoirtwhereit becones zero. Then the ettire darge created by the iarizing roddion is being colleted Thtgivesthesturdionarretknownælarizdionregonarest
Pegionll : Therecontrintionrteiszeroandmonewdargeisprodreed Thisis indctedælonsturdioninFig2
Region III : The detric fidd is so strang in a cetan fration of the carter volume, thet the edecrons from the piniry iarizdion acqure enagh enegy betweencdlisionstoprodreaddtiond iarizdions Thegesmlitipicdionfatar: Ksi.e, therdio of thetadd iariztionprodreed dvided by theprinary ioriztion is, for agivenvdtage is independat of thepinary iorizdion Theatpat of the canter is propationd to the pinary iarizaion Theplseheigt of theatpat is propationd to the energy dssipted inside the cante. Therfore patide idatifictionandenegy meseremtareposide
PegionIV: Begondthepropationd region, theedectricfied linsidthecanter is so strang thet a singe eetronion par geneted in the daniber is enagh to
initide an adande of dectronion pairs This avdande will prodrea astrong sign withshapeand heigt independat of thepiniry iorizdion and thetypeof patide asignd thatdeqendsaly onthedetrorics of thecarter. Thisregionis calledtheGegge-Mule reejon
Differet types of ges filled canters toketheir nerefromthe vdtageregion in whichtheyperate

Rejir	Nareof thecante
I	Inrizdiondanher
III	Propationd carte
IV	GMcante

73larizdianChenber

Operde in the iorizdion region No darge maltiplicdion tokes pare Otat signd is propationd to the patide enegy dssipted in the dझedtr. Sincethe signd is not lage, aly strandy iarizing patidessurh a dpha, protar, fission fragreits andather heryionsaredzeted

7.4Prqpatianal Canters

Opate in region III. Chage mitiplicdion tokes pare Otpat signd is sill propationd to the enegy daposited in the canters Mesurenert of patide eregy isposide Idatificaionof thetypeof patideispossilde

75Geigr-Muller Canter (GMCanter)

opeate in regon IV. It can we used tor any knd of radion The sgad is independet of thepatide eregy and it type It provideinfarmaionaly dbat then mber of patides Ithesredtivelylangdedtime(200to $300 \mu \mathrm{~s}$).
Gensd Piniples A widay used raddion deetor is aGeiger Mulle dłedtor tube Cross setiond viev of a typicd GM tubeis shownin Fig3 A GM tube consiss of avey finecertrd anodeandashal, whichseves athecathode The rejonsurna ing theanoceisfilled with ages, usdly a rgonor neen speedlly sflected for the eme with which it can be iorized A high deetricd fidd is mairtannedbedweenthedetrodes

Figre3

The sensitive vdure is the pation surounding the arode responding to the speific radtion An ensgaic chaged patide travering througthesanitive vdurewill havehighprobadility of produingoneormoreionpairs(dedronand positiveion). Thedectronis accelertedtonarosthearoceardinashatdstance, ginssufidiet kindic eregy to prodreasecondion par in adranceencunter with ages tom These two dedrans will now prodreadditiond in pairs and thus a navdandeis cadqued in which an enomous number of detrons of the arde of 10^{10} ae evetudly collected by the anode This darge which will be collected in dat 025us, appeas aross the copatance of the tube pus the asoided draitry to podrea valtageplseof amditude ranging from0.35 to 10 vd's with adrdion of dat 109 is Therevelues deperd yponthedesign of thetube its qperding voltageand thedrarateistics of theetard drait When thevdtageaross thetubeissuchthet it isqpeding intheGM region all pises are of equd size inespedive of the number of ion pars formed in the initid iorizingerat

OpratingCreradrisicofaGMTuæ:

Whenthetubeis exposedto acontat radidioninterity and the vdtageapdied anthetubeissonly increesed avdtagewill bereachedt which GM theebegin toprodrepulses aindcaed bytherecordr. Thisisthestatingptetid. Asthe valtogeis inceesed vey radidinceemeincartingrateis doserved Thisvdtage is known a thettreshdd Bejond the threshdd futher incere in the valtoge over cetain rangevill prodre litte effect on the carting rde This region is known a theplaed It shald havea Sqpe of less then 10% per 100 vdts for
 qperting voltage shaid be solected redtively dose to the threshdd valtoge (within the lowe 25\% of thepdeal) to pessuvethelife of thetube Also the qperting valtageshald besseded tt a poirtwheretheplteaushons mirimom sloe If the valtage is inceesed beynd the plteau region the carting rate begins to inceeseradidy and theregion of continuasdschageis reached The shapeof thehigh voltoge(HV) daeau is a shownintheFig and eydainedas fdlons

Figre4
For very low vdtage $\left(\mathrm{V}<\mathrm{V}_{\mathrm{s}}\right)$ the carting rate is zeo. The scder des not receve any sign beaseall the pless aebdow the dscrimindor levd. The cartingrtekeepsinceesingwithhighvoltage(H) , simenreandmoreplises aeprod reed with aheigt dowethedscrimintor lead. Thiscortinues up to the poirt when $\mathrm{V}=\mathrm{V}_{1}$. Frr $\mathrm{V}>\mathrm{V}_{1}$, all the plses aerow dove the dscrimindar levd. Sinceall theplses arecurted eachplsebeingreecrded कoneregardess of its heigt, the carting rate does not dange This continues up to $\mathrm{V}=\mathrm{V}_{2}$. Bejond that point, thecarting ratewill stat incering agin beeasetheHV is so highthat sprias \& dad epless nay begeneded Canter shald not be qpatedlogondV $=V_{2}$

Quancingof thedischarge

When the edecrons are acededed in the strang fied suranding the wirethey prodre inaddionto anevavdancheof eetrons, considgaddeerdtdion of the tans and moleales of the ges These exited tans and moleales prodree photorswhenthey deexdte Thephtansintums, prodrephotodectronsincther
pats of thecourter. Thustheadanche, wich wescigindly locted doæeto the wire, spreads qidłly in roet of the canter volure Dring dl this time, the detrons ae cortinuady collected by the anode wire, while the mon sover noving positiveions aestill inthecanter andforma positivesheth aroudthe anode When thedectrans havebeen collected, this positivesheth, ating wan dedrostdic screen redrees thefied to surh anetert thet thedschageshald stop Hoverr, this is not the cæe becasethepositiveians eet detrons when they firdly strikethecathod, andsinceby that itrethefidd hes been restoredto itscrignal value, anevavdandestats and theprocessjut described is repeted Clealy somenersaeneeded by wichthedscrages is pananerty stoppedr quached Withat qaeding a GM tube wald undarg repeitive dscharging Therearetwogened methoob of quadingthedscharge
Extamel Quanding: Inetern quanding theqperding valtageof thecarter is clereesed, atter thestat of thedschargeuntil theiors reachthecthod, to a vdueforwhichthegesmltipicalionfator is nedigide Thedereeseisadieved by a propely dosen RC arait TheresitanceR (10 dns or nore) is so high tht the voltage drp aross it de to the arret gererted by the dschage (i_{i}) redues theviltoge of thecanter bdow thethreshdd neededfor thed schargeto stat(Vo- i_{d} R). Thetimecontart RC ismarhlonger then thetimeneededfor the colletion of theions As a realt the carter is inpperdive for an unaccapddy langperiod of time In dher wards, its deedtimeistoolang
Intend quanding: Theintend quadring methodisaccompriedby adingto the main ges of the canter a small amout of a pdytaric argaric ges or a halogen ges These have reldively lage moleales, which tend to dosarb the flurescert enissions of the nddeges dans They dso have snille exatdion pateridsthenthelatte, sothercke exition photarshaveinsfficiertenagy to iorize the gss and propegte the dscharge further. For stisfatory photon quacking the absantion speetrum of the quating aget shald match the evission spectum of the rode ges Mathene and thand bath stisfy these requiremets
GM cartes uing an orgaric ges a quading agat have a finite lifetime becaseof thedssoition of theorgric moleales Usilly theGM canterslat for 10° to 10° cants Thelifeine of aGM deetor increes considgddy if a
halogenges is used athequancingaget Thehalogen moleules dsodssoite dringthequading process bit thereis a certan degree of degenertion of the molealeswhich geetly etend the uefu lifeimeof thecante.
SersitityofaGMtibe:
GM tubes aend equally sensitiveto α, β and γ raddions Oncetheraddion reachesthesersitivevdureof thecanter, theefficiency of dłetionis 100% for α, nealy 100% for β andanly $1 \alpha 2 \%$ for γ raddion

DedTIImeandResoveyTimeof GMTUbes:

It is found an dose doservaion of osilloscope thet a sind veticd plse can sonetimes besen dosdy following one of the nomal heigt for a patiala apdied voltage Thesepleseccar whencreiorizingevertfdlonsandher tan intevd too shat for thecanter to havecondeddy reeovered asituiondeto thefat that the positiveion sheath hes not reached thecathodewhen the secand iorizing evert coars The lange the irterval beveen the iorizing everts the lager the seeand plse will be util it reaches its naximm Thetime inteval betweenthefirst full plseard the deedddility of anther full plsedapenos on thedramateistics of thecanter tubeand isknown a redving time Thistime intevd ismackupof two pats Thefirst pat is thedeedtimeandisthetimeater a cart dring whichno plsecan beregitered \& dll, even if an iorizing evert cours, beeasethededric fiddhescdlapsed andhes not ye beenreestddished Thesecond pat istherecovey time atimeof inceesingsensitivit, dringwtich an iorizing evet will give a plse of amditude less then that which is dranteistic of the patiala tube t the apdied vdtage Dring this time the dedric fidd is gowing to its maximemvalue At the end of therecovey timea full plseis recorded Thisisill ustrdedingivenFighbalow.

Figre5

Considr tho radoativesarces of strengh S_{1} andS S_{2}. Len n_{1}, n_{2} betherespedive cart ries recorded and n_{12} bethe court rae recorded when sarces are takn togethe. Le τ betheresdving time $\mathrm{L} \pm \mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{12} bethecorected cart rdes respedively. Thenwehave

$$
N_{1}=\frac{n_{1}}{1-n_{1} \tau} ; N_{2}=\frac{n_{2}}{1-n_{2} \tau} ; \quad N_{12}=\frac{n_{12}}{1-n_{12} \tau}
$$

nehave

$$
\mathrm{N}_{1}+\mathrm{N}_{2}=\mathrm{N}_{12}
$$

sbosituingvalueof $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{2} indaneequition

$$
\frac{n_{1}}{1-n_{1} \tau}+\frac{n_{2}}{1-n_{2} \tau}=\frac{n_{12}}{1-n_{12} \tau}
$$

solvingthedoweequianandneededingthehiger pones of τ wegt

$$
\tau=\frac{n_{1}+n_{2}-n_{12}}{2 n_{1} n_{2}}
$$

7.: Saf LemingExacis-I

Q1 Whichtypeof patidestanarobGMcanterismossanitive?
Q2 WhtisGgrregon.
Q3 Whatisdzdtine?
Q4 Witedountheprinipeof GM carter.

7.7SártillationCartr

Constudiar Saintilldion carter consists of aphtomltiplier tubeto which is fixedasintillata. A highvdtage(KV) is apdied bewneenthephotocthodeard the anode Thedynodes incorported in the tubeprodree edecron maltiplicdion and by the use of a valtage dvider provide progessively lager vdtage between cathode and anode Sóritllators evist in severd forms aysds (argeric or inargaic), liquid, datic sdidsandgeses Thesintilldionpheromenondepends on the fat that sitdde "llars" give off plses of ligt when travesed by a dargedpatide

Figrea Blookdagramo asárilladioncante.
This light is dreeted onto a photomltiplier cathodewhereit geets dedrans by phodedric effet Theredectrons aremltipliedinthedynodestuxtureof the tube In erch stage the nunher of secondery detrons is meltiplied which are findly colleted it the anode and recorded ∞ a pise by suitdde oiraits The phosphor is inqdiced cartat withthetubeandis pretededfrometerna ligt A refletor surrandng thephosdor enamees ligt fadling onthephotocathookfor hige efficiency.
Madnrism A darged patide passing thragh the phoschor loses enegy by iarizdion exitdion and dssoidion of moleales doæe to its path, utinatdy ligtisenitted Thesdidphosphorscanbebasically dvidedinto
i. agaric
ii. incrgaicaystds

Threaresered imporatd dfferences betweenthedrandeisics of agric and incrgaric sointillatas, in regad to lifeines, lineaity of enegy response temperture effets, flưrescence and convesion efficency and $v_{\text {nax }}$ t which maximmnumber of photns aeeenitted Thebaic dffernceinthemeehaism fortheligt produtionisthatligt enitted by aninargricaytd ispinarily de totherystd stucture, whereadrgrics batancese efibitluninescerceby virue of molealarpropties

DeairddeCheradarisicsof LunineseatMitrids

i. Thephoschor mothavehigh efficiency for convesion of indidatengy of
 incrogric phosdormateid asmill percetageimprity isessetid whilefor argaric phosphas, nateid motbepre
ii. Thespetnumof theeenitted ligtmit dogdy matchthespedrd responseof thecathodeof thephtornlipier used
iii. The luninescert mateid mot be trasparet to their own luninescence radtion
iv. The mateid ueed mit be a lageqdically honmeneus nass either a a singe oystd withat dfeets ar in solution, solid α liqid, noulded α madinedtoatyconvietshpe
v. The proschor mat have a high staping poner for the raddion to be deteted
vi. Theriseanddecay of luminescencedringandafterexitdionshaldocarin ashattime
vii. Thephosdor mut bestddeagaint vaumcandtions andunder padanged irradion
viii. Therefradiveindax μ of theaytd should not betoohigh, athewiseligt will notbeddetocoreateailydetointern reflections

OrgricSárillators

- Mainmednrismisbedievedtobetht of collisiorswtichareresponidefor theenegy tranfer fromthemdeales, either by exdtdiontrafer or by a dpolerescranceirteration
- Theenegy response isnotqiteliner.
- Ligtatpatisvey morndependat uponthentureof thepatide
- Liffirreisof thearde of 10^{9} to $10^{8} \mathrm{sec}$
- Thepharcmenonof phosdncescerceisdbest
- Thefluresceat convesion efficiency is genedly smalle then theinargaric phoschos, convasionefficiency.

Exampes attracene $\left(\lambda_{\max }=400 \mathrm{~A}\right)$, dpheylaceyline, tephenil nadthalene andsilliber
Orgric phosdarareetersivy y uselfor fatneatrondzetion Theirterations of fat neatrons with hydogen prodrefatt reedil protars which canbedtected withhigheffidency inlageorytds

InargricSairtillators

- In incrogric cyydds, for examde akdi halides ndedy Na with thellium imprity, darged patidesmaraisededransintothecondrian banosorinto exitdion leads The eectron and the hde let move radidy thraghat the aystd anexatonutil cadtred by theimperfetion, giving up theeregy in theformof vibrdiond trasfer or until cadured by an imprity. Theimprity ges exitedandats a asintillator. Intheceeof hadides, thalliumisadkedas an impurity to the edeat of 0.1 to 0.2 pacest. These cystds are higly trasparettotheirownradtion
- Theligt atpat frominorgaric coysdal likeNa is vey nealy propationd to enegylossdowntodat 1MeV for protarsandabat15MeV for α 's.
- Thelifetineis of theardr of $10^{6} \mathrm{sec}$
- Thephenoreron of phoscharecancentichisddayedenission of phtanscan incetaincees casegenationof seconday pulseswhichareindstingisndde fromtheprin¥y puses Assodumioddeisdsiquecert, it mot beproteted frommisture neathdess itisthenost widdy usedinagraic phoschr. Lage size cystds up to seerd indes in daneter and lengh are availdde It hes a
 gamma rays a the dbsantion cooss setion for the three impatat processes, photodedric, Compton and par-prodution very \boldsymbol{Z}^{15}, Z and Z^{2} respetively. Of the othe inargaic phosdors, zinc sulphide is usefu for appapatide dtedion and lithiumioddefor netron dłedion, therelevat nuder reation being

$\mathrm{Ci}+\mathrm{n} \rightarrow$ H +4 Het4. 8 MEV

- Examples Nad (thalliumativated $\lambda_{\text {max }} 4100 \mathrm{~A}$), cerimiodde (coded to 77 K), zincsulphide(copper ativated) andlithiumiodde(erqpiumativated).
- Sorreof theincrgaric phogdhashaveahighvalueof therefradiveindex(~2). Diffialty isexprieceding\#tingligtatof them

PhotoMiltiplier (PM) Cheradaristics

Thederreddaraderisics of Phdomltiplier(PM) ae
1 PMmethaveaphtocathodeof lagecathodeaeawithanend-window.
2 PMmetbeof ahighefficiencyforconvatingphotrsintophtodedrans
3 PMmatprovidahighgin
4. Itmet provideagoodsiged-tondiserdia. Inthedbserceof ligt theatat froma photonlipier corsists of numas pleses (rise) of vaias sizes, pincipally detothemd enission of dectrons fromthephotocthoce This constitues the socelled dak arret which depenos on the photocathode nterid. It canberedreed by codingthecathoce
5 Exampes 56 AVP (Pilips), 6810 A, 7264 (RCA), 202 Du Mart The number of dyandes variesfrom10to 15.

LigtCdleation

A cystd sointilldion canter is nomilly paced in a metd cortaine. When hygoscopic alkdi haides ae used they areprdeted againt meistreby seding thecortaing. Good qdicd cortat is nadebetwent thesuffere of proschor and theend face of PM with a laye of der veaumgreese and by plaing a good refletor in quicd cortat with cher aytd surfaes so that ligt which waild othewiseescapewill bereumedto thephotanltiplie withimpoved efficiercy. A higly pdishedfail or adffiserfletorsuchænægesiumoxideis usedæa speala refledor. Whenthearangenett is surhthet the PM cannt beindreet cortatwiththesintillatr, Iuitepipescanbeused
EletraicEqipnet:

Figre7

Figre7isaldock dagranof thededroric eqiprettatadedtothePM. Puses fromtheanodeof thePM whichaesritl aepessedthragh apreamdifie and thento alineer amplifier andthrougha "windbw' of thedfferetid andyzer, and findly cartedbythescda. ThehighvdtagecanbevariedtositethegivenPM. Thegain of linerr ampifier canbevaied so that theirnt fedtothedfferetid andyze is withintherangeof qerdion Thedfferetid andyzer acceqs pises of heigt beweenVandV $\dagger \mathrm{V}$, where $\Delta \mathrm{V}$ is the widh of the window. The plseheigtispropational to $\mathrm{E}_{\text {. }}$.

GammaRay SpatroscqpywithNa (TL)Sírillator:

At low γ ray enegy ($<100 \mathrm{ke}$) photodetric dosantion is the doninding process As $\sigma_{\text {th }} \propto \mathcal{Z}^{5}$, nost of the absondians ccar in lodne withtheK-shal dectron (iarizdion enegy $\mathrm{E}_{\mathrm{k}}=29 \mathrm{kEV}$). The vacarcy cased by the eiedion of detron is filled in by raddive trasitions (maily X-ras) from detrons bangingto upperleads If theresultingX-raysgidbsabeedthenfull enegy $\left(\mathrm{E}_{\gamma}\right)$ is avaldde and this coresponos to phdo peek in the pise higt dstribution Honerr, in fev everts the X-rays eccape Hence eregy equl to ($\mathrm{E}_{\gamma}-\mathrm{E}_{k}$) is avaldde This reelt's in the "Iodne escape pek'. The raio of phtans under escopepeak tothoseunder phtopeakdapenosonE, cystd sizeand experinutd geometry.

Figre8

For $\mathrm{E}_{\gamma}>100 \mathrm{kEV}$, Compton scetteing aso becones sigificat. The "escape peak' is not sigificat when themen dobandionlengh of theinidat γ-rays becones geter then that of iodne X-rays In the cre of singe Compton scatteing the enegy of excpe radtion extend from E^{\prime} to E_{γ}, where $\mathrm{E}^{\prime}=\mathrm{E}_{\gamma} /(1+2 \alpha)$ with $\alpha=\mathrm{E}_{\mathrm{E}} / \mathrm{m}^{2}$ corresponds to the eregy of the scattered phatant 180 (back scatteing). Thecorespondingenegy daposted ranges from ($\mathrm{E}_{\gamma}-\mathrm{E}^{\prime}$) to 0 . Therewill beabroedComptondstribtion withtheComponedge coaringteregy ($\mathrm{E}_{\gamma}-\mathrm{E}^{\prime}$). Therecandsobeeterna Comptonscatteingfrom mateid atsidesun a thePM shiddng Thisgives riseto the "bodk scatteing pek'.
In the cere of miltiple Comton scatteing the enegy of eccaping raddion etenos from0to E_{γ} and thecorespondngenergy dapositedis E_{γ} to 0 For $\mathrm{E}_{\gamma}>$ $2 n \pi^{2}$ (threstddfor pair prodrtion) tho ther pels aredoserved, asingeescape

Belowfigues (9,10) showtypicd speetra dataned fromy ray ingidat on Na oysd fromCs 137 (61 keV) andCo 60 (117MEV and133MEV), respedively. The661 keV photo peek, Comptonshaildr, bad scatteringfrommateid of the phosdhor andmiseareindcded Thedecayschereisdsoshown

Figre9 (a) Pulseheigtspectumof γ-raysfromCs 137 fonergy 61 keV . (b) Decayscheneforcs ${ }^{131}$

Figre10 (a) Puseheigtspetrumof y-rasco enegy117MEVand133MEV. Theoriging y-raysisshowninthedecayscheve (b) Decayschenefor ${ }^{60} \mathrm{Co}$ EnagyRedution
Thephdo peakshownindboveFigs, aenotshap Itisimpartat thet thespread in phto peak bexsnall as poside chewise γ-rays of néghboring eregies canct be resdved Many fators cortribte to the enegy resdution of a sidilldioncante. Thesefatarsae
i. Flurescestradionconasioneffidency (f)
ii. Efficiencyfor thecdlection f ligttbythecathode(b)
iii. Effidiencyfortheconvesion of photodectras(c)
iv. Efficiency for colledion of eletrons which are accelented to the first dyrode(p)
v. Tdd meltiplicdionfromal thedyrodes(M)

If E is thepatideeregy and ε theavergeenegy of thephtansgenededinthe oysd, then the uniber of phtons enitted is Ef $/ \varepsilon$. It fdlons that thenumber of decrarsfindly collectedt theatpat of thePM thbeis eqd to ($\mathrm{E} / / \varepsilon$) bopM For vaias resons there will be varidion in the fatarsf, $b, ~, ~, ~ p a n d M ~ o f ~ v a i a s ~$ fatars, however, thevaidionincwhichaises detothestdisticd fluctudionsin then unber of phdo-dectrons relesed from thephto cathodeisdedisivefor the plsehigt and is therefretheutinmefator which linits the resduion The bestresduionthat is arieedis 6% for $601 \mathrm{kJV} \gamma$-rassfromCs 137 using Na
phoschor and a 202 Du Mart P.M. Note that $\Delta \mathrm{E} \propto \sqrt{\mathrm{E}} \gamma$, so thit the eregg resduion $\Delta \mathrm{E} / \mathrm{E} \propto \mathrm{I} / \mathrm{V} \mathrm{E} \gamma$.

ApdicationsandAdentages

1FatTiming.
For investigdians which indve fatt timing the sointilldion cantes have a desisive advatage ore visul deetors. This appet hes been exdated in the lifeimeremts of $\pi+, \mathrm{K}+$, adtretimes of μ - adinthedscovery p by time of fligt method In corjundion with Cerekov canter or ther scirtilldion carters, it can be used $\overline{\text { a a 'tidescope" in coindidance or ati- }}$ cainidancetoavidunverted patidescreverts

2SártillationSpadroscopy

Speedronetry of heay darged patides by sointillaiontedriqueis lasdly done withthe uee of incrgaric aystds Honever, anumber of agric compands are asofound usefu. Ogaric sortillatars likeattraeenehere aliner responsefor dedrons, but for heavie patides the plseheigt eregy redionship extibit norlinerity. For this reemon, argaic sointillatas are prefered to inargaic orytds for deetron speetroscopy is ther effedive low tamic nunher cases subtatid improverett for badscotteing compred with incogric aystds, erceptforvery loweregy detrons

3GæSaintilldianCartas

Gessontilldioncartershavethenmit of shat decay times $\left(\sim 10^{9} \mathrm{~s}\right.$), lageligt atpat per MeV independat of inizdiondanity, andtheir availadility ina wide rangeof Zanddanity. Fissionfragrets inthepresenceof heay bakgaund of α 's can bedscriminted Alsa, bease of lowstaping poner and smill plse higtt for γ-ras of nuder aigin, redivisic darged patides can beseqparted fromanintere γ raddianbakgrand

7.8Sdf LeamingExarcis-II

Q1 Ditterntite betwen the cractentics α orgenc and inorganc sointillatas
Q2 WhtarethedesirddeCharateisicsof LuminescertMateids

Q3 Witedonnthedraraterisics of PhtoMultiplie (PM).

7.9AnserstoSdf LemingExerdse

Anavastosdf LamingEracisel

Ansl:Chagepatides
Ans2 Bejondthe propationd region the edetric fied insidethecarter is so strong tht asingedeetronion par geneded in thedrantor is enaghto inititeanavancheof dectronionpairs
Ans3 After anerat is dzeted nost of theinsumerts loætheir sendivityfor catantinecdled"Deedtime".
Ars4: SeeSection7.5

AmarastoSdfLemingExacisell

Ansi: agraic and inargaic sainillatas ae dfferet not aly in regad to lifeimes, linerity of enegy response, tempertureffeds, flumescenceand converion fficiency and $v_{\text {nax }}$ a which naximmnunber of phatas are enitted but aso in themedarismfor theligt prodution ligt enitted by an inargaic oystd is primarily de to the aystd stucture, where as argaicsubtancesetibitluminescenceby vitueof ndeala propaties
Ars2: SeeSection7.7

Ans3 SeeSection7.7

7.10Exarcis

Q1 Compre and cartrat iofizdion danhers, propationd canters, and Geigr-Mulertubs
Q2 Desaibe the corstucion and eydain the qeerion of a photomeltiplier tube

7.11Summay

In this dapder we dsass varias types of deetars Firstly we introdre Iarizdion danther falloned by Propationd canter, Gegge-Muler canter and Sointilldioncanter.

7.12Glosay

Badgrand radition :The radition of man's nturd eviromeat aiginting pinarily fromthenturdly rodoadivedenets of theeath andfromthecosmic rass Thetermmay dsomenradidionedraneasto aneypeimert
Geigr canter: A Geige-Mülle dłetor andminginsumet It cantans a gesfilled tube which dschages edectically when iarizing radaion pesses thraghitandadaiceth strecorostheerts
Inizingradiaion: Raddionthat is capde of prodningionseithe dreetly α indredty.
Sceler : An dedraric instrumet for carting rodaion indred pleses from radtiondtedarssunæaGége-Mulertube
Saintillaioncarter : Aninsurert thet dzets and mes ganmaradtion bycartingtheligttlazes(sírilldions) indreed by theradtion

ReferencesandSuggetedResing:

1 PatidePhyicsbyA. Kata 2014.
2 Engimering Phsics, by Raghwandi, G. S. Raguvardi.
3 Nuder andpatidephysicsbyB. R. Matin2006
4 NuderEnergyby RaymandL. Muray, 2000
5 R.R. Roy andB.P. Nigam Nuder Physics(Willey-Eatar, 1979).

UNT-E Dtators-II

Stuctreof theUnit

80 Ojedives

81 Sdidstedteetars(Diffisedjundiondłetar, Sufacebarier dłetars)
82 Nuder Trak Detetars
83 NuderEledraricsandDtaCdletion
84 Nudearstaitics
85 Sefflermingerecisel
86 Muti-WrePropationd andDiftChenhes
87 Nuderemisias
88 Sedflemningexerisell
89 Summa
810 Gossay
811 Ansmestosaff leamingexerises
812 Exerise
ReferncesandSuggetedreedngs

ع.00biedives

After interating with the mateid peested here tudets will be dde to undastandtheworkingof

- Diffiredjundiondłetor
- Sufacebarierdactarsand
- Nuderdzetars
- Mutiwirepropariondanhbes

In this drapter we will dso dsass nuder endsion and the tedriques and andysisof trads

81 Sdid State Datators (Diffised Juntion Dłector, SurfaceBarier Dtactors

The selerd types at semicondutor detetars thet evst tooky dtter fromane anther becaseof themzterid usedfor their consturionor themethodbywhich that nateid is treated The rest of this setion describes briefly the method of constudion and the charateristics of the nost surcessul dłeetors -made of silicanorgemaiumandtwo pomisinganesmadeof $\mathrm{ColTeandHg}{ }_{2}$.

1 SurfareBarier Detatars

Silicon of highprity, usually ntype isat, grand, plished, andechedunil a thin weer withahighgraksurfareisddained Thesiliconisthenleftexposedto ar or to anther oxidzing aget for severd days. As a result of surface oxidzdion, sufameengy stees areprodred thet indres ahighdenity of hdes and form, essetially, a ptypelaye onthesufame(Figure). A very thinlayer of gold evaporaed an the sufare serves as the deatricd contat that will lead the siga to the preamplifier. InFig, X, isthedath of thesensitiveregion t isthe todd silicon thidness, and D is the daneter of the deector. The size of the detector is thelengh (α dapth) Xa

2 Diffuseef undionDdetars

Slicon of highprity, nom:ally ptype is theberic nateid forthisdłedor type Aswithsurfarebarier dłetars, thesilicon niearestheshapeof athin wefe. A thinlayer of ntypesiliconisformednthefrot foreof thewefer by apdyinga phosphous compaind to the suffre and then heding the wsently to
temperdures a tigh a $800-100{ }^{\prime} \mathrm{C}$ for less than an har. The phosdans dffises intothesilicon and "dobpes" it withdonas(Figre). Thentypesiliconin frortandtheptypebdinditformthepnjuntion

Bdh surfacebrrie and dffisedjundion dzetars ae used for the dzeetion of draged patides To beddeto retheenegy of theindidat radition the sizeXo of thedketor shaldbet leest equal totherangeof theindart patide insilicon Thevdueof X_{0}, dqpenconontheresisivity of themłerid (wtichintum, dapenosonimprity concertraion) andontheappliedvdtage

82Nuder TradkDetedors

 of destuction in the mateid. In covdertly bonded mateids, the chericed stucture of the mateid dang the track can be sigificatly and pemmertly dranged by the passage of a singe enagtic ion Catain pdymeric (platic) mateidsandthemined mica(aformof silicandoxide) aepatialaly sensitive tosuchraddiondame Theorigind raddiondameremins locdized onthe moleala scdebt is not visidewithat enanceret Howerr, thetrack canbe epanded by dervicd edching fromthemelealar scede (ranomeers) up to the mioroscopicscde ($\mu \mathrm{m}$).

Advartages Nuder trak dłedars arevery simpleand very fficiet deetars of rae evats that prodre highly iarizing radaion Careully prepred and scamed track detetar have been used to idatify indvidul rare decays The dtedarsaeintegdinginthat thedamecased by atrak is not spontaneady repared
Drasbadk Thedanback to track dsedtors is that thetrads aesmall and can aly bedoserved with a mioroscope In thepest, scaring by eje wes etrendy Iabor intersive and prone to erro. Modan corpater-cartrolled scarring hes impovedthespeedandreliddility of theardys.
Platic track dłedtrs thet aesensitiveto dphapatides are wed etersively in commerad radon d\#edtrs Chevicd edring of themateid tekes pareonall suffeces that are exposed to the edching sodution The eyposed suffaces of the mateid aeeroded dong withthem*erid dang thetradk Therfore therdeof edringhesto becrefuly cartrdledto get thenmximmanout of infarmion fromtherrack
Noticethtedchingof auniformtradk will geredly farmadralar conebeease thenterid will benoreexily renoved fromthesufarethen fromdepp dang thetrak Micatrads saedanendshapeddetothelaticestuctureasqposedto beingarala.
Nuder enlions ae doædy redzed 'track dłedtrs' that tracether aigins to thearigind dscovey of radtionby Bequed. Nuder endsians aevery fine graned phooradtic film The filmis "exposed' by the pessege of radition through it and the grans of AgCl ae adiveted by the iorizdion The filmis davdqued andwith cerefu handing andmicroscopic doservaion, thetrak orpth of indvidd patides can be traced Occaiondly, a patide interats with a nudesintheenlion ceedingmany fragnetsor patides, and thetrads of the reation produts can be traced The emision is dso sersitive to the rate of iorizdionandthentureof thepatideineachtrack conatenbedłemmined On the ther hand nost peeple are faniliar with the shadow inmes of skedd features tiken with x-rays Thex-rays aedbsabed and scottered more efficietly by the heay deverts in bones (essetially cadiu) thenby theligt deverts in sft tisse (cabon, oxygen hyotogen) and crete a shadbw. The gains in the
endisinarethenexposedbythetrarsnittedx-raysandaredadquedtoform the negdiveimage

83Nuder EletraicsandDataCdletior

Al of thenuder radition cteetors prodreetedraic ples in responseto the inteation of someionizingradtion Thesesighls areprocessed bystandrdzed nuder instumetdion rodles (NM) detrorics to cart then miber of pises or to morefully andyze the size or even the shape of thesignd. In addition compte-besed detrorics in the CAMAC (Compter Autonzed Memerenert and Cantrd) systemare ued to nearethetimerdtionstipsof pises, thepilse heigts, and thesignd shapes Thesignds ae reecroded and streed by computers for lter andysis An imporat feture of scietific studes with rado activities and with nuder beerss is thet the dta mett becdlected as radidy ∞ poside usally dring a vey linited time A radoadive sarce will decay avey fter beingrodreedand cand be"tapped' beeasethesietistisnd ready to weit Similaty, the nuder readions indred by patide berns take pare in a very shat time and mot berecarded whenthey coar. Then after ase of everts hes beencollected "ontline" thedtaxeandyzed "off-line"
Wewill giveavery brif overiev of thekinds of modles ued CAMAC and NM detroricsfal intothrebroodctegries,

- liner dectrorics that mairtann a liner redionstip to thesize of theiritid sign,
- logic draits that providealy a standrd (or singesized) pulse indcaing thetagivenlogicd condtionvesmet, and
- dtaracisitionnodlestomrethesigndsandrecordthedta

Oneshouldreelizethet with roomnhigh dansity decroricsthefundionsthet we will describecan corespond to a ingle eetroric nodlear may be condaneed into a singe integted drait Therfore, we will aly describe the fundions peformed by the detroric modles and not speeific equiprett Theatpat of not detedars is an dectricd plse that caries informion dat the enegy dapositedinthed \ddagger edar, thetineof theirteration ecc Liner detroricsare described as rodles that preserve and edrat informiondat theenegy
depositinthedłetor fromthedłedtorsignd.

A typicd plseheigt andysis systemis shown in figre Thesignd fromthe dtedor isgivenaprelimineyy amdifictionandshapingby apeemphoforebering sertthragh accaxia cadeto aliner andifier. Thisis coneto prever nisein the codde from destroying the tiny detedor sigal. In the amplifie the signa is futher a mplified andshaped beforeandysis Theheigt of thepiseis redted to the enegy deposited in the dzeto. The andogtodgitd conveter (ADC) convets the sigal fromthe ampifie into dgitd dta (a nunber of stadad plses) thusuringitsize TheADCcaldbecortanedonaplugincardina persond corpater (used to mere the dstribtion of pless froma singe dtetor maitoring a radoadive sarce) or it migt be one of nany idatical ADC units inaCAMAC rodle (usedto record thesignds frommany dłetars maritaing nuder collisionssimitaneady) .Logic rodles ae used to meritor the carting rate of singe edtetars and theredaivetimes at widh radition is dteded A fatsignal deivedfromthedłetor itsedf, the peempififie, orfroma tiningfilter amplifier is set to a dscoimintor. The dscoinintor produes an atpt plsewith a fixed shape(gereally squer) and sizewhentheirpt siga cosses a refernce Discrimintarsuadly havemltipeidaticd apptsignds Thelogic p ises canbesentto asceda thetsimply cants thenunber of pises, to acart ratemeer to moritor raddion rdes or doses, andto atineto amplitude convetes (TAC) to mere the redive times of arivd of tho or more logic sigals

84Nuder Staisic:

Radoalve desay is a ranomprocess ine numer a nue in a sampe a radoativentarid that decay in any timepriod is not a fixed number but will dffer, usally, for vaias time peiook This pait can be readly shown by making repeted mearemers of the adivity of a lang-lived radandide each forthesaretiredurdion Thereslts of surnanexpeimertmigtbeshowninas adstribtionfundion by "birring" thedta(Figre Typicd Sequaceof Carts of alang-LivedSampe($\left.\left.{ }^{10} \mathrm{Tm}\right)^{*}\right)$.

Number of Counts
We can now akk arselves if we can undastand this dstribution fundion Staisticians have given us mathenticd modls that describe these and other similardstribtionfundias Asabadkgoundforardsassianof howtoedrat thenaximmarout of informaionfromthesedta leusconsidar soneof these modds. The most gened nodd to describe radoadive decay is the binonial dstribuion For a process thet hestho atcones (surcess or failure, decay or mo deeay), wecan witefor thedstributianfundion $P(x)$

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

wherenisthenumber of tridswhereedhtrid hesaprobadilityof surcesspand
$P(x)$ is thepredaed probadility of getting x surcesses Apdyingthis dstribtion to radcadivity, $P(x)$ migt betaken as the probadility of getting x carts in a given time inteve and $p \neq \Delta t$ where Δt is a time shat compared with the neremt timeand thehelf-life Notetht x and n areboth integas. Typicd binomid dstribationfundionsaeshowninFigure

The binanid dstribtion fundion is antoesare and a simplifiction can be made If theprobadity of surcesspissmall (p<<l) (themearenertimeisvery shat compreed with thehaf-life), we can aproxinatethetanomial dstribution bythePdissondstribtion ThePdissondstribtioniswittenas

$$
\begin{aligned}
& P(x)=\frac{x_{m}{ }^{x}}{x!} \exp \left(-x_{m}\right) \\
& \text { Where } x_{\mathrm{m}}=\mathrm{pn}
\end{aligned}
$$

Thus we have a simplified dstribution darataized by one parater, x_{m} compreel to two parates in thebinomid dstribution ThePaissondstribtion isanæymmericdstribtionashowninFigre
Besides being amretradddefundionto use, thePdissondstribtionhescetain importatpropatiesthat wewill useinardyzingradoadivitydta

Let us consider a praneete, the veriance, σ_{2}, which expresses sonething dbat thewidh of thedstribtion of velues abat themen x_{m}
Fraseof Nm

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-x_{m}\right)^{2}}{N-1}
$$

Forabinomid dstribtion

$$
\sigma^{2}=n p(1-p)
$$

Whichis a nmesoneto usebt, foraPdissondstribtion wecanshowthat

$$
\begin{aligned}
& \sigma^{2}=x_{m} \\
& \sigma=\left(x_{m}\right)^{1 / 2}
\end{aligned}
$$

Thisillusrates theimportat pointthat thesedstribtionfundiansaemodds, not physicd lans, and whenthey are apdiedtofinitedtases, their predidions nay deitefromdosevation ThePdissondstribtion canbeapdieddsotodescribe the ation of deetors For examde, supposethe interation of a γ-ray phtan with an infficiet sointillatr prodreed anareage, 33 phoodectrons from the phocathode The prodadility of prodring mo phodedrons (not seeing the elet) isgivenbythePaissondstribtions
$P(0)=e x p-33)=37 \%$
Thus37\%of theerats will bemissed deto "Stissicd fluxutions". A futher simplificdion of the prett binonid dstribtion ccars when the nunter of successes is redively lage i.e, we get nere then doot 30 carts in a maremet. Thenthe binomid dstribtion can be represeted ∞ a nomal α Gassiandstribtion Herewewite

$$
P(x)=\frac{1}{\sqrt{2 \pi x_{m}}} \exp \left(-\frac{\left(x-x_{m}\right)^{2}}{2 x_{m}}\right)
$$

This andyticd aproximaion is symmic As shown in Figre, 683\% of the nes redvausliewithin $\#$ of of them, x_{m}

Futhemore955\%of dl meremiliewithin $+2 \sigma$ of themand 99.7% lie within $\rightarrow 30$ of themen Theful with thaf naximm(FWHM) is 2350 .
Thusfor asingeneremt acartraof 100 , wewaidetintethz $\sigma=$ 10. We cald say, with a 633% dhance of being corred thet the tur rde wes between $100-10=90$ and $100+10=110$ Wth 955% cetaity, we caldsay thetre rate lies between 80 and 120 Generizing we can qute the resils of a neremtax+no wherenisretedtotheprobabilitythe anirfintenumber of maremts wald give a value within the quad range For $\mathrm{n}=$ $0674,1,1649,196,251583$, the "corfidance linits" are 50\% 683\% $90 \% 95 \% 95.5 \% 99$ and 99.7% respedively. Commorly peoplewill quatethe realts of a merertax ± 0. Oneshaidrementer thatdingsomernone will bewrang31 7% of thetime i.e, themencartrawill beatsidex $\pm \sigma$. If this sisk is not accepddde oreshold pidk a geater corfidanceleid, i.e, 2 $\sigma, 3$
σ, ec Andher dstriationfundion of interes redtes to thedstribution of time intevds betweensuccessivecants Weknowtheaveagetimebedwencantsis (1/court rat). The dstriation of time intevds is given by the intevel dstribtion This dstribtion (apdicdde to all randmevers) stees that for a processwith anavergetimebetweneverstm, theprodadility of getingatimet betwensurcessiveeversis

$$
I(t)=\frac{1}{t_{m}} \exp \left(-t / t_{m}\right) d t
$$

Forradoativedecay $\quad \mathrm{t}_{\mathrm{m}}=1 / \lambda$
ThisdstribtionfundionisshowninFigre

Note the rost probade time between everts is zea. Randomerats (cants, raturd dsates, ecc) ocar in "bundes" Le ussummizehownedescibethe stdisticd uncatainty in merents of radoadivity. If wemetheativity of asample(Hbakgand) a64cartsin1minte, thenneesimłe (SHB) $=64 \mathrm{qpm}$
with ${ }^{\text {nuncetairty }} \sigma_{S+B}$

$$
\sigma_{\mathrm{StB}}=8 \mathrm{~cm}
$$

Whit if asecondmerenert withnosampleshowedabakgoundof 10carts in 1minte? Wewaldthenetinte

$$
\begin{aligned}
& \mathrm{B}=10 \mathrm{qm} \\
& \sigma_{\mathrm{B}}=(10)^{1 / 2}=32 \mathrm{cqm}
\end{aligned}
$$

If we consider two independatly datemined numbes and their uncetairies (standard davidions), $\mathrm{A} \overleftarrow{\sigma}_{\mathrm{a}}, \mathrm{B} \overleftarrow{\mathrm{b}}_{\mathrm{b}}$, we can wite down sare rules for the uncetainty in the realt of sare commen nothenticd quertions We would cdaltethetforarsampeandbakgoundcartingces,

Ne rate=(samde+bakgand) - (bakgard)

$$
=64-10=54 q p m
$$

Uncetarity innerde $=\left(8^{2}+32\right)^{3 / 2}=86 q 9 m$
Uptonownehavecareully restidedardsassion of nuder stdistics to cases wherel-mincarts weretken If then unter of carts recorded in 1 min wesx, then the carting ratehes been quited $x x \pm(x)^{1 / 2}$ qpm Suppose, howere, thet we recorded 160 carts in 5 min What waild bethe standad davition of the avacgecantingrte(inqpr)? Thebestedin\#teof themeennumber of cantsin the5-minperiod waid by $160 \pm(160)^{1 / 2}$ thetis, 160 ± 13 cants Theavergerde waildbe $1605+135=32 \pm 3 q 9$ Ingered, therefore therteR isgivenw
R $=$ number of carts recorded)/(neserertime) $=x t$
Thestandarddaidion of therde, σ_{R}, is

$$
\sigma_{R}=(x)^{1 / 2} \Lambda=\left(R^{*} t\right)^{1 / 2} t=\left(R A t^{1 / 2}\right.
$$

Thusforthepreeedngeramdewecaldhavecalalteddreetly tht

$$
\sigma_{R}=(\mathrm{R} t)^{1 / 2} \neq(325)^{1 / 2}=3
$$

Often wewishto cormtetheavergeof two numbers, x_{1}, and x_{2}, beth of which havean uncetainty danded by their standaddavidions σ_{1} and σ_{2}, respeetively. The best aveage of theee two numbes is not the simple areage bat weigted avagex ${ }_{m}$ givenby

$$
\begin{aligned}
& x_{m}=\left(\frac{x_{1}}{\sigma_{1}^{2}}+\frac{x_{2}}{\sigma_{2}^{2}}\right) /\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right) \\
& x_{m}=\frac{x_{1}+w x_{2}}{1+w}
\end{aligned}
$$

$$
\text { where } w=\left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{2}
$$

Inshat, ecchnunher is weigted by theinveseof itstardaddavidionsquared For the weigtedavergeof Nvelues, x , withstandarddeidion σ_{i}, wehave

$$
x_{m}=\sum_{i=1}^{N}\left(\frac{x_{i}}{\sigma_{i}^{2}}\right) / \sum_{i=1}^{N}\left(\frac{1}{\sigma_{i}^{2}}\right)
$$

Theuncertaintyorstandaddavidionof xisgivenby

$$
\sigma_{x_{m}}=\left[1 / \sum_{i=1}^{N}\left(\frac{1}{\sigma_{i}^{2}}\right)\right]^{1 / 2}
$$

 ddainingresl's of 35 ± 10 opmand 46 ± 2 2pm Theweigted arrage of thetho nerentsis

$$
\begin{aligned}
& w=(102)^{2}=25 \\
& x_{m}=(35+2.46)(1+25) \cong 46 \mathrm{~cm}
\end{aligned}
$$

Thestandaddavidion of theweigtedavargeis

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=\left(\left(100+(25)^{2}(4)\right) /\left(26^{2}\right)\right)^{1 / 2} \\
& \sigma_{x}=\frac{1}{\left[\frac{1}{100}+\frac{1}{4}\right]^{1 / 2}} \simeq 2
\end{aligned}
$$

Thuswewaldsoy thet theaveragerdewes $46 \pm 2 \mathrm{qm}$

Rgietionof Alonomal Dita

In ar dsassions so far, we have orly corsidred the uncetainty in the eyperimatd dadeneto therandomess of radoadivedeca. But therenæy dso besyterdic eror that cortributes to theoverdl uncetainty in the dta As a realt, whenwenkerepetednerenerts of asampleadivity undr semingy idaticd situtions, we will find occaionally onemeremet that dffers from thecthes by alagearout If indudedinthearerge thisdanomad dosevaion may casesigificat error. When are we judified in rejeting such dta? One citerionfor rejedingsurdaistoreject sqeeted vdues tht davidefromthe
meenby morethen 2σ or 3 r. Theprodadilities of carrenceof surdevidionsare 45 and 027% respedively. What doat thequetion of whethe a dzetor or carting sytemis working propely? For eampe, the dta in do not eatly match aPdissonor norid dstribuion Westhecartingsytemnaffundioring? Oneprameer thet wecancolalatthet will helpus arsere ruchquesiors is χ^{2} (di-squede). Formally

$$
\chi^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-x_{m}\right)^{2}}{x_{m}}
$$

SetingUpper LinilsWhenNbCartsAredbserved

Suppose ar expeinett failed to dझet atype of decay we wereseting What can wessy dbat its conrence? Thesimdest asser iswht istemed the "ore elet upper linit". Weassmethat you heddseted neeret, and calalathe reslting decay rde, aosssetion, ec, tdinginto accart dłetion effidienjes, solid anges, ec A nore sqdisicted arsuer can be datained by uing the propaties of a Poissondstribtion The prodadility of doserving nevers if the neenvaluis μ isgivena

$$
\rho(n / \mu)=\frac{\mu^{n}}{n!}=e^{-\mu}
$$

Theprobadility of doseving0evers inatimeperiod T for a process with meen rate λ is

$$
\rho(0 / \lambda t)=e^{-\lambda t}
$$

It canbeshowntht the uppe linit antherde(nhenzero cants aed bserved), λ_{0}, isgivenby

$$
\lambda_{0}=-\frac{1}{T} \ln (1-C L)
$$

Whered is thecorfidancelimit you wish to attach to your yper limit. (If you wartoqutean yper linitwith 95% corfidance, then $\mathrm{L}=0.95$)

85SdfLeamingExarcs-I

Q1 Whitedowntheformelafor dinomia dstribation
Q2 Witedownthedanback of Nuder Track Detetors

Q3 Sketchfigreof Diffisedjundiondłetar.
Q4 Exdanthenuderd\#etordectrorics

86Multi-WrePToparionel ardDiftChenbes

The popationa chenter advences by vitue of the fat the voltage plse it nares isadetoprovideifformiononthepatide'senegy wwd.
Themiti-virepropationd deniberorMMPC advancesthisfuther-instegdof havingoreamodewiresurandedbyacthockudl orpte, moltiple'sense wires areeqidstatly spacedsymmetically bekeentwo padlld paes Wre spoingsaetypically afewnillimeres A nealy uriformdedric-fidddakdqps betweenthecthodeplaes, dstatedonly neer thesensewires Eachwireadsæa separdecanter-whadragedpatidepassesthraighthechanher leainga trail of dedron-ionpairs, thededronsdifttothenerest wireandcaseavdtoge pise Byplaing andhersuccorfigurdiona 90° tothefirst, thusformingagid andmaking off thewiresthat prodreaplse, thepthof thednaged patideis reveded
Multiwire Proportional Chamber

Apdying anmendic fidd perpendalar to the drectiontheparide is tradling in will caseittosprard detotheLoretzforce Thiswill reved howthepatide
iscragedandwhatitsmonetumis
A typicd gescompositionformlti-wirepropationd danheasisthe'nagicges' mixturecompising 75% argon $+24.5 \%$ isdatare $+0.5 \%$ freen

Diftctenbers

Theresdution of molti-wirepropationa danmers canbedardically eranced by tding into considacion the time the detrons toke to dift fromthe puint wherethey wereliberdedto thesersewire, whrethey aredłeded Thuscnecan irfer thedstance at wichthedrarged patidepessed thewire This improves the spodid resdution and dlonsfor widr wire spaing onthearder of catimeters Wide wirespaingdstattheuriformfiddless, but incemethedift time, hance these 'dift crambers' aentided for uerincollidas vithtigh collision rtes, ar in trigges In arder to calalae the dstance an dectron hes travelled it is neessarytoundastandits valoity inthededric-fidd Theuriformityof thefidd metbermerecareully cortrolledthenitisinamltiwireproporiond danmer. to thisend thearocesenæewires areatternted withcathocefiddwiresthat 'corret' thefidd dstation cased by the ensewires, restaring unfamity thaghat the danter. Dift vedocitiesunde detricfidds

Drift Distance $=$ Drift Velocity ${ }^{*}$ Time

87Nuder Emlsion

compsuar

Phocogadic Emilsions ar Nuder Enculsios dffer from ardray adica enulsionsby ahiger silve-bromidecontet, smalle aveagecystd damete and morh geeter thidness Thesilve-hdide(mailly silver branidewith 5% silverioddg) cystds saeenteedtadingaddin(HCNO). Thegadinis uadly nadefrom dippings of calf tide er andceek offromiggsinandbone Themainfuntion of gidinisto keep thesilver halidecystds wd dspersed inthenedumandto prevet daming of theorysts Atorwise, theAgBr gap and HCNO gaps comranise 25% and 75% respedively. But the interations with nedumand higheregy patidestakeparewith afrea ancy of $70 \% \mathrm{in} \mathrm{AgBr}, 20 \% \mathrm{inCNO}$ and 5 \% inH. Theemlsion sheets called pellides of standard size 400, mor œumarestakedwith oneanthetopof thedthe bforetheexpos rein arder to incemethe vdure A vaidy of endisons of dfferet aystd sizes haveben manfactred which dffer insersitivity. ThetypeG, LL (IIford), NIB (Kodak), ET-7A (Fyii) andNikfi-R with cystd sizeintherage0.4um+0.28umarehigly sersitised and axecopddeof recordngredivisic patides ($\beta \sim 1$). K_{2} and L_{2} ae lesssersitised andreecod protarsupto $\beta=04 . K_{1}$ islesssenitisedandrecordless pransupto $\beta=0.12$ Koisleetsendisedandisusedmainlyforfissionsudes $^{\text {is }}$ Latertinage
When adarged patidenovesthraghemisioneregy is absarbed by thesilver ralice cystd, and unde the ation of redring aget is conveted into meddlic siver. The physicd condtion which rendas the aystd dadqupde is called "Itest inage". The latet inme will fade if too much time dapses beveen irrodaionanddakdqenert, similartoordnay photogadhy.

Procexing

Stripped endsiars are first nauted an gass before procesing For uifarm dadquret, it is essetid thet thedadquer, for examdeanidd, parestes the thidnessof enlision Forthis reeson, theples arebathedinthedadquer tlow temperture $\left(0-5^{\circ} \mathrm{C}\right)$ so that the dadquer is permitted to pencrate bit the dedquret will not erse Now, if the temperdure is rased to soy $23^{\circ} \mathrm{C}$, the
davdquert enees This is called righ temperture dardqumat. After the devdquertstage, theplatesae'fixed", weshedanddiedindachd.

Tedriqus

Everts are andyzed with the aid of speeid type of miroscopes with srocth movdde stages and high poner ail djeetives and espeieces with griales capdde of giving magificaions a tigh a 2700. After processing nomal endsionstrinsbyafator of 2-25. Theshinkegefator istakeninto accart in the dp merets of anges For patides, which stop within the emision stak, RangeEnegy Redtionof thetype($1-101$) is useed
Inizaion narenets ae nade eithe by canting gains a ddos for redivisticpatidesorbycartingldos andggsof lengh >1, formon-redivistic patides anddemminingtheeponetgfromthereldion

$$
\mathrm{H}=\mathrm{Be}^{\mathrm{d}}
$$

whereH andB aregpandddodensity, respeetively. Bldos areuresd vedgrans andgppisthesparespprdingtwosucessivegainsorddos, ळshowninFig
Forenggic patides, theparmeterp (monertumtinesviocity) canbefound at from moltipe scatteing merents by essetidly ming the y cordntes of thetrack dang theaxis, t constat intervds called "cal's'. The aithmicavergeof seconddfferencesisgivenby,

$$
\langle | D_{2}| \rangle=\langle | y_{1}-2 y_{i+1}+y_{i+2}| \rangle
$$

add $p \beta$ isgivenbytherddion

$$
p \beta=\frac{K t^{\frac{3}{2}} \times 18.1}{\left|D_{2}\right|}
$$

whereK $=28$ isthescatteringcontat, for $\beta>1, D_{2}$ isin $\mu m t=$ del lenghin
mmandpinGEV/c. Thequarity ${ }^{32}$ aisesdetothefat thet thescattering ange $\theta=$ Dt. Thefator 181 aises deto convasion of deyees into radans The daice of cell-lengh is suh that the sign-t-tondse rdio is geter then 2-3 Multipescateringtedriquewithconstatcal methodwarkspridedtheenegy loss over the trads is not sigrificat. In arde that the method be usefu, it is importat thet the sprias scatteing and dstarion reselting fromtheprocessing of mulions besmall and that thestagenase, which aises deto thenon-liner mation of thestayebenedigide
Crargeof thepatidecanbedłeminedfrom δ-raycarting $(A A K, 1,1)$ offrom phtontric neremets, for eample, thefluxes of heay pinaies of Comic rays have been dłemined from emilion exposeres in balloors ar rockes fdlowingthisproedre

$R \longrightarrow$
Patides are idatified fromtheir mass dłemingions Inthis cortert we reed from(AAK, 1, 1),
i. Rancemerertgivesenagy of thepatide
ii. Iarizdionnerentgivesthevelocity
iii. MultipeScatteingmerentsgivep β.
iv. δ-raydansitymaremtgiveszof thepatide

For singy darged patides contindion of ay tho parates aising in(i), (ii) add (iii) uriqdy fixes themass of the patidesinceveloity motbediminted Thus, theplot of iarizdion(I) vesus residel rage (R) gives afanily of arves for patides of dfferetmuss, Fig, Noticethat for thegivenl, theranges areinthe raio of thenwes Themethod is vey etersively used for patides which are brougt to rest Mases can beestimted with an acaracy of dbat 10\%froma singemarent
Themethodcanbeetendedfor idatifying patideswhicharenot arestedinthe endsion stak, if an apreidde change in iariztion over aknoun dstance is dłemined

At higer eregies, contrintion of (ii) and (iii) in favordde ceses permits the idatificdion of patides (Fig) At sill higer enagies, the arves cross each ther and the idatifiction beeneres dffialt or even imposside On the other hand eregy nesreverts cansddmbenadefrommitiplescottering method withanacaracy better then 10-15\% detothepresenceof spriasscatteing At enegies geter thenfenGeV, thenerenets arendred meringess if the nisedeto sprias scattering compees with theCalont's signa. Someines in facradde ceese it hes been poside to etend the enery neereverts up to $15-20 \mathrm{GeV}$ in comvic ray jas by makn reddive scatteing meremts a methodinutichmeltipescatteingmenerts ar makwith refercetoa neighboringtrakdetoanltrardativisicpatidesothatspriassedteingand
stagenasentich offectboththetradssimilaty arediminted

Adartages

1 HighStapingPoner andHighSpatial Resdution

2 High Anglar Resdution Thearglar resduion is unapessed This appect hesbeeneyditedinthedkemintion of thenægnicmometof Λ^{0}.
3 Compratness In situtions where compadness of eqipnett is esserid, emisianscanbeconverietly useed Foreermde, they canbesest inballonsar rodkes to high ditituds and reewered converietty ftto the required exposire Futhe, they aeeconomicd.
4 RediaionLengh Beease of highstaping poner and shat raddionlengh hugedetromagnic caccads conbecontannedinalagestak andthecompete davdquertandfind degradtion cenbestudedindłail.
5 Laedinglti is posildetoloodemisiors with $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}, \mathrm{Li}_{2} \mathrm{SO}_{4}, \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}, \mathrm{UO}_{2}$ ecc tostudy reationswithereretswichaentcartanedinnomid emisions

Linitaiars

1 CompositionIneridaility

The camposition of nuder endsions can not be danged abitraily so that interation studes ae linited arly to those nude which are peest in norma endsions, athaug looded enulions in lintited concetraion have been ueed withsomedffialty.
2 Minteners of VduneBecase of ninteness of vdure of endian undar study inthemicoscopeit iserceedngy dffialt to find corredzed evers even1 amorsoapat
3 ContinuasSersitivityBeeaseof cortinussensititythebedgroundtrads ae a sarce of nusance The best avalldde enlicis fromthestand poirt of sensitivitylak dscriminationandall higly yiorizingpatidetrads saesturded

4 DistotionandSpurianScettring

Endsionwtichlesagdtinbeæeissugedtodstationintheprocessingregine This can seriady affet the range and andements Sprian scattering canintaferewithCalant'ssignd inmultipescatteingneremets 5. Scamingltusullytakesseved nanthsindvingalagegapof Phyidiss
andscarrestoscanandardyzeeverts of stdisicd sigificance 6 TheStudyof Elenertaylitractions
Sincealy 5% of theirteationstakeparewithhydogen and 9% in comdex nude of emlsin, theirterations inthelatter aedosaredby secanday ffeds Although hydogen darsity in emilsions is compardle with that in hydogen balde chanter, the latter is by fa better sited in so fa as the devertay interationsudesaeconcemed

DiscoveriesMadkwithPhotayadicEmlsions

Majordscoveies of fundententd importacceindudedthepatides $\pi^{+}, \pi^{-}, \pi^{0}, K^{+}$, K^{-}neesons, seerad decay nodes of K^{+}neeans (two-body andthrebody decay modes), thehyperns, hyper fragnert, caldehyper fragert, thecomposition of pinary cosmic ras ecc Reliddenass nementer vaiastypes of neans and the Σ tand Λ° hypeans, and their nean life times were first caried at in endsias

88 Seff LeaningExarcis- II

Q1 DAnelatinage
Q2 Whatisthegescomposition ueedinmlit-wirepropationd chambers?
Q3 WitedowntheadVatageandlimitdionof nuderenlion
Q4 Disassurkings of Muti-WrePropationd andDiftCrembers

89Summay

In this chater we dsassed vaias types of deetor and nuder deeetor tedriques

810Glozay

Badgrand radition The radion a mans nturd emiromet aignting pinarily fromthenturdly radoadivedereets of theeath andfromthecoomic rays Thetermmay dsoneenradaionedraneastonexpaimet.
larizing Radidion: Radaion copade of podring ions ar darged patides larizingraddionindudes adpa beda garmaa andX-rass

inwires detothepassageof iovizing patides neaby.

811Anser toSdf LemingExacise

AnavastosiflermingEracial
Ansl: $P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}$
Ars2 Seesetion82
Ans3 Sessetion81
Arb4 Seesetion83

ArsvestoSif LemingExacisell

Ans1: The physicd condtion which rendas the coystd daldqoade is celled "lattinæge".
Ans2 Mixturecorprising75\%argon+24.5\%isdatare+0.5\%freen
Ans3 Sedion87
Ars4: Sedion86

812Exacis

Q1 Witeashatnteon
(i) Diffisedjundiond\&etar,
(iii) Mutiwirepropational danher
(ii)Surfaebarierdetars
(iv) Nuderemlions

Q2 ExdainDifferettypeof dstribitionfundionuæeto ardyzenuderdata

ReferencesandSuggisedResding:

1 MearemetandDdection of RaddionbyNichdæTsalfarids, 2013
2 MockmNuderChenistry by Watter D. Loudand, DavidJ. Morissey, Gem T. Sebborg 2005

3 PatidePhysicsbyAnwer Kand, 2014
4 EngineringPhyics, by Raghwardi, G S. Raguwardi.
5. Nuder andpatidephysicsbyB. R. Matin2006

6 NuderEnergyby RaymondL. Muray, 2000
7. R.R. RoyandB.P. Nigem Nuder Phyics, 1979.

UNT-C ComplexNudei : Shell Theary

Srutureof theUnit

9.0 Ojectives

91 Introdution
92 Magcnumber
93 TheShal theory potetid
9.4 AllowedarditsintheShal theary Poteriad

95 Sefflermingexacisel
96 Fillingof thearbitsintheShdl theory Potetiad
97 MagndicDipdeMarets
98 Stall rodal failures
99 Selflemmingexerisell
910 Summy
9.11 Gossay
9.12 Ansvestosdf lemmingexerises
9.13 Exerise

ReferncesandSuggetedReedngs

90 Ogiedive

After interating with the materid peregted here tudats will be dde to undastand the nuder shal struture They can dso be ade to codalae prity, spinandmagnic momtof agivennudes.

91 Introductior

Therearetwowesictypes fimpenuder nodb-
1 Colledivebody with no indvided patidestes Anerampeis the Liqid DropModl whichisthebasis of thesenirempiricd nassforma

2 Indvidal patidenod withnideens in dscreeeregy staes for eramde theFemi GæModl ortheShal Modl.
Inthiscrader wewill dsassdłails of nuder shall noda.

92 Magic Numbers

 binding ereges of "ragic nude" for which eithe the number of netrons $\mathrm{N}=(\mathrm{A}-\mathrm{Z})$ or the number of protons, Z is equal to one of the following "magic numbes" $2,8,20,28,50,82,126$ This is patialaly thecasefor "dudyymac" nude inwhichboththenumber of neatrons and thenumber of protans areequ: tomæjcrunters.
Foreamdefor ${ }^{55} \mathrm{~N}_{23}$ (ridkd) theLiquidDropModd preddsabindngenegy of 477.7 MEV , whees the med value is 4840 MEV . Likevisefor ${ }^{132} \mathrm{Sn}_{30}$ (in) the Liquid Drop roodl predds a binding enegy of 1084 MEV , wheres the nearedvaluis 1110 M V. Threareche speid fetures of mægicnude:

- Theneatron (prdan) spardion enegies (theenegy required to removethe latnetron(proton)) peas if $\mathrm{N}($ () isequl to anagic nunber.
- There are nore stdde isdopes if Z is a nagc nunber, and more stdde istonesif Nisamagcrumber.
- If N is magic nunber then the rossseation for natron dbsondion is murn loner thenforother rudides
- Theeneges of the exited staes are moch highe then the gaund stae if either NorZorbtharemagicnumbers
- Elerets with Z equa to a nagic number havea lager naturd dandance thenthoseof neabyderets

93 TheShell TheayPderlial

Thefirstsepwill betoidatify asitadeavergeptetia for thenudens One doviasdfferencedstingisting nude fromatons is thet the Calanto paterid is notgoingtohak it Inthededranstuctureof antanthededrans repd each othe, and the orly reson the atomstays togethe is thet there is a nudes to ttrat the eectrons But insidea nudes, thenudemsall trat each other and
thereismaddtiond atrativecore Indeed aCaidntoptetid liketheone used for the dectrons in tans naild g\# aly the first nagic number, 2 , nigt, predding10, inserdof 8 todd patidesfor afilledsecondeneryleve.
A better potetid is needed Now intheceter of anudas, the atrativeforces correfromall dreetionsandthene forcewill bezeo by symmedry. Away from thecester, thene force will bedrected inneros tovaros the ceter to keep the nudeans togethe insidethenudes Thesimplet pateriad thet describesthis is the hamoric osillator one For that pateria, the invard farce is simply propriond to thedstareefromthecenter. Thit wake thepterid enegy V propationd tothesquredstancefromtheceter, æskedhedinfigre(2).
(a)

(b)

(c)

Figre5 (a) hamuric osillatar, (b) impandrddesuface (d) WbodeSann, (d) WoodsSaconfor protors

Theenegyeignadues of theham rricosilladorare

$$
E_{n}=(n+1 / 2) \hbar \omega, \quad \mathrm{n}=1,2,3 \ldots
$$

Ass, insdreicd cordntes theenegy egerfundionsof thehameric osillatar canbetakentobeof thefam,

$$
\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

Herel is the wimothal quatumnmer that gives the square arditd anglar normerturof thestaeæ $l(l+1) \hbar^{2}$; misthemandicquatumniber thatgives the arditd anglar nomettumin the drection of the abitraily dosenz-axis anth andmisthespinquatumnumbe that givesthespin angla monetum of the nuden in thez-dredion mmh Thesgin upste withm-1/2is commorly indcatedby aposfix \uparrow, andsimilaly thesain-downomem $-1 / 2 \mathrm{by} \downarrow$. CompredtotheCalantopatetid of thehydoogndedron thenmiordfference is inthenumber of enegy stes ta agiveneregy lend n Whilefor theCalanb paterid thearimotha quatumunber I canheaveary vacefrom0ton-1, for the
 elen
 is alloned for ither patetid. Andsimet thenumber of value of themagetic quatimnumber mit agiven viluefl is 2 th, thereis oly oneposididevalue form That neris the thee ae ory tho dffeert eregy sdes at the lowest eregy lead, conespondingtom- $1 / 2$ respectividy- $1 / 2$ Thoeetho stes eydan the firt nagic number, 2 Two nudemb of agiven typeccon ocapy thelowet eregyled; ayfuther ons of thetypement gointoatiger lead.
In patialar, hdium 4 hes the lonet eregy leve for proters condedy filled with its two proters and thelonest levd for netrors conddedy filled with its tho natrons Thit makes hdium4 thefirst dady-magi nudes It is ilut like the tho detrons in the hdiumatomonndedy fill thelonet eregy lead for detrons, makinghdiumtrefistnodegs
At the second eregy leve n ne2, where the Calontb paterid allons bath $=0$ addl $=1$, ory $=1$ is dllowedfor thehem moric cosillar. Sother inter of stdes arildde at eregy lead $n-2$ is less then thet of the Callont paterid. In patiala, the aimitha quatim number $=1$ dlons $2+1=3$ values of the magetic qaetumnumberm tines 2 vdues for the sain qaitunnumberm Therfare $\mathrm{I}=1 \mathrm{an}=2$ conesponsto 3 tiness 2 ar6erregy stes Contined with thetnol $=0$ stdes a eregy levd $n=$, thet gives ated of 8 Thesecond magic number 8 hes been exdained It reaires 8 nuders of a giventypeto fill the lonettuoeregyleuds
It nakes axyen-16 with 8 prams and 8 netrors the second dady-magic nudes Notethat for thedetiors indons theseand eregy lex wold dso inducetwol $=$ Ostdes Thatiswhythesecondmblegsis neenwith10detrons, adndoxgenwith8
Befre dedking the dher magic numbes, first a prodem with the dove procedreof carting stdes mat be adtressed It is too em. Eveyloody can edute2 4 t landmltidy by 2 for thesginstaded To makeit neredalleging phsidsts adpt thesocedled predtroscaic nddioninutichthey dondtel you the vilue of. Insted, they tell you a leter like maycep, and you ae then suposedtofigreaty yorsff thal=1 Thescheneis
$s, p, d, f, g, h, i,[j], k, \ldots \quad l=0,1,2,3,4,5,6,7,8, \ldots$
Thelater pat is noosty adphabeic, bat by convetionj is not indunded Using speetroscopic nodions, the second energ leid staes are dandeded as
$\psi_{21 m n_{s}} \quad \Longrightarrow \quad 2 p$
where the 2 indcaes the value of ngiving the eregy lead. The addiond dependarceon thenagndic quatumnumbermandmis keqt hidben from the uninitited
Inthesetems, theenegy levels and numbers of stes for thehammic osillatar patetid aeashouninfigure Thethirderegy leat hes 23sstes and 103 d stes Addedtothe8from thefirst twoenegyleves, thetbringsthetdd cart to 20, thethirdmagicnumber.

Urfortundely, this is whereit tops Theforthenegy led should havealy 8 staes to reach the net nagc number 28 , at in reality the forth hamoric
osillator lead hes64pstes and 144f anes Sill, geting3nægc numbersigt sislikeagoodstat

Thelogicd netstepistotrytoimpoveuponthehemricosillatorpaetid. In anavegenudes, itcanbeepected thet thene forceonanudeon pretly much averges at to zero ereynhereecapt in a vey thin layer at the ater suffre Theresonisthat thender forces arevers shatrange therfaretheforesseem to correequly fromall drediorsuless thenudeenisvey dosetothesuffe Oly rigttathesuffecthepatidesepreienceantinverdatrationbecase of the defict of patides beyond the suffre to provide the full compersting atwardforce Thissuggests a pidureinwhichthenudeans cb not eperiencea ne forcewithinthecrofines of thenudes Howerr, t thesufare, thepatertid ramps up vey seedy. As anidedizdionthepatatid beynd the suffacecanbe takenirfinite
Thit reescingreslts intheimpenerddeshdl. Ittoois andytically sodvede The enegy leuds areshowninfigre Ulfatunddy, it does not hap ayy exdaring theforthnagicnumber 28
IttursatthtacreagintheSaxon-Woods nodd isaremondleguess, i.e

$$
V(r)=-\frac{V_{0}}{1+\exp ((r-R) / \delta)}
$$

Unfatuntely, the forth magic number remains unexdaned In fat, any remondde schrically symmic spatid patetid will not git theforth magic number rigt

94 AllonedOrbitsintheShall TheayPderial

Evertully, Maye in the U.S., and independartly Jemeen and his co-norkes in Gemany, condudedtht spinhedtobeind ved in eddainingthemagic numbes dove20 To undastandwhy, conside thesix 4pandfouteen 4 f enegy stees at thefartheregy ledd of thehamric osillator modd. Cealy, thesix 4pstas canct prodre the eigt stas of the enegy shal needed to exdain the net magic nunber 28 And neither cantheforteen 4 f stes, uless for somereacon theysditirtotwodfferetgapswhoseenegy ismolangrequal.

Why waid they sdit? In norquatumterss all farteen states havearbitd and spin anglar nomertum vetas of eatly the same lenghs What is dfferet between stetes is aly the drection of these vetars And the dbsolutedreetions cant berdevart simethephysis carnt depend antheaiention of theaxis sytemin which it is viened What it can depend on is the redive digmert betweenthearditd andspinangla memetumvedas This redivedigmett is daradeized bythedtprodithedweenthethovedors
Therfare, thelogiced weytoget neregy sditingbetweensteswithdfferetly digned arditd and spin angula nomettum is to postute an addiona cortributiontotheHaniltorian of theform

$$
\Delta H \propto L . S
$$

HereL isthearbitd anglar morertumvetor andSthespinore A cortribation to the Haniltorian of this type is celled ansdinorbitinteradion becase it caples sain with arditd angla nometum Spinarat interation wes dready known fromimpoued descipions of the enegy leds of the hydogen atom Howera, that lectronagnic effect isfar too smill to eydainthedbserved spinorbitinteration in nudi. Als, it waidg gt thesign of thecoretion wrongfor netrons
Whilenuder faces remain incompledy undastood, thereis no dabt thet it is these morh stronge forces, and not eledromandic ones, that provide the meehaism Sill, in andogy tothedectraic cæe, theconstat of propationdity is usally teken to indudethent farceon the rudeon and an addtiond fator $1 /$ rtoturnaditd nomertuminto vacoity. Noneof that masadfferncefor the hameric osill dor petetid, for whidhthent effetissill jutaconstat. Either way, net the strength of the resulting interation is adusted to match the expainutd enegyleds.
Hoverr, corsidg thentangla momertumperdor

$$
J \neq+S
$$

If youeypanditssquermagitud

$$
J^{2}=(L+S) \cdot(L+S)=L^{2}+2 L \cdot S+S^{2}
$$

youseethet thesdinarbittermcanbewitteninterms of thesquarmagituds of arditd, spin andne anglarmeretumperatas.

$$
-L . S=-\frac{1}{2}\left[J^{2}-L^{2}-S^{2}\right]
$$

Therefre contrindion stas that have dfinite squre net angla monetum| ${ }^{2}$ remingoodenegyeigefundianseveninthepreserceof spin arditirteration
Now a qick review is needed of the weird way in which angla momerta contine into ne anglar nometum in quetim meedrics In quatum meeharics, thelengh of thefind vetor mot bequatized $\infty \sqrt{j(j+1)} \hbar$ where
 arouts Inpatiala, sincethesainisgivenas $=1 / 2$, thent angiar mometum quatumnumerj can either bel-1/2orl $+1 / 2$ (If I is zeo, thefirst possibility is dsonledat, simesqureangla monetumcand benegdive)
For the if enagy lead $1=3$, so the squere ne anglar nomertumquatum nunberj canaly be5/2a7/2 Andfor agivenvalued j, thereae2 +1 , values for the quatumnumbermging the ne angla monertumin the dosenzdredion That mears that there are six staes withj 5 2and eigt staes with $j=72$ Thetdd isfarteen, sill thesamenumber of independat staes t the $4 f$ led. In fat, the forteen stes of dfinite ne anglar nomettum an be wittenaliner contrindions of theforteenstaes Pidaridly,
$74 \mathrm{f} \uparrow$ and $74 \mathrm{f} \downarrow$ states $\quad \Longrightarrow \quad 64 \mathrm{f}_{5 / 2}$ and $84 \mathrm{f}_{7 / 2}$ states
wherethespetroscopic converion is to show thene anglar mometumj ша stbscipt for staes in which its valueis unantignas The sain-ardit interation rases theenegy of thesix 455/2stes, lat lowes it for the fat, fromabove, for any ste of dafintesquereabid and squere ne angla nometum,

$$
\begin{aligned}
-L . S & =-\frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-s(s+1)] \\
& =\left\{\begin{array}{lc}
\frac{1}{2} l(l+1) \hbar^{2} & \text { for } j=l-\frac{1}{2} \\
-\frac{1}{2} l \hbar^{2} & \text { for } j=l-\frac{1}{2}
\end{array}\right.
\end{aligned}
$$

Theigt 477/2stdes of lowered enegy formtheshdl that is filled t theforth mæicnumber 28

Figre6Schanatic effet of spinabit intradionontheenagy leuds The adaing within bends is reflisic for neatrons The deigetion batind the equelsignistheoffidid one
Figrestons how the sqinarbit spditing of the enegy lexds gives rise to the renaining magic numbers Inthefigre thecofficiat of thespinardittermues simply tiken to vary linealy with the enegy lead n The dedils daperd on whether itisnetronsorpotens, andmoy vay fromndestonudes Espeedly for thehiger enegy bandstheCalombreplionhesaninreeringy lageeffect antheeneges of prons
Themajor shalls, teminted by nægic numbes, ae shown a gey band Inthe nunberingsytemfdlowedhere asbshdl with adfferet nunber athecthes inthesaremajorshal conesfromadfferthamricosillatorenegyled.

95 Saf LemmingEercis-I

Q1 Witedonntapfivenagicnumbers

Q2 DrawWoodsexanpetetid forprotors
Q3 Whatisspinarditcapding?
Q4 Witedowndawbads of Liqiddqpmodd.

96 Fillingof theOrbitsintheShall theryPdertial

Nuder stes havean intringic spin and a well dfined paity, $p=-1$, dfined by the bedaviar of the wavefundion for all the rudeans undr revesd of their cordintes withthecertreof thenudest theaign

$$
\psi\left(-r_{1},-r_{2}, \ldots-r_{A}\right)=p \psi\left(r_{1}, r_{2}, \ldots r_{A}\right)
$$

Thesain and parity of nuder gand stes can usdly bed\&emined fromthe shall model. Protons and netronstendto par upso thet thesain of ecch par is zeoandeachpairheseren paity $(\mathrm{p}=1)$. Thuswehave

- Eveneren rudides (bothZ and A ever) tavezero irtrinsic spin add even parity.
- OddA nude haveoneurparednuden Thespin of thenudesisiseqal to the j value of that unpaired nucleon and the parity is $(-1)^{1}$, wherel is the arditd angla mometumof theu parednuden

Exampe ${ }^{4} \mathrm{~T}_{22}$ (titarium) hesaneennumber of protorsand 25 netrors 20 of the netronsfill theshalsuptomagicnumber 20andthereare5inthe1f7/2stede(l = $3, j=72$) Far of theeformpais and thereminingoneleasto ander son of $7 / 2$ and parity $(-1)^{3}=-1$.

- Odtoodinude. Inthis cæethre is an upared proton whosetad angua nonertumisj ${ }_{1}$ andanuparednatronuhosetdd angla nomertumisj ${ }_{2}$. Thetud spinof then desisthe(vetar) smof theseanglarmomtaand cantikevdues beween $j_{1}-j_{2} \mid$ and $j_{1}+j_{2}$ (inuritsteps). Theparity isgiven by $(-1)^{(1+2)}$, wherel ${ }_{1}$ and ${ }_{2}$ aethearditd angla nometa of the unpared protonandnatronrespedively.
Exampe E_{3} (lithium) hes 3netrons and3protans Thefirst tho of eachfill the 1sledd and thethirdisinthelp32led. Theardit anglar memetur each
is $\mid=1$ so the parity is $(-1) \times(-1)=+1$ (even), but the spin can be anywhere between0and3

97 MegndicDipdeMonet

Since nude with an odd nunber of protens andor neatrons haveirtinsic span theydsoingered possessamændicd plememet
The unt of nagetic dpde menert for a nudes is the "nuder nagean" dfinedes

$$
\mu_{N}=\frac{e \hbar}{2 m_{P}}
$$

which is andogas totheBdr nageton but with the dedron nass redaxed by theprotonnass It isdfinedsuththethemagnic nometd deto aproton with ardit anglar nometuml is μ I.
Expeinmally itisfoundthet themandicmonetof theproten(detoitssin) is

$$
\mu_{p}=279 \mu_{N}=5.58 \mu_{N} S_{1} \quad(s=1 / 2)
$$

ardthat of theneatronis

$$
\mu_{\mathrm{n}}=-1.91 \mu_{\mathrm{N}}=-3.82 \mu_{N}, \quad(\mathrm{~s}=1 / 2)
$$

If weapdy amageicfiddinthez-dretiontoanudasthentheurparedproton

contribution to the z^{-}component of the magnetic moment

$$
\mu^{2}=\left(5.58 z^{2}++^{2}\right) \mu_{N} .
$$

As inthecereof theZernen effed, thevetor modd may be used to expressthis ळ

$$
\mu^{z}=\frac{(5.58\langle s . j\rangle+\langle l . j\rangle)}{\left\langle j^{2}\right\rangle} j^{z} \mu_{N}
$$

Using $\left\langle j^{2}\right\rangle=j(j+1) \hbar^{2}$

$$
\langle s . j\rangle=\frac{1}{2}\left(\left\langle j^{2}\right\rangle+\left\langle s^{2}\right\rangle-\left\langle l^{2}\right\rangle\right)
$$

$$
\begin{aligned}
& =\frac{\hbar^{2}}{2}[j(j+1)+s(s+1)-l(l+1)] \\
\langle l . j\rangle & =\frac{1}{2}\left(\left\langle j^{2}\right\rangle+\left\langle l^{2}\right\rangle-\left\langle s^{2}\right\rangle\right) \\
& =\frac{\hbar^{2}}{2}[j(j+1)+l(l+1)-s(s+1)]
\end{aligned}
$$

Weendupwithepressionforthecartibtiontothemrenticmenet
$\mu^{z}=\frac{(5.58[j(j+1)+s(s+1)-l(l+1)]+[j(j+1)+l(l+1)-s(s+1)])}{2 j(j+1)} j \mu_{N}$
adfor anatronwithorbitd anglar nomertuml' andtad angla nometumj' wegł (ndcortribitionfromtheorditd anglar nometumbecasethenatronis undagee)

$$
\mu^{z}=\frac{\left(5.58\left[j^{\prime}\left(j^{\prime}+1\right)+s^{`}\left(s^{\prime}+1\right)-l^{\prime}\left(l^{\prime}+1\right)\right]\right.}{2 j^{\prime}\left(j^{\prime}+1\right)} j^{\prime} \mu_{N}
$$

Thus, for exampleif weconside thenudide'i3for which thereis an unpared proteninthe2p32state $(I=1, j=32$ thentheetin\#teof thenægndicmomet is

$$
\mu=3.79 \mu
$$

Themred valueis 326uN so theestinteis nd toogood For heavier nude theestimatefromtheshal nodl ges morh warse
Thepreisecrign of thenagndic dpdenometisnotundestood hatingened they carnt bepredced fromtheshdl modd. For eamplefor thenudide ${ }^{17} \mathrm{~F}_{9}$ (fluwine), the mared value of the magnic nomet is 4.74 N whees the value predicted form the above model is $-0.26 \mu \mathrm{~N}$. Thereaecontribtions to the magnicnomertsfromthenuderpoterid thet isnot well-undastood

98 Shall Modal Failure

1 ExitadStas

As inthecæeof Atomic Physics, nude canbeinexatedstes, which deray via theenission of aphton (gammaray) baktotheirgoundste(either dredtyor indredty). Soneof theseexited stes arestees inwtichoneof thematronsor potansintheater shdl isprontedtoahigherengyleve.

Honera, ulike Atomic Physics, it is dso posside that somedimes it is enageically chepper to pronteanudeenfromanimerdosedshdl, rtherthena nudeenformanater shal into a high eregy ste Mreever, exited staes in which rorethan ore nuden is pronted doweits gand ste is mod more commeninNuder PhysicsthaninAtomic Physics
Thusthenuder spedturnof stes is very rich indeed but very compicted and canct beerily undastoodintems of theshdl nodd. Most of theexitedstas decay so rapidy thet ther liftimes carnot be med Thereae soneexited stas, howeve, which remeadddebecasethey camotdecay withat vidaing thesdedionnles Theseexdtedstes areknowna "isomes", andther liffimes canbeneared

2 Impafed Paining

Incerof titarium47, theshdl rodal predds that therewill befivenatrons in anurilled4f7/2sbbshdl. Itisbdienedthatthis isindeedcorret Theu petturbed shal moda makesmpreddionsabotthenuder span Howerer, theodtpatide shall modd saysthat inthega ndstethenider spinshaid bethat of theodd neatron 7/2 But it is not, the spin is5/2 The paining of the even nunber of neatronsinthe477/2shal isnd compde Whileufortunte, this is really not that surpising TheperturbiionHaniltorian ueed to daivethe preddion of nudeen paringis avey oureone It isquitecommento seesubshllswithaleet thee patides and threehdes (threeplaces for addtional patides) end up with a urit less spinthentheodkpatidemoda predds Itdnostheppenedforoxygen 19.

3 WrangShll:

Flurine19shonsancrefundanetd failureof theshall modd. Theshal modl woild predd that the ood prom is in the $305 / 2$ state giving the nudes sain5/2and even paity. In fat, it shald be jut like fluorine17. For the unpeturbedshdl nodd, theaddtiond two netronsshuldnotmakeasigificat dfference BLthenuder sqinis1/2, and thet mens thet theodd proton mest be in the 351/2state Whichshow that the unpeturbed shal rood camot quildivey eddanthissueppingof thetwostes
Itisthetheoreician'sloss, buttheeprerinetdit's sgin Thefat thetfluarinehes spin onehaf makes it a ppola tagit for nuder nagedic resmancestudes

Spincnehaff nude areeby to ardyzeand they do not havenortrivid dectric fiedsthetmessupthericeshapsigndsinnude withlager spin
And maybethethereridian can tike someconfart in thefat thet this comple failueis raearang theligt nude. Infat, themincther erampleisfluorine 19s smimor twin neen-19. Also, thereis anexded stete withthecoreet sain and paity jut dowethegandste Butmofury buinesshere if you aegaingto cal fluorine19dnostrigt, youhavetocal fluorine 17 dnotwrong
Notedso how low the $1 / 2$ exited statehes berore Majoethis canbesamenht undastoodfromthefadthat thelikked - 1 201/2 potanisnowinasimilar spotid ardit withthreother nudems, rathe thanjut onelikeinthecæeof flumine17.
 describeit, onethatindudes nudemsof bothtypeinthepeturbaion
And netethat formlding a peturbedshell nood fromphysicd piniples is not erey anyma, becase the baic shdl nodd drealy indudes the interations betveennudersinanaragesenæe Thepaturbaionsmit notjutidatify the inteations, bat mereimportatly, what pat of theseinteradions is sill missing fromtheu upeturbedshdl nood.

4 Prondior

Selerium77illustras a morefundenetd reesonwhy theod patidemy end upinthewangstae Thefing oddneatron wald nom ally bethetthirdareinthe 5092 state That waldgivethenudes ant spin of 9 2ad positiveprity. There is indeedalowlyingexitedsteleliketht. (Itisjutabovea72onetht migtbe an ffect of incomplee paring) Howera, thenudes finds thet if it promess a netronfromthe401/2shall tothe59920rejutdowe thatmatron canpairypt higer angla nometum loweing the ovedl nuder enegy. That leaves the ood natron in the $4 \mathrm{p} 1 / 2$ stat, giving thenides a ne spin of $1 / 2$ and negdive paity. Prondionheppensqitedtenif thereaemorethen32nudensof agiven typeardthereis asdeof lower spinimmedddy badowtheorebeingfilled

5 Nonsphaicd nudas

Tatdum181 is a neemplenudes thet is not schericd. For it, theshell modd simply doesnd apdy a drivedhere Sothereisnoneedto wary daatit Which is agoodthing beaseeit does not semeeytojubify a7/2+gandsdebesed
on the shal nood. Nongdreicd nude apper ner the stdde line for nass nunbers of dbat 150 to 190 and thove 220 . There are aso a few with narss nunbers bavern20and 30
Preston \& Bhedri givean etersive tade of nuderns with odd mass number, listing shdl ocaption numbes and spin Notdde is iran-57, believed to have threenetronsinthe40322shal atheshal modd sass, atwith ane nuder sain of $1 / 2$. Since the three netrons carnt prodre that sqin in a shal modl exdantionthe6 protars inthe4f7/2shdl will needto cortribute Ingened the tdde shons that the gound staespin values of scheicd nude with ood nass numbers ae anmes all corredly predided if you know the corret ocaption numbers of theshdls Howeve, preddingthosenumbersfor heay nude isften nortivia.

99 SafLemmingExeris-II

Q1 Cadaenagnicmeneta'ili
Q2 Whtisa"'ranudas"
Q3 Givethespin and perity, कeppeded fromtheshal moda, of thegand stes of ${ }^{13} \mathrm{Yb}$
Q4 Witeashatndean "Failures of nudershdl modd"

910 Sumpry

The unit stats with the introdution of Nuder nodds folloned by a dłtiled dsassiono nuder shal nodd.

911Gomay

Anglar Monertum: A mare of the nemertum of a booy in rodiond motiondbat its certre of nass Tedrically, theangla mometum abody is equa to thenmess of theboly multiplied by thecross prod at of theposition vedor of thepatide with its veloity vetar. Theangla nomertumf asytemis the sumof theanyla nomertaof itsconstituat patides, andthistod isconseved unlessatedonbyanatsidefarce
Natron: Oneof thetwo main buildng dods (dang with the proton) of the nudes t the certre of an tom Natrons haveessetidly the sane mass a a

quak andtwo "down" qaiks Thenunter of natrorsinanatomdetemines the istope of an demert Otside of a nudes, they are untdde and dsintegte withindattenmintes
Nudas: Thetigt duster of nudems (positively-darged protars and zeodragednatrons, orjutasingeproteninthecereof hydogen) tthecertreof an tom cortaring morethen 99.9% of the atom's mass Thenudes of atypicd tomis dat 100,00 srifle then the todd size of the atorrdapendng on the indvid datan).
Podon: One of the two man bildng dods (dong with the neatron) of the nudest thecetre of antom Protans cary a positivedetricd drage, equl and qposite to that of detrons, and are nade up of two " 4 " quaks and one "down" qaak Thenumber of protons inandom's nudesdtemminesits tomic nunter andthuswtichdericd demetitrepresets
Spin: Spinisadaradeistic propety of denertary patides

912 AnsmastoSeffeamingEvarise

AnavastoSdf LemingExacisel

Ansl: 2,8,20,28,50

AnE3 $\Delta H \propto L . S$
HereL is the arditd angla monetum vedar andSthe spin one A cortribtion to the Hariltorian of this type is called ansainarditintantion beeaseitcapessanwithardit angla monetum
Ans4 SeeSection9.2

ArsmastoSdf LamingExacisell

Ansl: $\mu=379 \mathrm{~N}$
Ans2 A nudas whose radus is ndiceddy lager then that prediced by the liquiddqpforma
Ans3 52-

913Exarcs

Q1 Gvethespinand paity, कexpetedfromtheshdl mod, of thegound
staes of
7i, 5N, 205, 43Ca 8Ru 133Cs
Q2 Witedbunashatndeannuders shal nod.

ReferencesandSuggeted Resing:

1 Conceqts of Nuder Physicsby BemardL. Conen 1911
2 Introdutary Nudear Physic, by K.S. Kram, 1988
3 Strutureof theNidasbyM.A. Pretonand R.K. Bhedri,195,
4 Theary of Nudes ByA. SterkoandV. Tattkoskii,1997.
5. Theshal rodd Nobd LeturebyMariaGoqpeetMayer,1963

UNT-IC BetaDasa

Srutureof theunit

100 Ojectives

101 Introdution
102 Gened darateritics of werkinteration
10.3 Nuder Beadecayandleqtoncadure
10.4 EnegyConsidardionin β^{-}, β^{+}andECreations

105 Fermi theory of betadecay
10.6 Eedronengy spedrumandFemiKuriedd
10.7 Parity conservedsdetionnuesforFemi andGarowTelle Trasitions

108 ftvdues andfardadanBedatrasitions
109 Expeimetd veificaion of prityvidaion
1010 v-A Theory of Fermi beta decay with parity conserving and noconservingtems
10.11 Summay
10.12 Gossary

1013 Exercise
1014 ArsnestoExecise
ReferncesandSuggestedReedngs

1000biedive

Thenudesdecasthragh vaia sfams of β decay: β^{+}, β^{-}addedeconcadure The reader leam abat allowed and fordidken beda trasitions and ft -vdues Femi and Garow Teller trasitions ae exdaned so that the studat can dfferetide bedveen two types of transitions. .V-A theory of beta decay is introd reedsothtthereedrleamstheconcept of perity vidaioninthecritet of betadecay process

101Inrodutior

 theoreicd modss using conceqts and tods of quatummederics and quatum fidd theary. TheFemi Kuiepdd and prity non conservaion aeded red from thetheareicd (phenorerndogicd) modds Theconcept of ft vilues and Fermi and Garow -Teller trasitions are introdred to undastand the expeimetd doserveions. The better compenersion of beta decay processes canes from recogition of therde of weakinterationinthephenoma

102Genard Cheradaristicsof WezkIntradion

Nuder beda decay is ony onedess of phemerra at of many dher dases of phencrera ocaring de to wedk intradion. The week interation not aly prodres trasitions between nuder staes bat a wide caegries of phencmera indving letons, nesons, hedrons etc The week processes carnt be doserved becasetheseaedower byseved adas of nagitudecompredwith compeing dedromandic andstrong processes Thestudes of week processes canberade in the aees wherefater dedronrandic and strong processes areforbidden and supressedbysdetionnues
Let us considg the basic weak reacions in rude which prodre nuder trasitions.
Thedecay of afreenetronandaboundprotenare

$$
\begin{equation*}
n \rightarrow p+e^{-}+\bar{v}_{e} \tag{10.1}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{\text {bound }} \rightarrow n+e^{+}+v_{e} \tag{10.2}
\end{equation*}
$$

Thedecay of hedras,forexample

$$
\begin{align*}
\pi^{+} & \rightarrow \mu^{+}+v_{\mu} \tag{10.3}\\
& \rightarrow e^{+}+v_{e} \\
\pi^{-} & \rightarrow \mu^{-}+\bar{v}_{\mu} \tag{10.4}\\
& \rightarrow e^{-}+\bar{v}_{e} \\
\Sigma^{-} & \rightarrow n+\pi^{-} \tag{10.5}
\end{align*}
$$

$$
\begin{align*}
\kappa^{+} & \rightarrow \pi^{+}+\pi^{o} \tag{100}\\
& \rightarrow \pi^{+}+\pi^{-}+\pi^{+}
\end{align*}
$$

Thedecay of nudens [givenbyeq(101) add(102)] andderay of hedrns[given by eq(103) and (10.4)] ar called senir letric proceses a these processes indveletansdsa.
Thedecay of hadons withat any leton are called nonleqtric processes [given byeq(10.5) ad(106).
Thedecay of letonsare,foreample,

$$
\begin{equation*}
\mu^{+} \rightarrow e^{+}+v_{e}+\bar{v}_{\mu} \tag{10.7}
\end{equation*}
$$

Thisispreledtoric process
Nowitisdert thet weak proceses areof threetypes preleqtoric, seril ledtric and nonleqtaric and nonledtric .Beta decay is besically serni letaric nudeen decayscasingndertrasitionsandanintegd pat of weak processes
Wewill nowconside thegened darateitics of week inteation processes

(i) Urivesad Stengtr

The week interation etibits the sare interadion strengh in all types of the processes like pre leqtoric, seril ledtric and non lettric processes This urivesd weekcaplingcontat, designtedby Femi capdingcontats, hesthe samevalue

$$
\begin{align*}
G_{F} & =1.43584 \pm 0.00003 \times 10^{-62} \mathrm{~J}-\mathrm{m}^{3} \\
& =1.166637 \pm 0.00002 \times 10^{-11}(\hbar c)^{3}(\mathrm{MeV})^{-2} \tag{108}
\end{align*}
$$

Whether it ismedtraghsper allowed β-decayinnude orfrom mundecay offromother weak processes

(ii) W^{+}, W^{-}and Z^{c} Vetor BosorsareWezk IntrationCaries

The vetor Bosons cary the weak interation a phans carry detronmentic interation Thenasses of the vetor bosansae

$$
\left.\begin{array}{l}
M_{W^{ \pm}} c^{2}=80.9 \pm 1.4 \mathrm{GeV} \tag{10.9}\\
M_{Z^{\circ}} c^{2}=91.9 \pm 1.8 \mathrm{GeV}
\end{array}\right\}
$$

(iii) Rangeof weskirtradionisvayshot($\left(10^{-3} \mathrm{fm}\right.$):

The darateistic range of the weak intaraion can be colalited uing Heserbergsuncetaintyrdaion

$$
\begin{equation*}
\Delta r(\Delta p c) \geq \frac{\hbar c}{2} \tag{1010}
\end{equation*}
$$

andtding $\mathrm{Mc}^{2} \approx 100 \mathrm{GeV}$ कtydicd massof week vetor boson, wegt

$$
\begin{equation*}
\Delta r \simeq \frac{\hbar c}{2 \mathrm{Mc}^{2}} \approx \frac{200 \mathrm{MeV} \mathrm{fm}}{2 \times 100 \mathrm{GeV}} \approx 10^{-3} \mathrm{fm} \tag{1011}
\end{equation*}
$$

We se that range of the werk inteadion is aproximatdy tree ordas of nagitudesnalle thanlongrageof thenuderforce (10^{-3} timessmaler).

(in) SU_{3} Faar SymmyMixing

Funderutally, bedadecay nay beviened monetypeof quak tranformedinto andhe throghexdangeof darged vedor boson Ingered anetypeof patide (quak orleqtan) dangesinto andher paridethraghexdangeof $W^{ \pm}$and Z^{o} in the week interation proesses. When aquak decays into andher quak, it does notneressaily haveadffiriteflavari.e itmay resitinFlavarMixing
Theastmry Tranfardionfor weak decay arangfarquisudc andscan beepressedinterms of theCaddiboange, θ_{c}

$$
j_{\text {weak }}^{+}=(\bar{u} \bar{c})\left[\begin{array}{cc}
\cos \theta_{c} & \sin \theta_{c} \tag{1012}\\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right]\binom{d}{s}
$$

Themregernd cæeof thetranformionfor weak decay arangdl sixquals udcstandbcanbeefresseduingthe3×3Kdayari -Mazkanamatrix

$$
j_{\text {weak }}^{+}=\left(\begin{array}{llll}
\bar{u} & \bar{c} & \bar{t})
\end{array}\left[\begin{array}{lll}
M_{11} & M_{12} & M_{13} \tag{1013}\\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)\right.
$$

Therinematrix denets arefundions of theemixing anges and apwesefata. Inthenudeer beta decas, weare concerned withtranformaion beweenuandd qaaks Le us vien (10.1) and (10.2) decas in tems of qaak neek tranformaions

$$
\begin{align*}
& n \rightarrow p+e^{-}+\bar{v}_{e} \\
& \begin{aligned}
& \Rightarrow\left(\begin{array}{ll}
\text { und }
\end{array}\right) \rightarrow\left(\begin{array}{ll}
\text { und })
\end{array}\right)+W^{-} \\
& \\
& \longrightarrow e^{-}+\bar{v}_{e}
\end{aligned} \\
& \begin{array}{r}
\Rightarrow d \rightarrow u+W^{-} \\
\longleftrightarrow e^{-}+\bar{v}_{e}
\end{array} \tag{1014}\\
& p \rightarrow n+e^{+}+v_{e} \\
& \begin{aligned}
& \Rightarrow(u u d) \\
& \rightarrow(u d d)+W^{+}+v_{e}
\end{aligned} \\
& \begin{array}{l}
\Rightarrow u \rightarrow d+W^{+} \\
\longleftrightarrow e^{+}+v_{e}
\end{array} \tag{1015}
\end{align*}
$$

TheFegrmandagansfor β^{-}and β^{+}decaysareshowninfigure(101) andfigure (10.2).

Figre101: β^{-}decay

Figre102 β^{+}decay

(v) ParityNancareaveior

Theparitytransommianistheqeadionwhichinvetsthespaid coordntes and physicallydescribedastaking mirror inageof thecoordntesystem Thepaity of a patide(Femion) and itsatipatide(Femion) areqpositeto each cher .The parityof π istaken as negdive Theforla dfirition of parity qperdorP isgiven a

$$
\begin{equation*}
P \psi(\vec{r})=\psi(-\vec{r})= \pm \psi(\vec{r}) \tag{1016}
\end{equation*}
$$

Here + sign corespands to positiveparity (even) while- sign refes to negdive parity (odd) of thefundian $\psi(\vec{r})$. If afundiondbesndffll intoanyof thesetwo colegries is said to havenandfiniteparity It is helpfil to consida theparity of followingtypeof netureof qpedtorsfindians.

S.Na	Typeof quedor/Fundiar	Symbd	Paity
1	Usid vecta/Pdar veda (eramde \vec{r}, \vec{p})	V	Odd
2	Axid Veta Examde $\vec{L}, \vec{S}, \vec{r} \times \vec{p}$	A	Ever
3	Scar Examde dasity, numericd contatslikee 1π; da prodit of thoaxid vetarsorof thopda vetars	\bigcirc	Ever
4	Psambscda Examdes Scala prourt of an axid and a pla vetar	F	Ot

Nowle us considr theargula dstribtion of detronsenittedin β^{-}decay with giventonetum ${ }_{\vec{p}}$; eregy E andsain $\bar{\sigma}$, danced by $w(\theta)$.Theexpessionfor $W(\theta)$ isgivenby

$$
\begin{align*}
& W(\theta)=1+a \frac{\vec{\sigma} \cdot \vec{p}}{E} \\
& W(\theta)=1+a \frac{v}{c} \cos \theta \tag{1017}
\end{align*}
$$

Where θ : ange of detron evission between novertum \vec{p} and its anglar nometimū.
Thefirstermis a scala whilethesecond is a peadb sceda in eq(1017) and if $a \neq 0$,then thesetwoterns will bedmedfferertly under paity querdion It will leadto dfferet anglar dstribtionundr spodid coordinteinersion and paity viddion of $w(\theta)$. The expeinertd merert of $w(\theta)$ in the ${ }_{27}^{60} C o$ nudes β^{-}decay expeineet caried at by Wu and dhes carfimed this strage condusion. Theevistence of two decay nodes of K^{+}innture(10.) (find staes having two and three pians) dso corfimed prity nonconservaion in weak inteadions Hence paity non conservaion is a besic drarateistic of weak proceses

103Nuder BetaDesayandLqdonCadure

Thenude , which liedbovethestddility region, enit detrons, atimatrinos and dagter nude with saremass number A remin क residd nude, but tomic nunber inceesedby urity. In β^{-}decay, anatronis redaced by/tranformedinto apcton, andprertanddagternide aeisdbas consequatly. Theprocesscanbeeypressedm:

$$
\begin{equation*}
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{v}_{e} \tag{1018}
\end{equation*}
$$

Themrepreiseexpessioncanbewittenas

$$
\begin{equation*}
{ }_{0}^{1} n \rightarrow{ }_{1}^{1} p^{+}+{ }_{-1}^{0} e^{-}+{ }_{0}^{0} \bar{v}_{e} \tag{1018a}
\end{equation*}
$$

Thefdllowingdoservaionscanbeepressed eydiditly
(i) X and Y aeisobas Nurdensareconserved; $\mathrm{A}=\mathrm{A}$.
(ii) Eletriccrarceisconseved; $0=+1 e-1 e \Rightarrow 0=0$
(iii) Intrinsicsainiscorserved
(iv) Leqtonsarecorserved

For Example

$$
\begin{equation*}
{ }_{6}^{14} C \rightarrow{ }_{7}^{14} N+e^{-}+\bar{v}_{e} \tag{1018b}
\end{equation*}
$$

${ }_{6}^{14} C$ isa β^{-}enitte.
Similaly, for β^{+}decay, theprocess canbeexpressedas

$$
\begin{equation*}
{ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v_{e} \tag{1019}
\end{equation*}
$$

Themore preiseepressiancanbewittena

$$
p^{+} \rightarrow n+e^{+}+v_{e}
$$

Thefdlowingdoservaionscanbemadeexdidtly
(i) Xand Y aeisdasisNudeensareconserved; $A=A$
(ii) Leqtorsarecorserved $0=-1+1$
(iii) Eledricdargeiscorseved $+1 e=+1 e$
(iv) Intrinsicspinisconseved

WecantakefdlowingExample

$$
\begin{align*}
& { }_{6}^{11} C \rightarrow{ }_{5}^{11} B+e^{+}+v_{e} \tag{10.190}\\
& { }_{6}^{11} C \text { isa } \beta^{+} \text {enitter. }
\end{align*}
$$

Similaty, fordectroncadure(EC),theprocesscanbeeyressedas

$$
\begin{equation*}
{ }_{Z}^{A} X+e^{-} \rightarrow{ }_{Z-1}^{A} Y+v_{e} \tag{1020}
\end{equation*}
$$

Themorepreiseexpessioncanbewittena

$$
\begin{equation*}
p^{+}+e^{-} \rightarrow n+v_{e} \tag{10.20a}
\end{equation*}
$$

Again, followingdoservaiorscanbenwakeydidtly
(i) XandY reisobas Nudemsareconserved $A=A$
(ii) Eetricdargeisconserved $+1 e-1 e=0+0=0$
(iii) Leqtorsarecorserved
(iv) Itrinsicspinisconserved

Wetckeandhrexandeas

$$
\begin{align*}
& { }_{4}^{7} B e+e^{-} \rightarrow{ }_{3}^{7} \mathrm{Li}+v_{e} \tag{10.20b}\\
& {\left[T_{1 / 2}=53.4 d \quad, Q=0.86 \mathrm{MeV}\right]}
\end{align*}
$$

Speeid Note :Positron (e^{+}) wes theoretically prediced by Dirac (1927) and eyperimetally veifiedbyAndason(1932).

104 Enagy Considartion in β^{-}, β^{+}and Eledron Cadure Restiar:

Leusconider therddianbedweentheatomicnassandthenuderrmass

$$
\begin{align*}
& M(Z, A)=N(Z, A)+Z m_{e}-B_{Z} \tag{1021}\\
& M^{*}(Z, A)=N(Z, A)+Z m_{e}-B_{Z}^{*}(K \rightarrow P, \ldots) \tag{10.27a}
\end{align*}
$$

where

$$
\begin{aligned}
& M(Z, A) \cong \text { nessof the atom }(Z, A) \text { ingrandstate } \\
& m_{e} \cong \text { nassof thefreededran }
\end{aligned}
$$

$N(Z, A) \cong$ messof thenudes (Z, A) ingoundstde
B_{Z} : Bindingenegy of all arbiting eetrans of tam $M(Z, A)$ ingandstae

$$
=\sum_{i=1}^{Z} b_{i}
$$

$M^{*}(Z, A)$:nessof theatom (Z, A) inexdtedstate $\{$ hole patidepar (h - p pair $\left.)\right\}$ $B_{Z}^{*}(K \rightarrow P)$: Bindng enegy of all arditing electrans of tomin $M^{*}(Z, A)$ in exdtedsted h - p pair $)$

$$
\begin{align*}
& =\sum_{i=1}^{Z} b_{i}+\left(b_{P}-b_{K}\right) \\
& =B_{Z}-\varepsilon_{p h} \tag{1022}
\end{align*}
$$

Thedffereceinbindingenegy B_{Z} of Zorditing dectrons of theatom $M(Z, A)$ and thebindingenegy $B_{Z \pm 1}$ of $Z \pm 1$ eletronsof theatom $M(Z \pm 1, A)$ isverysnal. Thedfferencis $\triangle B \simeq 10-50 \mathrm{keV}$ typicdly.
Themasses $M(Z, A), N(Z, A)$ and m_{e} aretheardar of MeV. Therdio $\frac{\Delta B}{\Delta M}$ in β processesisof thearder of 0.1% orless

TheQvaluefor β^{-}decay.

$$
\begin{align*}
& { }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{v}_{e} \\
& \left(n \rightarrow p^{+}+e^{-}+\bar{v}_{e}\right) \text { isgiven } \\
& Q_{\beta^{-}}=N_{Z}-N_{Z+1}-m_{e} \tag{1023}
\end{align*}
$$

If wednangen idernessesintotamicnassesthen

$$
\begin{align*}
& Q_{\beta^{-}}=\left[\left(M_{Z}+B_{Z}-Z m_{e}\right)-\left\{M_{Z+1}+B_{Z+1}-(Z+1) m_{e}\right\}\right]-m_{e} \\
& Q_{\beta^{-}}=\left[\left(M_{Z}+B_{Z}\right)-\left\{M_{Z+1}+B_{Z+1}\right\}\right] \tag{10,24}
\end{align*}
$$

TheQvaluefor β^{+}deca.

$$
\begin{align*}
& { }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v_{e} \\
& \left(p \rightarrow n+e^{+}+v_{e}\right) \text { isgivena } \\
& Q_{\beta^{+}}=N_{Z}-N_{Z-1}-m_{e} \tag{1025}
\end{align*}
$$

Changingnudernmesesirtodamicnuses, wecanrevitedboverddionas

$$
\begin{align*}
& Q_{\beta^{*}}=\left[\left(M_{Z}+B_{Z}-Z m_{e}\right)-\left\{M_{Z-1}+B_{Z-1}-(Z-1) m_{e}\right\}\right]-m_{e} \\
& Q_{\beta^{*}}=\left[\left(M_{Z}+B_{Z}\right)-\left(M_{Z-1}+B_{Z-1}\right)\right]-2 m_{e} \tag{1026}
\end{align*}
$$

TheQvalueforEC

$$
\begin{align*}
& { }_{Z}^{A} X+e^{-} \rightarrow{ }_{Z-1}^{A} Y+v_{e} \\
& \left(p^{+}+e^{-} \rightarrow n+v_{e}\right) \text { isgivenc } \\
& Q_{E C}=N_{Z}+m_{e^{-}}-N_{Z-1}-b_{Z}^{e}(K) \tag{1027}
\end{align*}
$$

where $b_{Z}^{e}(K)$: bindngenegy of K detron Changingndernmesesintotanic

$$
\begin{align*}
& Q_{E C}=M_{Z}-M_{Z-1}^{*} \tag{1028}\\
& Q_{E C}=\left(M_{Z}+B_{Z}\right)-\left(M_{Z-1}+B_{Z-1}\right)-b_{Z}^{e}(K)
\end{align*}
$$

HencewendicethtEC (detroncadure) decay danmodthat miss dfferenceof paret- dayter motbeal leat geterthen orequal tolindingeregy of KorL orany dher shal. TheQ valueinthis cæe is sumof kindic enegy of dagter nudesandmatrin.

105Femi Thearyof BetaDeray

In the beta decay a nudeen danges into andhe typeof nudeen and detron (positron) and atinatimo (natrin) are creted Femi asumed paity conservionbathiscalaliors ind vedany scdarquatities. Therestlto f his theory sill standinlargeneare ingateof thefundametd danges prodreedby thepaity viddion

Thetheoryeydaned

(1) Formof beta spedra: Nunber of dectrons in beta proces/enegy inteval $\frac{d N_{e}}{d E_{e}}$ verusengy of detron E_{e}.
(2) Theredionbetheennaximmenegy of bedadecay andmenlifetime
(3) Thedasifiction of bedatranitions andestdismmetof ssedionnues

The trasition prodadility for beda trasition is given by Gadden Rule of time depercat perturbetiontheory.

$$
\begin{equation*}
\omega=\frac{2 \pi}{\hbar}\left|H_{i f}\right|^{2} g\left(E_{f}\right) \tag{1029}
\end{equation*}
$$

where
$H_{i f} \equiv$ Matrixdenertof betainteration
$g\left(E_{f}\right)=$ Density of find enegystdes of fina prodits of betaprocess
$\omega \equiv$ Probadility of trasition
The redion is apdicdde bease urivesd Femi copding constat G and urivesa vetorcapdingconstat $G_{V \beta}$ aeveysmall.
Letusconsida thetranition

$$
\begin{aligned}
& { }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-1}+\bar{v}_{e} \\
& \left(n \rightarrow p^{+}+e^{-}+\bar{v}_{e}\right)
\end{aligned}
$$

$\operatorname{Then} \psi_{f} \equiv \psi_{Y} \psi_{e}-\psi_{\bar{v}_{e}}$

$$
\begin{equation*}
\psi_{i} \equiv \psi_{X} \tag{1030}
\end{equation*}
$$

NowFemi ass medtheformof interation

$$
\begin{equation*}
\hat{H}=G_{V \beta} \hat{M} \tag{1031}
\end{equation*}
$$

Where $G_{V \beta}=(1.4029 \pm 0.0022) \times 10^{-62} \mathrm{Jm}^{3}$

$$
\begin{aligned}
& =(1.1396 \pm 0.0018) \times 10^{-11}(\hbar c)^{3}(\mathrm{MeV})^{-2} \\
& =(0.875 \pm 0.002) \times 10^{-4} \mathrm{MeV}(\mathrm{fm})^{3}
\end{aligned}
$$

Wehavedsassed G eqlie ineqution(102).
Thenłtrixdenetof beaprocess is

$$
\begin{equation*}
H_{i f}=G_{V \beta} \int \psi_{Y}^{*} \psi_{e}^{*} \psi_{e}^{*}-\psi_{\bar{v}_{e}}^{*} M \psi_{X} d \tau \tag{1032}
\end{equation*}
$$

Tdikn $\psi_{\bar{v}_{s}}^{*}=\psi_{v_{0}}$

$$
H_{i f}=G_{V \beta} \int \psi_{Y}^{*} \psi_{e}^{*} \psi_{v_{e}} M \psi_{X} d \tau
$$

Letusconsider peretnudes x trest, then mometumconservionyidds

$$
\begin{equation*}
\vec{P}_{R}+\vec{P}_{e}+\vec{P}_{\vec{v}_{e}}=\vec{P}_{X}=0 \tag{1033}
\end{equation*}
$$

Theenegyconservaionleadto

$$
\begin{equation*}
E_{o}=E_{R}+E_{e}+E_{\bar{v}_{e}} \tag{1034}
\end{equation*}
$$

Le ustakethe cæewhen detron and netrino ae considred क a par and the nudesandthisparsharethenomatumi.e

$$
\begin{equation*}
\vec{P}_{R m a x}+\vec{P}_{e \bar{v}_{e} \text { max }}=0 \tag{1035}
\end{equation*}
$$

Then $E_{o}=E_{R \text { max }}+E_{e \bar{v}_{e} \text { max }}$
Eq(10.35) andeq(1036) imdy

$$
\vec{P}_{R \text { max }}=-\vec{p}_{e \bar{v}_{e} \max }
$$

$$
\Rightarrow E_{R \max }=\frac{P_{R \max }^{2}}{2 A \cdot M .}
$$

$$
=\frac{p_{e \bar{v}_{e} \max }^{2}}{2 A \cdot M .}=\frac{E_{e \max }^{2}-m_{e}^{2} c^{4}}{2 A \cdot M \cdot m_{e} c^{2}} m_{e}
$$

$$
\begin{equation*}
\Rightarrow E_{R \max }=\frac{m_{e}}{2 A \cdot M .} \frac{\left(E_{e \max }^{2}-m_{e}^{2} c^{4}\right)}{m_{e} c^{2}} \tag{1037}
\end{equation*}
$$

Where

$$
\begin{aligned}
& A=\text { Massnunber of dadternides } \\
& m_{e}=\text { massof detronenitted in } \beta \text { decay } \\
& M \equiv \text { Mass of anudeen }
\end{aligned}
$$

Therdio $\frac{E_{R \max }}{E_{e \bar{v}_{e} \max }}$ canbeerdutedm

$$
\frac{E_{R \max }}{E_{e \text { max }}}=\left(\frac{m_{e}}{2 A M}\right)\left[\frac{E_{e \text { max }}^{2}-m_{e}^{2} c^{4}}{E_{e \max } m_{e} c^{2}}\right]
$$

Takethetypicd values

$$
\begin{align*}
& m_{e} \simeq \frac{1}{2} \mathrm{MeV}, M \simeq 1000 \mathrm{MeV}, A \sim 10 \text {, then } \\
& \frac{m_{e}}{2 A M} \simeq 3 \times 10^{-5}, m_{e} c^{2} \sim \frac{1}{2} \mathrm{MeV}, E_{e \text { max }} \simeq 10 \mathrm{MeV} \\
& \frac{E_{e \text { max }}^{2}-m_{e}^{2} c^{4}}{E_{e \text { max }} m_{e} c^{2}} \simeq 20 \tag{1038}
\end{align*}
$$

Hence $\frac{E_{R \text { max }}}{E_{\text {emax }}} \simeq 60 \times 10^{-5} \approx 10^{-3}$
Hencewecondudethat reedil erergy canberegleted
Nowaproxinteenegy nometumconservaionrediorscannowbewitten

$$
\begin{align*}
& \vec{P}_{R}+\vec{p}_{e}+\vec{p}_{v_{e}}=0 \\
& E_{e}+E_{v_{e}}=E_{o} \tag{1039}
\end{align*}
$$

Theenegyin β decay processissharedby ledronandnatrinoffetively.

106EledronEnary ypedrumandFermi KuriePld

Wevfundiorsofati natrinoandetron

The natrino inteats very werkly with nudeans and move with $v_{v} \cong c$. It is, therfare, resonddeto seeplanevavefreepatide waveuncion

$$
\begin{equation*}
\psi_{v_{e}}=\frac{1}{\Omega^{1 / 2}} e^{-i\left(\vec{p}_{v} \cdot \vec{r}\right) / \hbar} \tag{1040}
\end{equation*}
$$

where $\Omega \equiv$ vdureof thebox endosingthesytem

Thedectroninteratswithnudeanslatitsvecity isvery tigh so wecannegeet the eletrarandic interation The eetron warefundian can dso betken as danewarefreepatidewareundion:

$$
\begin{equation*}
\psi_{e}^{*}=\frac{1}{\Omega^{1 / 2}} e^{-i\left(\vec{p}_{e} \cdot \vec{r}\right) / \hbar} \tag{10.41}
\end{equation*}
$$

Futher

$$
\begin{aligned}
\psi_{e}^{*} \psi_{v_{e}} & =\frac{1}{\Omega} e^{-i\left(\vec{p}_{e}+\vec{p}_{v_{e}}\right) \cdot \vec{r} / \hbar} \\
& =\frac{1}{\Omega}\left[1-\frac{-i\left(\vec{p}_{e}+\vec{p}_{v_{e}}\right) \cdot \vec{r}}{\hbar}-\frac{\left\{\left(\vec{p}_{e}+\vec{p}_{v_{e}}\right) \cdot \vec{r}\right\}^{2}}{2 \hbar^{2}}+\frac{i\left\{\left(\vec{p}_{e}+\vec{p}_{v_{e}}\right) \cdot \vec{r}\right\}^{3}}{6 \hbar^{3}}+\ldots .\right]
\end{aligned}
$$

Tding $p_{e} \simeq p_{v_{e}} \simeq m_{e} c, 2 m_{e} c^{2} \simeq 1 \mathrm{MeV}, R=10 \mathrm{fm}$

$$
\begin{align*}
\text { and } \begin{aligned}
\frac{2 m_{e} c^{2}}{\hbar c} R & \simeq \frac{10 \mathrm{MeV} \mathrm{fm}}{200 \mathrm{MeV} \mathrm{fm}} \simeq \frac{1}{20} \text {, hegt } \\
\psi_{e}^{*} \psi_{v_{e}} & =\frac{1}{\Omega}\left[1-i \frac{1}{20}-\frac{1}{2}\left(\frac{1}{20}\right)^{2}+\frac{i}{6}\left(\frac{1}{20}\right)^{3}+\ldots\right] \\
& =\frac{1}{\Omega}\left[1-\frac{1}{8} \cdot 10^{-2}-i\left(\frac{1}{2} \cdot 10^{-1}-\frac{1}{48} \cdot 10^{-3}\right)+\ldots .\right] \\
\psi_{e}^{*} \psi_{v_{e}} & \approx \frac{1}{\Omega}
\end{aligned}, \$ \text {.... }
\end{align*}
$$

Weseethet deetron-ratrino fied is week in comparison to shat rangestrang interation arang rudeans. The β decay process is ardogas to evission of dectrangedic raddion with detron -netrimo fidd in pare of photon. This nakesthenatrixderet

$$
H_{i f}=\frac{G_{V \beta}}{\Omega} \int \psi_{Y}^{*} M \psi_{X} d \tau
$$

$$
\begin{equation*}
=\frac{G_{V \beta}}{\Omega}\left|M_{i f}\right| \tag{10.43}
\end{equation*}
$$

Weassurethtall partitions of energy $E_{0}=E_{e}+E_{v_{e}}$ areeqully probadde This neens that thetrasition probadility of betadecay is propatiand tothevdureof aceesildephesespaceinthattranition
The number of staes $d N_{e}$ corespondingto apperanceinvdure Ω of detron withroretumin p_{e} and $p_{e}+d p_{e}$ rageis:

$$
\begin{equation*}
d N_{e}=\frac{4 \pi \Omega}{h^{3}} p_{e}^{2} d p_{e} \tag{1044}
\end{equation*}
$$

Similady number of staes $d N_{v_{e}}$ correspondng to apperance in vdure Ω of retrinowithmometumin $p_{v_{e}}$ and $p_{v_{e}}+d p_{v_{e}}$ rangeis

$$
\begin{equation*}
d N_{v_{e}}=\frac{4 \pi \Omega}{h^{3}} p_{v_{e}}^{2} d p_{v_{e}} \tag{10.45}
\end{equation*}
$$

Hercethenumber of staesfordectron-ratrinopairisgivenby

$$
\begin{equation*}
d^{2} N=\left(\frac{4 \pi \Omega}{h^{3}}\right)^{2} p_{e}^{2} p_{v_{e}}^{2} d p_{e} d p_{v_{e}} \tag{1046}
\end{equation*}
$$

Frafixeddedronenegy E_{e}, therdtion

$$
E_{0}=E_{e}+E_{v_{e}} \quad \Rightarrow d E_{0}=d E_{v_{e}}
$$

Fornatrino $\Rightarrow \frac{E_{v_{e}}^{2}}{c^{2}}=\frac{\left(E_{0}-E_{e}\right)^{2}}{c^{2}}=p_{v_{e}}^{2}$

$$
\begin{align*}
& E_{v_{e}}=p_{v_{e}} c \\
& \Rightarrow \frac{d E_{v_{e}}}{c}=d p_{v_{e}} \tag{10.47}
\end{align*}
$$

Frordedron

$$
E_{e}^{2}=p_{e}^{2} c^{2}+m_{e}^{2} c^{4}
$$

$$
\begin{equation*}
\frac{d E_{e}}{c}=d p_{e} \tag{1048}
\end{equation*}
$$

Usingeq (10.4) and (10.48), wegł $d N$ a

$$
\begin{align*}
& d^{2} N=\left(\frac{4 \pi \Omega}{h^{3}}\right)^{2} p_{e}^{2} p_{v_{e}}^{2} d p_{e} d p_{v_{e}} \\
& d^{2} N=\left(\frac{4 \pi \Omega}{h^{3}}\right)^{2} p_{e}^{2}\left(\frac{E_{0}-E_{e}}{c}\right)^{2} d p_{e} \frac{d E_{0}}{c} \tag{1049}
\end{align*}
$$

Thedanity of stes $\rho\left(E_{0}\right)$ canbewittens

$$
\begin{align*}
& \frac{d^{2} N}{d E_{0}}=\frac{1}{c^{3}}\left(\frac{4 \pi \Omega}{h^{3}}\right)^{2} p_{e}^{2}\left(E_{0}-E_{e}\right)^{2} d p_{e} \\
& \rho\left(E_{0}\right) d p_{e}=\frac{1}{c^{3}}\left(\frac{4 \pi \Omega}{h^{3}}\right)^{2} p_{e}^{2}\left(E_{0}-E_{e}\right)^{2} d p_{e} \tag{1050}
\end{align*}
$$

Theprdazdility of trasitionusingeq(1020) employingFemi Gddanule

$$
\begin{align*}
& \omega\left(p_{e}\right) d p_{e}=\frac{2 \pi}{\hbar}\left|H_{i f}\right|^{2} \rho\left(E_{0}\right) d p_{e} \\
& =\frac{2 \pi}{\hbar} \frac{G_{V \beta}^{2}}{\Omega^{2}}\left|M_{i f}\right|^{2} \frac{1}{c^{3}}\left(\frac{4 \pi \Omega}{h^{3}}\right)^{2} p_{e}^{2}\left(E_{0}-E_{e}\right)^{2} d p_{e} \\
& \omega\left(p_{e}\right) d p_{e}=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{\left|M_{i f}\right|^{2}}{\hbar^{7} c^{3}} p_{e}^{2}\left(E_{0}-E_{e}\right)^{2} d p_{e} \tag{1051}\\
& \omega\left(E_{e}\right) d E_{e}=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{\left|M_{i f}\right|^{2}}{\hbar^{7} c^{3}}\left(E_{0}-E_{e}\right)^{2} p_{e} E_{e} d E_{e} \tag{1052}
\end{align*}
$$

The $\left|M_{i f}\right|$ is independat of p_{e} and $d p_{v_{e}}$ for alloned trasitions This fat prodresbedadecayspedum
Theplthedween $\omega\left(p_{e}\right)$ versus E_{e} isshowninfigre

Fig103: Monætumspedrafor ${ }^{64} \mathrm{Cu}$ dedrons and positrons [WA \& Albet (1994]
Genrally $\left[\frac{\omega\left(p_{e}\right)}{p_{e}^{2} F\left(Z, E_{e}\right)}\right]^{1 / 2} \operatorname{verss}\left(E_{e}\right)$ ispdted.Itisstraigtlineardcalled Femin Kurieddt

Figre 104 : TheFemi Kurie plt of ${ }^{64} \mathrm{Cu}$ bda spara .End pairts are $571 \mathrm{keV}\left(e^{-}\right)$and $657 \mathrm{keV}\left(e^{+}\right)$[OMen8Codk(1999)]

Thedepaturefromthestraigtlinearedtribtedto adependanceof $M_{i f}$ のn p_{e} surhwocarsinforkiddentrasitionsaccardingtoeq(10.41) and(10.42).
CalantoFator $F\left(Z, E_{e}\right)$ isdfinedas

$$
\begin{equation*}
F\left(Z, E_{e}\right)=\frac{\left|\psi_{e}(0)\right|_{\text {Coulomb }}^{2}}{\left|\psi_{e}(0)\right|_{\text {free }}^{2}} \tag{1053}
\end{equation*}
$$

Calanb fatar thes care of the fat that detrons are not really free but interatingwithnudens(Calonbinteration).
Thecorreted expessionfor (1052) is

$$
\begin{align*}
& \omega\left(p_{e}\right) d p_{e}=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{\left|M_{i f}\right|^{2}}{\hbar^{7} c^{3}} F\left(Z, E_{e}\right) p_{e}^{2}\left(E_{0}-E_{e}\right)^{2} d p_{e} \\
& \omega\left(E_{e}\right) d E_{e}=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{\left|M_{i f}\right|^{2}}{\hbar^{7} c^{5}} F\left(Z, E_{e}\right)\left(E_{0}-E_{e}\right)^{2} p_{e} E_{e} d E_{e} \tag{1054}
\end{align*}
$$

All moneta are expessed interms of $p_{e}=\eta m_{e} c$ and all ereges interms of

$$
E_{e}=\varepsilon_{e} m_{e} c^{2}, E_{0}=\varepsilon_{0} m_{e} c^{2}
$$

Wegidabeequaiorsinuritess vaiddes

$$
\begin{align*}
& \omega(\eta) d \eta=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{m_{e}^{5} c^{4}}{\hbar^{7}}\left|M_{i f}\right|^{2} F\left(Z, \varepsilon_{e}\right)\left(\varepsilon_{0}-\varepsilon_{e}\right)^{2} \eta^{2} d \eta \\
& \omega\left(\varepsilon_{e}\right) d \varepsilon_{e}=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{m_{e}^{5} c^{4}}{\hbar^{7}}\left|M_{i f}\right|^{2} F\left(Z, \varepsilon_{e}\right)\left(\varepsilon_{0}-\varepsilon_{e}\right)^{2} \eta \varepsilon_{e} d \varepsilon_{e} \tag{10.55}
\end{align*}
$$

Thedecay constat λ canbeepresseds

$$
\begin{align*}
\lambda_{\beta} & =\int_{0}^{\eta_{0}} \omega(\eta) d \eta=\frac{\left|M_{i f}\right|^{2}}{\tau_{0}} \int_{0}^{\eta_{0}} F\left(Z, \varepsilon_{e}\right)\left(\varepsilon_{0}-\varepsilon_{e}\right)^{2} \eta^{2} d \eta \tag{1056}\\
\text { where } \frac{1}{\tau_{0}} & =\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{m_{e}^{5} c^{4}}{\hbar^{7}} \tag{1057}\\
\tau_{0} & =\text { Univesd Tireconstatforbetaprocess }
\end{align*}
$$

Theestimatefor τ_{0} is

$$
\begin{equation*}
\tau_{0} \cong \frac{1}{1.03 \times 10^{-4}} s \simeq 9.709 \times 10^{3} s \simeq 2.7 \mathrm{hrs} \tag{1058}
\end{equation*}
$$

Taking $f\left(\eta_{0}\right)=\int_{0}^{\eta_{0}} F\left(Z, \varepsilon_{e}\right)\left(\varepsilon_{0}-\varepsilon_{e}\right)^{2} \eta^{2} d \eta$
λ_{β} canbeerpresseds

$$
\begin{equation*}
\lambda_{\beta}=\frac{\left|M_{i f}\right|^{2}}{\tau_{0}} f\left(\eta_{0}\right) \tag{106}
\end{equation*}
$$

Harewehavedfined

$$
f\left(\eta_{0}\right) \equiv \text { CalantoFemi Fator }
$$

Fromthedecaylas

$$
\begin{equation*}
N=N_{0} e^{-\lambda_{\beta} t} \tag{10ஞ}
\end{equation*}
$$

Weg\#half lifea

$$
\begin{equation*}
\lambda_{\beta}=\frac{\ln 2}{t_{1 / 2}}=\frac{0.693}{t_{1 / 2}}=\frac{\left|M_{i f}\right|^{2}}{\tau_{0}} f\left(\eta_{0}\right) \tag{10œ2}
\end{equation*}
$$

Wecanwite (h - p pair)
$6728 s \simeq 1.9$ hrs
Theprodrt of Calonto Fermi Fator and haff life of nudeusfor beta decay is caledcormardivehalf lifef $t_{1 / 2}$ oruadly wittenaft

107 Parity Consened Seledion Rules for Femi and GanowTelerTrasitions

StationRiles

Anglarmeretumconservaiondddes

$$
\begin{array}{ll}
\vec{I}_{f}=\vec{I}_{i}+\vec{L}_{\beta} & \text { (FemiType) } \\
\vec{I}_{f}=\vec{I}_{i}+\vec{L}_{\beta}+\hat{\mathbb{U}} & \text { (GarowTdlerType) }
\end{array}
$$

IntheFemi Typetransitionsenittedligt patideshewetheirspinsatipardle.
Singetste $e \uparrow \quad \bar{v}_{e} \downarrow \quad \Rightarrow S_{e z}=-S_{v z}$
But in the Ganow Telle typetransitions enitted ligt patides have their spins pardle.

Tripestate $e \uparrow \quad \bar{v}_{e} \downarrow \quad \Rightarrow S_{e z}=+S_{v z}$
Paitydangesaedłemminedby

$$
\pi_{f}=\pi_{i}(-1)^{L_{B}}
$$

Thetud arbitd anguar moneta caried by $\left(e, \bar{v}_{e}\right)$ ligt patides is dancted by \vec{L}_{β}.
Weassmetht $\left(e, \bar{v}_{e}\right)$ aeemittedbythepoirtnides

$$
\frac{R}{\lambda_{\text {eor }} \bar{v}_{e}} \ll 1 \text { hence } \vec{k} \cdot \vec{r}=0
$$

Butif weconsids

$$
\begin{aligned}
& \frac{R}{\lambda_{e o r} \bar{v}_{e}}<1 \text { then } \\
& \psi_{e}(0) \neq 1 \quad \text { bt } \simeq 1+i \vec{k}_{e} \cdot \vec{r}+\ldots \ldots . \\
& \psi_{\bar{v}_{e}}^{*}(0) \neq 1 \quad \text { bt } \simeq 1+i \vec{k}_{\bar{v}_{e}} \cdot \vec{r}+\ldots . .
\end{aligned}
$$

Theinduianof $\vec{k} \cdot \vec{r} \quad \rightarrow L_{\beta}=1$

$$
\left(\frac{\vec{k} \cdot \vec{r}}{2}\right)^{2} \rightarrow L_{\beta}=2
$$

Thewevefundionsshaldbeconsidgedinthevdures rather thent theceatre Redivistic considadionisreqired.
These nodficaions prodre norlinerity in Kurie pds and tiges arda trasitiorsccarfor $L_{\beta} \geq 0$.
Somedasifythetrasitionsa
If $L_{\beta}=0$ dllowed
$L_{\beta}=1 \quad$ Farbidden $1 s$ Ordar
$L_{\beta}=2 \quad$ Fardidan 2ndOrdr

Trasitior	L_{β}	ΔI (Femi)	(Femin)	ΔI (GT.)	$\Delta \pi$ (GT.)
Allowe	C	C	Nc	(0,1	Nc
First Fardidgr	1	(0),1	Ye	0,1,2	Ye
Seconc Farbidder	2	(1),2	Nc	23	Nc
Thirc Fartioder	三	(2)	Ye	3.4	Ye
Farth Fardider	4	(3),4	Nc	4,5	Nc

Thosend posside, if ethe I_{i} の $_{I_{f}}$ iszea, aeinprethesis
TheGarowTelle trasitions for which $\Delta I=L+1$ aly then thesetransionsare colleduriquetrasitionsorpretrasitions
Themixing of Femi and Garow Teller tranitions danges theshape of Curie dds

Gensd SAediannules

Fermi $\Delta I= \pm n, \pm(n-1)$

$$
\pi_{f}=\pi_{i}(-1)^{n}
$$

GarowTeler $\Delta I= \pm n, \pm(n+1)$

$$
\pi_{f}=\pi_{i}(-1)^{n}
$$

108 fi ValussandForbiddanBedaTrasitiare

The allowed or farbidtan neture of trasitions is often detemined from the naremtof $f t 1 / 2$ values
$f t 1 / 2$ vduedepenosupon
$>$ Z
> Endpoirteregy ε_{0}
$>$ Haflife $_{t_{1 / 2}}$
ft $1 / 2$ heslagevaidiansso $\log _{10} \mathrm{ft} 1 / 2$ isconsidared

$\log _{10} \mathrm{ft} 1 / 2 \mathrm{Vduk}$	Typeof trasitior
27-37	Super allower
4-5.	dlowec
E-1C	Firstforbidk
1C-14	SeecrndFarbidt
1-17	ThirdFatiodar
17-24	FouthFardidtr

Wecantakefdlowingexandes
Fermitype

$$
\begin{aligned}
& L_{\beta}=0 \quad{ }_{8}^{14} O \rightarrow{ }_{7}^{14} N^{*}+e^{+}+v_{e} \\
& {\left[0^{+} \rightarrow 0^{+}\right]} \\
& L_{\beta}=1 \quad{ }^{87} \mathrm{Kr} \rightarrow{ }^{87} \mathrm{Rb}+\mathrm{e}^{-}+\overline{\mathrm{v}}_{e} \\
& {\left[\frac{5}{2} \rightarrow \frac{3}{2}\right]} \\
& { }^{111} \mathrm{Ag} \rightarrow{ }^{111} \mathrm{Cd}+e^{-}+\bar{v}_{e} \\
& {\left[\frac{1}{2} \rightarrow \frac{1}{2}\right]} \\
& L_{\beta}=2 \quad{ }^{135} \mathrm{Cs} \rightarrow{ }^{135} \mathrm{Bi}+e^{-}+\bar{v}_{e} \\
& {\left[\frac{7}{2} \rightarrow \frac{3}{2}\right]} \\
& L_{\beta}=3 \quad{ }^{87} R b \rightarrow{ }^{87} S r+e^{-}+\bar{v}_{e} \\
& {\left[\frac{3}{2} \rightarrow \frac{9}{2}\right]} \\
& L_{\beta}=4 \quad{ }^{115} \mathrm{In} \rightarrow{ }^{115} \mathrm{Sn}+e^{-}+\bar{v}_{e} \\
& {\left[\frac{9}{2} \rightarrow \frac{1}{2}\right]}
\end{aligned}
$$

GanowTeler type

$$
\begin{array}{ll}
L_{\beta}=0 & { }_{2}^{6} \mathrm{He} \rightarrow{ }_{3}^{6} \mathrm{Li}+e^{-}+\overline{\mathrm{v}}_{e} \\
& {\left[0^{+} \rightarrow 1^{+}\right]} \\
L_{\beta}=1 & { }^{37} \mathrm{~S} \rightarrow{ }^{37} \mathrm{Cl}+e^{-}+\bar{v}_{e} \\
& {\left[\frac{7}{2} \rightarrow \frac{3}{2}\right]} \\
L_{\beta}=1 & {\left[\frac{9}{2} \rightarrow \frac{5}{2}\right]} \\
& { }^{85} \mathrm{Kr} \rightarrow{ }^{85} \mathrm{Rb}+e^{-}+\bar{v}_{e} \\
L_{\beta}=2 & \\
& {\left[0 \rightarrow{ }^{10} \mathrm{Be} \rightarrow{ }^{10} \mathrm{~B}+e^{-}+\bar{v}_{e}\right.} \\
L_{\beta}=2 & \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

109Eyprimetal Varificaion of ParityVidatior

If the process andits paity revased proess beth \ldots car in inturewith the sire probadility, thentheprocessissadtobepaity invaiat:

Figure105: W4Expainent
Thecants doseved in crigina se upinthedrection of qpositeto thefiddare 40\%higer thenthet inthedretion of fiddbutthisdoservaionis not mirtaned inpaityinvetedstup
Eletronswereenitted preferrially intheqpositedretion of thenuder span

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}^{*}+e^{-}+\overline{\mathrm{v}}_{e}
$$

Badknerdenissionis 4O\%higher.[Wuandconakes]
Hencein week inteadionneatrinos and detrors areleft handed Yang and Lee suggested that inbeadecay andingened in week processes, paity isvidzedso Lagangiandanity andmatrixelemetbethmithaveevenadoddcaplings

ParityVidation ${ }_{\tau-\theta}$ Purde:

$$
\begin{array}{lcc}
& P & \text { Mode } \\
K^{+} \rightarrow \pi^{0} \pi^{+} & (-1)^{2}=1 & \tau \\
K^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} & (-1)^{3}=-1 & \theta \\
K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0} & (-1)^{3}=-1 & \theta
\end{array}
$$

K^{+}deray forced to ague that Parity invaiancefalls in weok processes [Yang \& Le]

10.10 V-A Theory of Fermi Beta Decay with Panity ConsevingandNonconsevingTems

Now we shall discuss the arguments to establish the V-A form of weak interation
Le uswitethenotgened matrixderetfor thebdadecay of netron

$$
n \rightarrow p+e^{-}+\bar{v}_{e}
$$

ThatisconsisetwithLaretzinvaianceandLeqton-Bayyncorservaion

$$
M=g \sum_{\text {nucleons }} \sum_{j} \int d \Omega\left[\bar{\psi}_{p} \hat{O}_{j} \psi_{n}\right]\left[\bar{\psi}_{e} \hat{O}_{j}\left(C_{j}-C_{j}^{\prime} \gamma_{5}\right) \psi_{v_{e}}\right]
$$

$\sum_{\text {nucleons }}$ itissummedoerall nudeorsinsidethenudas

\sum_{j}	j	\hat{o}_{j}	Syntod	Mearin
	$j=1$	1	S	Scda
	$j=2$	γ^{μ}	V	Veeta
	$j=3$	$\sigma^{\mu \nu}$	T	Tersa

	$j=4$	$\gamma^{\mu} \gamma_{5}$	A	Avid Veta
	$j=5$	γ_{5}	F	Psandscda

\sum_{j} : It is sumed ove all typecaplings SVTAP and each hes left and rigt handedtems

$$
\begin{align*}
& \left(C_{j}-C_{j}^{\prime} \gamma_{5}\right)=\left(C_{j}-C_{j}^{\prime}\right)\left(\frac{1+\gamma_{5}}{2}\right)+\left(C_{j}+C_{j}^{\prime}\right)\left(\frac{1-\gamma_{5}}{2}\right) \\
& \left(\frac{1+\gamma_{5}}{2}\right): \text { Rigthandedterm } \tag{10б3}\\
& \left(\frac{1-\gamma_{5}}{2}\right): \text { Lefthandadterm }
\end{align*}
$$

(10.64)

Weusethedfinitionsof ${ }_{\gamma}$ matrices
Weddan

$$
\begin{align*}
& \hat{o}_{j}\left(1 \pm \gamma_{5}\right)=\left(1 \pm \gamma_{5}\right) \hat{O}_{j} \quad \text { for }{ }_{j=1,3,5} \tag{10ळ}\\
& S T P \\
& \hat{O}_{j}\left(1 \pm \gamma_{5}\right)=\left(1 \mp \gamma_{5}\right) \hat{O}_{j} \text { for } \begin{array}{r}
j=2,4 \\
V \quad A
\end{array} \tag{1066}
\end{align*}
$$

Now weusetheepreinettd fat thet al elecrons and natrinos areleft handed SO $\hat{o}_{j}\left(\frac{1+\gamma_{5}}{2}\right)$ temswill varish Hence $_{C_{j}}=C_{j}^{\prime}$
(Wr-Experimet)
$\operatorname{Now} \hat{o}_{j}\left(1-\gamma_{5}\right)=\left(1-\gamma_{5}\right) \hat{o}_{j} \quad$ for ${ }_{j=1,3,5}$

$$
S T P
$$

$\hat{o}_{j}\left(1-\gamma_{5}\right)=\left(1+\gamma_{5}\right) \hat{O}_{j} \quad$ for ${ }_{j=2}, 4$
(Wh-Expaimet)
Therfare
$\hat{o}_{j}\left(C_{j}-C_{j}^{\prime} \gamma_{5}\right)=\sum_{j=1,3,5} C_{j}\left(1-\gamma_{5}\right) \hat{o}_{j}+\sum_{j=2,4} C_{j}\left(1+\gamma_{5}\right) \hat{o}_{j}$

Wenowapdy theresalt of ${ }^{152}$ Eu Gddhabr experimet which mes dralar

$$
\begin{align*}
& h\left(\bar{v}_{e}\right)=-1=\frac{\vec{\sigma} \cdot \vec{P}}{|\sigma| P \mid} \cong \frac{\mathrm{v}}{c} \quad\left(m_{v_{c}}=0\right) \quad \text { (ExperinĐt-Gdddar) } \\
& \frac{C_{S}}{C_{V}}=-0.001 \pm 0.006 \\
& \frac{C_{T}}{C_{A}}=-0.004 \pm 0.001 \tag{106}
\end{align*}
$$

Net we conside thet netrons in β^{-}decay are nt redivisic and tranfer of nometumof theardrof $q=1 \mathrm{MeV}$
Thisintrodres $\frac{v^{2}}{c^{2}}=10^{-6}$ factor in $|M|^{2}$ calalaion
Itshonsthat C_{p} isnegigide[Exp $\frac{v^{2}}{c^{2}}$]
$\mathrm{Hence} C_{S}, C_{T}, C_{P}$ al arenedigde.
Chistersental. (1969) nerreddecay rdesof $0^{+} \rightarrow 0^{+}$trasitionsin

$$
\begin{aligned}
& { }^{10} C \rightarrow{ }^{10} B \\
& { }^{14} O \rightarrow{ }^{14}{ }_{N}
\end{aligned}
$$

adcondudedtht $C_{V}=1 \quad$ [Exprimert-Cristersen]
Krdmed (1975) rearednatron'snealifetimewtichyidded

$$
\begin{aligned}
& \lambda=\frac{C_{A}}{C_{V}}=1.258 \pm 0.015 \quad \text { [Expainet-Krdm] } \\
& \text { Now } \sum_{V, A} \bar{\Psi}_{e} C_{j}\left(1+\gamma_{5}\right) \hat{O}_{j} \psi_{v_{e}}=\bar{\psi}_{e} C_{V}\left(1+\gamma_{S}\right) \gamma^{\mu} \Psi_{v_{e}}+\bar{\psi}_{e} C_{v} \lambda\left(1+\gamma_{5}\right) \gamma^{\mu} \Psi_{v_{e}} \\
& =\bar{\psi}_{e} C_{V}\left(1+\gamma_{5}+\lambda+\lambda \gamma_{5}\right) \gamma^{\mu} \psi_{v_{e}} \\
& \left(\because \gamma_{5}^{2}=1\right) \\
& =\bar{\psi}_{e} C_{V}\left(1+\lambda \gamma_{5}\right)\left(1+\gamma_{5}\right) \gamma^{\mu} \Psi_{v_{e}} \\
& =\left(1-\lambda \gamma_{5}\right) \bar{\psi}_{e} C_{V}\left(1+\gamma_{5}\right) \gamma^{\mu} \psi_{v_{e}} \\
& =\left(1-\lambda \gamma_{5}\right) \bar{\psi}_{e} C_{V} \gamma^{\mu}\left(1-\gamma_{5}\right) \psi_{v_{e}} \\
& =\left(1-\lambda \gamma_{5}\right) \bar{\psi}_{e} C_{V} \gamma^{\mu}\left(1-\gamma_{5}\right) \psi_{v_{e}}
\end{aligned}
$$

Hencewe justify (V-A) law for beta decay and weak processes in general using theempiricd fatof parityvidation

1011Sdf LemingExacis

 decay.
Q2 Describe $\tau-\theta$ pazle and Wu expeinet of parity vidaion in β decay of ${ }^{60} \mathrm{Co}$.
Q3 Disasseregidicsof β^{-}decay, β^{+}decayandEC processes

1012Sumay

β^{-}decay: ${ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+e^{-}+\bar{v}_{e} ; Q_{\beta^{-}}=\left[\left(M_{Z}+B_{Z}\right)-\left\{M_{Z+1}+B_{Z+1}\right\}\right]$
β^{+}deray: ${ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v_{e} ; Q_{\beta^{+}}=\left[\left(M_{Z}+B_{Z}\right)-\left(M_{Z-1}+B_{Z-1}\right)\right]-2 m_{e}$
Eletrancapture(EC): : ${ }_{Z}^{A} X+e e_{Z-1}^{A} Y+v_{e} ; Q_{E C}=\left(M_{Z}+B_{Z}\right)-\left(M_{Z-1}+B_{Z-1}\right)-b_{Z}^{e}(K)$
$>$ gened darateisticsof weekinteration processes
(i) urivess week caplingconstat
(ii) W^{+}, W^{-}and Z° VetarBosonsareWek InteadianCariess
(iii) Rangeof week interadionisveryshat $\left(\sim 10^{-3} \mathrm{fm}\right)$:
(iv) Su_{3} FlavarSymmedyMixing:
(v) Parity Nonconservaion
> Theprobadility ${ }^{\text {of trasitionbyFemi Gddannle }}$

$$
\omega\left(E_{e}\right) d E_{e}=\frac{1}{2} \frac{G_{V \beta}^{2}}{\pi^{3}} \frac{\left|M_{i f}\right|^{2}}{\hbar^{7} c^{5}} F\left(Z, E_{e}\right)\left(E_{0}-E_{e}\right)^{2} p_{e} E_{e} d E_{e}
$$

> Gened Sdetionnulesforbdadecay
Femí $\Delta I= \pm n, \pm(n-1) \quad ; \pi_{f}=\pi_{i}(-1)^{n}$
GarawTder $\Delta I= \pm n, \pm(n+1) ; \pi_{f}=\pi_{i}(-1)^{n}$
> Thealloned or fardichen nture of trasitions is often d\&emined fromthe maremtof $f t 1 / 2$ values
> Yang andLeesgented that in bedadecay andingered inwez processes paityisvidzed

1013Gomany

β creay: β^{+}, β^{-}andedroncadure
GTTrasitions: GanowTeler Tranitions

1014Exacis

Q1 DescribeFemi theory of β decay and datan the expression for patid decay λ_{β} for for ${ }_{\beta}$ damed.
Q2 Distingish beween Femin and Garow Telle trasitions by giving are eampleforechce
Q3 Givestiet points of hypothenis of Femi theary of β decay and daive expessionfor $f_{1 / 2}$ vdue(compordivehaff life).
Q4 Drivetrasition prodadility for β decay uing Femi theory. Disass Femi Kuiedds
Q5 Witeshatndeson
(i) Baiccharadeistics of wezkinteration (ii) Cdddioange
(iii) Kdoayath MałkanaMatrix (iv)VetarBosons W^{+}, W^{-}and z^{0}

Q6 Wite basic steps of ${ }_{V-A}$ Fermi theory exdaring the rearing of S, V, A, T, P tans

ReferencesandSuggetzed Resding:

1 Nude andPatidesbyEmilioSege
2 NuderPhysicsbyRR. RoyandB.P. Nigam
3 Introdutary Nuderr PhysicsbySamed SM. Wong
4 Elemetsof Nuder PhysicsbyW.E. Burcham
5 Theoreticd Nudear PhysicsbyJdnM. Blat\&VidarF. Weisskof.
6 Nuder PhysicsbyS.N Ghosd
7. Nuder Modasby Watter Greiner\&JoacheinA. Mamn

8 Introdutary Nudeer Physisbby KemethS. Krare

UNT-1] GammarayEnisior

Srutureof theunit

110 Ogjedives

111 Introdation

112 TheQurtizedElectromegicFidd
113 Wësskqf SingePatideESinłtesfor Transition-Probadilities
114 SeledionRulesadPaity
115 Intena ConverionandPair Prodution
116 Seff LearingExerise
117 Sumary
118 Glossay
119 Exacise
RefercesandSuggetedReednos

11.0Olgedive

Thereadr leams abat detronægneic trasition probadilies andsdetionnues formaltipdes

1111 Introdidia

Ganmar ray is an dedronagnic have Gamma decas have theoreicd and padicd impatancein nuder physics gammarays aesarceof irfarmaion dat nuder enegy levds The concept of quatized deatromentic fidd is introdred Wèsskqf singe patide estinłes for transion probadilities are dsassed Inthis unit we dso sudy interal converion and nuder isamerism Wehareured CGSunitsinthisurit

112TheQuarlizedEledronagneicFidc

Thevedor detronægnic potertid $\vec{A}(\vec{r}, t)$ istakenætheprinipal dyranic fied
which is constrined by Calonto Gage (Trasvese Gaye). The vetor fidd fuffilsthegagecondtion

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}=0 \tag{11.1}
\end{equation*}
$$

and intheabsenceof dargescrarents, theneveequition

$$
\begin{equation*}
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \vec{A}=0 \tag{112}
\end{equation*}
$$

Thedetronægeticfiddsaegiveninterm of $\bar{A}(\vec{r}, t)$ by

$$
\begin{align*}
& \vec{E}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}, \\
& \vec{H}=\vec{\nabla} \times \vec{A} \tag{11.3}
\end{align*}
$$

Theenegydanity of thefiddis

$$
\begin{equation*}
\mathrm{E}_{e m}=\frac{1}{8 \pi}\left(|\vec{E}|^{2}+|\vec{H}|^{2}\right) \tag{114}
\end{equation*}
$$

Wthaplenevaveformfor vetor detronayetic potertid

$$
\begin{equation*}
\vec{A}_{k}(\vec{r}, t)=\vec{A}_{0} \cos (\vec{k} \cdot \vec{r}-\omega t) \tag{115}
\end{equation*}
$$

Thedoneequions (113) \& (114) becore

$$
\begin{align*}
& \vec{E}_{k}=-k \vec{A}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t), \\
& \vec{H}_{k}=-\vec{k} \times \vec{A}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t) \tag{116}
\end{align*}
$$

andtheenegydasity of thefiiddwill taketheform

$$
\begin{equation*}
\mathrm{E}_{e m}=\frac{1}{8 \pi} k^{2}\left|\vec{A}_{0}\right|^{2} \tag{117}
\end{equation*}
$$

For a vetor fidd corespondngtocrephtonof enagy $\hbar \omega$ inthesystemvdure \checkmark, thearditudeof thedectronageic vetor patetid beermes

$$
\begin{equation*}
\left|\vec{A}_{0}\right|=\sqrt{\frac{8 \pi \hbar \omega}{k^{2} V}}=\sqrt{\frac{8 \pi \hbar c^{2}}{\omega V}} \tag{118}
\end{equation*}
$$

Taking $\omega=c k$,the corresponding complex expession of the dyranic vedor paterid whichyiddsthesareavergeenegydarity is

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\varepsilon \sqrt{\frac{2 \pi \hbar c^{2}}{\omega V}}\left[a_{0} e^{i(\vec{k}, \vec{r}-\omega t)}+a_{0}^{*} e^{-i(\vec{k} \cdot \vec{r}-\omega t)}\right] \tag{119}
\end{equation*}
$$

where a_{0} is acomdex number with $\left|a_{0}\right|=1$ whichderminesthephereof thenave and ε istheurit vedor indcaing thepolaizaion. Weknowthet eetromannic waves are trasuere in neture and there ae tho independat plaizdion dretions $\varepsilon_{l}, l=1,2$ bathfufilling $\bar{\varepsilon}_{l}, \vec{k}=0$
Thedasicd interadionHaniltoriandansity is

$$
\begin{equation*}
H=-\frac{1}{c} \Gamma(\vec{r}) \cdot \vec{A}(\vec{r}) \tag{1110}
\end{equation*}
$$

Wth $\Gamma(\vec{r})$ thearretdanity.Therarsitionnatrix demertbeveen ψ_{i} and ψ_{f} nuler staeswtichderaibesenissionof aphtonis

$$
\begin{equation*}
\int d^{3}\left\langle\psi_{f}, \gamma\right|-\frac{1}{c} \tilde{r}(\vec{r}) \cdot \vec{A}(\vec{r})\left|\psi_{i}, n o \gamma\right\rangle \tag{11111}
\end{equation*}
$$

adfor dosandion of aphton

$$
\begin{equation*}
\int d^{3} \vec{r}\left\langle\psi_{f}, n o \gamma\right|-\frac{1}{c} \hat{\jmath}(\vec{r}) \cdot \vec{A}(\vec{r})\left|\psi_{i}, \gamma\right\rangle \tag{1112}
\end{equation*}
$$

Thededronregnic vetor patetial qeartor shald thus contans two Hemitian cojugtepatsindvingoetionandarihildionqeadarsforphdon Hence a_{0} and a_{0}^{*} amplituds in eqution(119) motberedacedby β^{\dagger} and β, thecretion andarihildionqperdorsforphotars
The matrix denert for enission of a phaten of eregy $\hbar \omega$, the tod time deperdatphæris

$$
\begin{equation*}
\frac{i}{\hbar}\left(E_{f}-E_{i}\right)^{\prime} t+i \phi=\frac{i}{\hbar}\left(E_{f}-E_{i}\right)^{t+i \omega t} \tag{1113}
\end{equation*}
$$

with ϕ the unkrown phese for crestion of a phton in the reddion fidd. The conservaionof enegy imdies $E_{f}=E_{i}-\hbar \omega$ addconsequatly wehave $\phi=\omega t$.
Thearihildionqerator andceetionqperdor aeassoided with atgingylane
 this speeified by waveretor \vec{k} and polaizdion index μ. The detronagntic vector patertid quertar will thus be speeified by indces dfining node The enegy of detronagntic fidd is given corredly by number of phatonsif nomalizdion fator $\sqrt{\frac{2 \pi \hbar c^{2}}{\omega V}}$ is ens red. The detronmentic vetor peterid
qeatorsummedaer all modes (\vec{k}, μ) is

$$
\begin{equation*}
\hat{A}(\vec{r}, t)=\sum_{\mu} \sqrt{\frac{2 \pi \hbar c^{2}}{\omega V}}\left[\hat{\beta}_{k \mu_{\mu}} \varepsilon_{\mu}^{*} e^{i(\vec{k}, \vec{r}-\omega t)}+\beta_{k \mu}^{\dagger} \varepsilon_{\mu} e^{-i(\hat{k}, \vec{r}-\omega t)}\right] \tag{1114}
\end{equation*}
$$

Thedrice of ε_{μ} and anglar nomettumprietion μ shaild go with cretion quertor $\beta_{k \mu}^{\dagger}$.
Thetad eregy of thisfiddintegdedour thevdureV isgivenby

$$
\begin{equation*}
\hat{H}=\sum_{k, \mu} \hbar \omega_{k}\left(\beta_{k \mu}^{\dagger} \hat{\beta}_{k \mu}+\frac{1}{2}\right) \tag{1115}
\end{equation*}
$$

andthetdd monetumis

$$
\begin{equation*}
\hat{p}=\sum_{k, \mu}^{t \overrightarrow{ }} \hat{\beta}_{k \mu}^{\dagger} \hat{\beta}_{k \mu} \tag{1116}
\end{equation*}
$$

 interation with nude is best undastood if we uee anglar nomettumeigen staes
Ntean ε_{μ} :
Thephton of enegy $\hbar \omega$ hes an intrinic anylar morettumof $1 \hbar$ with besis vetars ε_{μ} givenbysdraicd unitvetars $e_{\mu}, \mu=-1,0,1$.
Thenomdized vetarsare

$$
\begin{align*}
& e_{+1}=-\frac{1}{\sqrt{2}}\left(\hat{e}_{x}+i \hat{e}_{y}\right) \\
& e_{0}=\hat{e}_{z} \\
& e_{-1}=\frac{1}{\sqrt{2}}\left(\hat{e}_{x}-i \hat{e}_{y}\right) \tag{1117}
\end{align*}
$$

Schrica besisvectorsarecomple vetorsandathogna

$$
\begin{equation*}
e_{\mu^{*} \mu_{\mu^{\prime}}^{*}}=\delta_{\mu \mu^{\prime}} \tag{1118}
\end{equation*}
$$

TheCondonShatleydriceof pleesyiddsthepropety

$$
\begin{equation*}
e_{\mu}^{*}=(-1)^{\mu} e_{-\mu} \tag{1118a}
\end{equation*}
$$

Thecrefu readr will ndicethatthisisandognstosdheice hamerics

Any vedtr $_{\vec{a}}$ canbedecomposedinscheica bexisinthefdlowingmarner

$$
\begin{equation*}
\sum_{\mu=-1}^{1} a_{\mu}^{*} e_{\mu}=a \tag{1119}
\end{equation*}
$$

a_{1} : describesavedorwithpositiveanglarmernof uit1dbatzaxis
TheHaniltorianforthedraged patideiswittena

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\stackrel{\vec{p}}{ }-\frac{q}{c} \bar{A}\right)^{2} \tag{1120}
\end{equation*}
$$

which is sumf freepatideHaniltorian H_{0} and the capling with theetera dedranagnicfieddgivingpaturbing Haniltorian H^{\prime}

$$
\begin{equation*}
H=H_{0}+H^{\prime} \tag{1127}
\end{equation*}
$$

Compaing(1120) and (1121), wegł

$$
\begin{align*}
& H^{\prime}=-\frac{q}{2 m c}(\vec{p} \cdot \vec{A}+\vec{A} \cdot \vec{p})+\frac{q^{2}}{2 m c^{2}}(\overrightarrow{\vec{A}} \cdot \vec{A}) \\
& \Rightarrow H^{\prime}=-\frac{q}{m c} \bar{A} \cdot \vec{p}+\frac{q^{2}}{2 m c^{2}}(\overrightarrow{\bar{A}} \cdot \vec{A}) \tag{1122}
\end{align*}
$$

Using $\vec{p}=-i \hbar \vec{\nabla} \quad \operatorname{add} \vec{\nabla} . \vec{A}=0$
($\bar{\nabla} . \bar{A}$ isknownetransersalitycondtion)
$\vec{A} \cdot \vec{p}=\vec{p} . \vec{A}$ wesdatanedand used. Thequadicterm $\vec{A} . \vec{A}$ indvestwophtanst sare time and therefre will be igroed beease ar interest is in loner ards phemoreal H^{\prime} maybewitteninterns of aareatdasity $\hat{\jmath}$

$$
\begin{equation*}
\hat{\jmath}=q \vec{v}=\frac{q}{m} \hat{p} \tag{1123}
\end{equation*}
$$

TheperturdingHaniltarian H^{\prime} (reeledingquaddicterm) is

$$
\begin{align*}
H^{\prime} & =-\frac{1}{c} \bar{A} \cdot \bar{j} \tag{1124}\\
& =-\frac{1}{c} \sum_{\mu=1}^{4} A_{\mu} j_{\mu} \tag{1125}
\end{align*}
$$

where $A_{\mu}=(\vec{A}, i V)$ and $j_{\mu}=(\Gamma, i p c)$.
In the region, atside any sarces, the eetronronetic vetor potertid isthe
solutionof theparid dffererid eqution

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) A_{\mu}(\vec{r}, t)=0 \tag{1126}
\end{equation*}
$$

The 3 vector potertid $\vec{A}(\vec{r}, t)$ can be expanded in tems of componets darateizedbydafiritewavanumer $\vec{k} \boldsymbol{\operatorname { D }}$

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\sum_{k} \vec{A}_{k}(\vec{r}) e^{-i \omega t} \tag{1127}
\end{equation*}
$$

Whree $\omega=c k$. Inthisredaion,imedependanceisspparded Thespotid dependanceof $\vec{A}(\vec{r}, t)$ isgivenandconstrainedby

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \vec{A}_{k}(\vec{r})=0 \tag{1128}
\end{equation*}
$$

Thesdutionof thisequiancanbewittena

$$
\begin{equation*}
\hat{A}(\vec{r}, t)=\frac{1}{N} \sum_{k, \mu}\left[\hat{\beta}_{k \mu} \varepsilon_{\mu}^{*} e^{i(\vec{k}, \vec{r}-\omega t)}+\beta_{k \mu}^{\dagger} \varepsilon_{\mu} e^{-i(\vec{k}, \vec{r}-\omega t)}\right] \tag{1129}
\end{equation*}
$$

$\varepsilon_{\mu} e^{* i(\hat{k}, \bar{r}-\omega t)}$ and $\varepsilon_{\mu}{ }^{-i(\hat{k}, \vec{r}-\omega t)}$ an be expanded in tems of eigen functions of anglarnanertumperatas,

$$
\begin{equation*}
\hat{A}(\vec{r}, t)=\sum_{\lambda, \mu} \vec{A}_{\lambda \mu}(\vec{r}, t) \tag{1130}
\end{equation*}
$$

$\bar{A}_{\lambda \mu}(\vec{r}, t)$ arevetor fundionsof scheicd tersor of raks (λ, μ) whichstisfy the redaions

$$
\begin{array}{ll}
& \vec{J}^{2} \vec{A}_{\lambda \mu}(\vec{r}, t)=\lambda(\lambda+1) \vec{A}_{\lambda \mu}(\vec{r}, t), \\
\text { and } & J_{z} \vec{A}_{\lambda \mu}(\vec{r}, t)=\mu \vec{A}_{\lambda \mu}(\vec{r}, t) \tag{1131}
\end{array}
$$

$\bar{A}_{\lambda \mu}(\bar{r}, t)$ canbeepressedintems of vectorspheica hamoricsdfinedby

$$
\begin{equation*}
\vec{X}_{\lambda \mu}=\frac{\vec{l}}{\sqrt{\lambda(\lambda+1)}} Y_{\lambda \mu}(\theta, \phi) \tag{1132}
\end{equation*}
$$

$\vec{A}_{\lambda, \mu}(\vec{r}, t)$ appearingin (1130) and(1131) canbeeppandedinterms of detricand magneic 2^{λ} plesspetially.

$$
\begin{equation*}
\vec{A}_{\lambda \mu}(\vec{r})=C_{\lambda \mu}^{E} \vec{A}_{\lambda \mu}(E-\lambda, \vec{r})+D_{\lambda \mu}^{M} \vec{A}_{\lambda \mu}(M-\lambda, \vec{r}) \tag{1033}
\end{equation*}
$$

Symbismen

$$
\begin{aligned}
& \vec{A}_{\lambda \mu}(E \cdot \lambda, \vec{r}) \equiv \text { Eletricmoltiple } 2^{\lambda} \text { poletypevetorpatetiad } \\
& \vec{A}_{\lambda \mu}(M-\lambda, \vec{r}) \equiv \text { Magndicmoltipde } 2^{\lambda} \text { pletypevectorpatatid } \\
& \vec{A}_{\lambda \mu}(E, \lambda, \vec{r}) \operatorname{and}_{\bar{A}_{\lambda \mu}}(M-\lambda, \vec{r}) \text { aesdutionsof Hdnhdtzeqtion } \\
& \left(\nabla^{2}+k^{2}\right) \vec{A}_{\lambda \mu}(G-\lambda, \vec{r})=0 \\
& \text { where }_{G}=E, M
\end{aligned}
$$

Therdtionsbeweenfiddsardvedor patetid ner thesarcearegivenby

$$
\begin{align*}
& \vec{E}(E-\lambda, \vec{r})=-\frac{1}{c} \frac{\partial}{\partial t} \vec{A}(E-\lambda, \vec{r})=i k \vec{A}(E-\lambda, \vec{r}) \\
& \vec{H}(E-\lambda, \vec{r})=\vec{\nabla} \times \vec{A}(E-\lambda, \vec{r})=-i k \vec{A}(E-\lambda, \vec{r}) \\
& \vec{E}(M-\lambda, \vec{r})=-\frac{1}{c} \frac{\partial}{\partial t} \vec{A}(M-\lambda, \vec{r})=i k \vec{A}(M-\lambda, \vec{r}) \\
& \vec{H}(M-\lambda, \vec{r})=\vec{\nabla} \times \vec{A}(M-\lambda, \vec{r})=-i k \vec{A}(M-\lambda, \vec{r}) \tag{1135}
\end{align*}
$$

Themagndic 2^{λ} pleradaionsdoeyequians

$$
\begin{align*}
& \left(\nabla^{2}+k^{2}\right) \vec{E}(M-\lambda, \vec{r})=0, \\
& \vec{\nabla} \cdot \vec{E}(M-\lambda, \vec{r})=0 \\
& \vec{H}(E \cdot \lambda, \vec{r})=-\frac{i}{k} \sqrt{\frac{\varepsilon}{\mu}} \vec{\nabla} \times \vec{E}(M-\lambda, \vec{r}) \\
& \vec{r} \cdot \vec{E}=0 \tag{1136}
\end{align*}
$$

Sinilaly, thededric 2^{λ} pleraddiansdoey equians

$$
\begin{array}{ll}
& \left(\nabla^{2}+k^{2}\right) \vec{H}(M-\lambda, \vec{r})=0 \\
& \vec{\nabla} \cdot \vec{H}(E \cdot \lambda, \vec{r})=0 \\
& \vec{E}(M-\lambda, \vec{r})=\frac{i}{k} \sqrt{\frac{\mu}{\varepsilon}} \vec{\nabla} \times \vec{H}(E \cdot \lambda, \vec{r}) \\
\text { and } \quad \vec{r} \cdot \vec{H}=0 \tag{1137}
\end{array}
$$

Intems of spheice hemrics, the edetric andmagnic moltipderadaionsor trasitionscanbeeyressedinthefdllowingforms

$$
\begin{equation*}
\vec{A}_{\lambda \mu}(E-\lambda, \vec{r})=-\frac{i}{k} \vec{\nabla} \times(\vec{r} \times \vec{\nabla})\left[j_{\lambda}(k r) Y_{\lambda \mu}(\theta, \phi)\right] \tag{1138}
\end{equation*}
$$

and $\quad \vec{A}_{\lambda \mu}(M-\lambda, \vec{r})=(\vec{r} \times \vec{\nabla})\left[j_{\lambda}(k r) Y_{\lambda \mu}(\theta, \phi)\right]$
where $j_{\lambda}(k r)$ is scherica Besd fundion of arder λ and $Y_{\lambda \mu}(\theta, \phi)$ is spheical ramorics of raks (λ, μ).

Wecannowerpess themultiple (λ, μ) pat of the paturding Haniltorian H^{\prime} [refer toeq(1124)] intheform

$$
\begin{equation*}
\hat{o}_{\lambda \mu}(E-\lambda)=-\frac{i}{c k^{\lambda+1}} \frac{(2 \lambda+1)!!}{(\lambda+1)} \hat{\jmath}(\vec{r}) \cdot \vec{\nabla} \times(\vec{r} \times \vec{\nabla})\left[j_{\lambda}(k r) Y_{\lambda \mu}(\theta, \phi)\right] \tag{1139}
\end{equation*}
$$

and $\quad \hat{o}_{\lambda \mu}(M-\lambda)=-\frac{1}{c k^{\lambda}} \frac{(2 \lambda+1)!!}{(\lambda+1)} \hat{\jmath}(\vec{r}) \cdot(\vec{r} \times \vec{\nabla})\left[j_{\lambda}(k r) Y_{\lambda \mu}(\theta, \phi)\right]$
Whre $(2 \lambda+1)!!=1 \cdot 3 \cdot 5 \cdots(2 \lambda+1)$
The $\hat{o}_{\lambda \mu}(E-\lambda)$ and $\hat{o}_{\lambda \mu}(M-\lambda)$ ae sedar qpertas in the nuder and dedromagtic fiddo So miltiple pat of arret dasity $\hat{j}(\vec{r})$ can make a nonveristing cortribution in the trasition for $(\lambda,-\mu)$ moltipde ally. The sphericd Bessd funcionnay beepardedinponer ssiesas

$$
\begin{equation*}
j_{\lambda}(k r) \simeq \frac{(k r)^{\lambda}}{(2 \lambda+1)!!}\left[1-\frac{1}{2} \frac{(k r)^{2}}{(2 \lambda+3)}+\ldots\right] \tag{1140}
\end{equation*}
$$

The ${ }_{\gamma}$ rayindvedinnuder trasitionshreenagies $E_{\gamma}<10 \mathrm{MeV}$ typically. The corespondngwavenumbers of ordar

$$
k \simeq \frac{E_{\gamma}}{\hbar c} \simeq \frac{10 \mathrm{MeV}}{200 \mathrm{MeV} \cdot f m} \simeq \frac{1}{20} \mathrm{fm}^{-1} \text { or less. }
$$

Themltiple eqeetas camot heve cortribtions fromthe regians atside the nudes becare they at an nuler naveinntions This lead us to the $r=R$ (nuder radus), lat the highes vdue of $R\left({ }^{208} P b\right)=7$ fin. As a restl, $k r \simeq \frac{1}{20} \mathrm{fm}^{-1} .7 \mathrm{fm}=\frac{1}{3}<1$. Thespheicd Bessd fundion (refer to eqution 1140)
thusconveges vey fatandwemay aproximateitbyjut readingthefirstem dane Thisyidds

$$
j_{\lambda}(k r) \simeq \frac{(k r)^{\lambda}}{(2 \lambda+1)!!}
$$

whichm $j_{\lambda}(k r) \propto(k r)^{\lambda}$. Physicaly, thedoservionthet wavengh λ of γ enages $E_{\gamma} \leq 10 \mathrm{MeV}$ is $\frac{2 \pi \hbar c}{E_{\gamma}} \geq \frac{2 \pi \times 200 \mathrm{MeV} \mathrm{fm}}{10 \mathrm{MeV}} \geq 120 \mathrm{fm}$. Thisisverylagein compaison to nuder dmension/radus This is the reeso of calling it lang vadenghlimitu of radtion

Apdying the Femi Gddan Rule to calalae the trasition prodadility for meltiple 2^{λ} raddion frominitid nuder stae $\left|J_{i} M_{i} \zeta\right\rangle$ to find nuder stae $\left|J_{f} M_{f} \xi\right|$.

$$
\text { W } \begin{align*}
\left(\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right) & \left.=\frac{2 \pi}{\hbar}\left|\left\langle J_{i}, \zeta\right| H^{\prime}\right| J_{f}, \xi\right\rangle\left.\right|^{2} \rho\left(E_{f}\right) \\
& =\frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \cdot \frac{k^{2 \lambda+1}}{\hbar} B\left(\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right) \tag{1141}
\end{align*}
$$

Where $B\left(\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right)$ is the redreed trasition probadility. The reader shaid notetht the red reed trasition probadilities are imensiond physicd quatities For dectric 2^{λ} pletrasitions, $B(E-\lambda)$ aeredin $e^{2} f m^{2 \lambda}$ unts and for magetic 2^{λ} pletrasitions, $B(M-\lambda)$ aemed in $\mu_{N}^{2} f n^{(2 \lambda-2)}$ units The trasition rododilityw isthenumber of decass per unit time Theexressions fortrasitionprodadilitiesae

$$
\begin{align*}
& \mathrm{W}(E-\lambda)=\alpha \hbar c \frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar}\left(\frac{1}{\hbar c}\right)^{2 \lambda+1} E_{\gamma}^{2 \lambda+1}[\mathrm{MeV}] B(E-\lambda)\left[e^{2} f m^{2 \lambda}\right] \tag{1142}\\
& \left.W(M-\lambda)=\alpha \hbar c\left(\frac{\hbar}{2 M_{p} c}\right)^{2} \frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar} \frac{1}{\hbar c}\right)^{2 \lambda+1} E_{\gamma}^{2 \lambda+1}[\mathrm{MeV}] B(M-\lambda)\left[\mu_{N}^{2} f m^{(2 \lambda-2)}\right] \tag{1143}
\end{align*}
$$

Tadell1

Eledromagetictrasitionprobadilitiesforthelowesfarmlitipdes

| $\mathrm{W}(E 1)=1.59 \times 10^{15} E_{\gamma}^{3} B(E 1)$ | $\mathrm{W}(M 1)=1.76 \times 10^{13} E_{\gamma}^{3} B(M 1)$ |
| :--- | :--- | :--- |
| $\mathrm{W}(E 2)=1.23 \times 10^{9} E_{\gamma}^{5} B(E 2)$ | $\mathrm{W}(M 2)=1.35 \times 10^{7} E_{\gamma}^{5} B(M 2)$ |
| $\mathrm{W}(E 3)=5.71 \times 10^{2} E_{\gamma}^{7} B(E 3)$ | $\mathrm{W}(M 3)=6.31 \times 10^{0} E_{\gamma}^{7} B(M 3)$ |
| $\mathrm{W}(E 4)=1.70 \times 10^{-4} E_{\gamma}^{9} B(E 4)$ | $\mathrm{W}(M 4)=1.88 \times 10^{-6} E_{\gamma}^{9} B(M 4)$ |

$$
E_{\gamma}[\mathrm{MeV}], B(E-\lambda) \text { in }\left[e^{2} f m^{2 \lambda}\right] \text { and } B(M-\lambda) \text { in }\left[\mu_{N}^{2} f m^{(2 \lambda-2)}\right]
$$

113 Waiskqf Singe Partide Esinztes for TransitiorProbabilities

We can enumate the medivation for haing reasandde estimates for trasition probadilitiesbeweeninitid andfinal nudeerstaes
1 We can simplify the tedas and lengthy colalaians by maing a few remondleassumpiansandaproxinжions.
2 Wecanmakeanesimateof sizesof $B(E-\lambda)$ and $B(M-\lambda)$ thetareeppeted antheaveragew ($E-\lambda$) andw ($M-\lambda$) aredonintedbyenegydapandat fador $k^{2 \lambda+1}$ bt $B(E-\lambda)$ and $B(M-\lambda)$ are intinady lirked with trasition mぬrixderert
3. Theseesinztes providethebasiswithwhich dbserved trasition rdes canbe comparedwiththeoreicd estintes

E- λ Trasitians

Theavergeof r^{λ} is

$$
\begin{equation*}
\left\langle r^{\lambda}\right\rangle=\frac{3}{\lambda+3} r^{\lambda} A^{\left(\frac{\lambda}{3}\right)} \tag{114}
\end{equation*}
$$

Where $r_{0}=1.2 \mathrm{fm}$.
Theesin\#tefor redreedtrasitionprobadilities $B(E-\lambda)$ istakena

$$
\begin{equation*}
B_{e s t}(E-\lambda)=\frac{1}{4 \pi} e^{2}\left\langle r^{\lambda}\right\rangle^{2} \tag{1145}
\end{equation*}
$$

Using eq(1144) and (1145) we datain Weisskqf Singe Patide estimate for dectic 2^{λ} poletrasitionprobadility isexpressedas

$$
\begin{equation*}
B_{W}(E-\lambda)=\frac{1}{4 \pi}\left(\frac{3}{\lambda+3}\right)^{2}(1.2)^{2 \lambda} A^{2 \lambda / 3}\left[e^{2} f m^{2 \lambda}\right] \tag{1146}
\end{equation*}
$$

M- λ Trasitions

Theaverageof $r^{(\lambda-1)}$ naybetdkentobe

$$
\begin{equation*}
\left\langle r^{(\lambda-1)}\right\rangle=\frac{3}{\lambda+3} r_{0}^{\lambda-1} A^{\left(\frac{\lambda-1}{3}\right)} \tag{1147}
\end{equation*}
$$

Thefatorsrededtogyrargntic rdios canbereesonddy averagedto

$$
\begin{equation*}
\lambda(2 \lambda+1)\left(g_{s}-\frac{2 g_{l}}{\lambda+1}\right)^{2} \simeq 10 \tag{1148}
\end{equation*}
$$

TheWeisskof SingePatideesin*eformandic 2^{λ} poletrasitionprobadility isexpressedas

$$
\begin{equation*}
B_{W}(M-\lambda)=\frac{10}{\pi}\left(\frac{3}{\lambda+3}\right)^{2}(1.2)^{(2 \lambda-2)} A^{(2 \lambda-2) / 3}\left[\mu_{N}^{2} f m^{(2 \lambda-2)}\right] \tag{1149}
\end{equation*}
$$

Theresults of (11.46) and (11.49) may besubsituted into (11.41),(11.42),(11.43) toprodretheWeisskqf unitsfortrasitionprobadility

$$
\begin{gather*}
W_{W}(E-\lambda)=\alpha \hbar c \frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar}\left(\frac{1}{\hbar c}\right)^{2 \lambda+1} \frac{1}{4 \pi}\left(\frac{3}{\lambda+3}\right)^{2} E_{\gamma}^{2 \lambda+1}[M e V] \\
\cdot(1.2)^{2 \lambda} A^{2 \lambda / 3}\left[e^{2} f m^{2 \lambda}\right] \tag{1150}
\end{gather*}
$$

$W_{W}(M-\lambda)=\alpha \hbar c\left(\frac{\hbar}{2 M_{p} c}\right)^{2} \frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar}\left(\frac{1}{\hbar c}\right)^{2 \lambda+1} E_{\gamma}^{2 \lambda+1}[\mathrm{MeV}] \frac{10}{\pi}\left(\frac{3}{\lambda+3}\right)^{2}$

$$
\begin{equation*}
\cdot(1.2)^{(2 \lambda-2)} A^{(2 \lambda-2) / 3}\left[\mu_{N}^{2} f m^{(2 \lambda-2)}\right] \tag{1151}
\end{equation*}
$$

The exdiat values in tems of nudean number /wess nunber A and trasition enegy $E_{\gamma}(\mathrm{MeV})$ arelistedintade 112

Tadell2

Waisskqf SingePatideEsinatesfor ($E-\lambda$) and ($M-\lambda$) trasitionprobadilities andwidts

Mutipole λ	$(E-\lambda)$	($M-\lambda$)
]	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=1.02 \times 10^{14} A^{2 / 3} E_{\gamma}^{3} \\ & \Gamma(\mathrm{MeV})=6.75 \times 10^{-8} A^{2 / 3} E_{\gamma}^{3} \end{aligned}$	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=3.15 \times 10^{13} E_{\gamma}^{3} \\ & \Gamma(\mathrm{MeV})=2.07 \times 10^{-8} E_{\gamma}^{3} \end{aligned}$
<	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=7.28 \times 10^{7} A^{4 / 3} E_{\gamma}^{5} \\ & \Gamma(\mathrm{MeV})=4.79 \times 10^{-14} A^{4 / 3} E_{\gamma}^{5} \end{aligned}$	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=2.24 \times 10^{7} A^{2 / 3} E_{\gamma}^{5} \\ & \Gamma(\mathrm{MeV})=1.47 \times 10^{-14} A^{2 / 3} E_{\gamma}^{5} \end{aligned}$
Ξ	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=3.39 \times 10 A^{2} E_{\gamma}^{7} \\ & \Gamma(\mathrm{MeV})=2.23 \times 10^{-20} A^{2} E_{\gamma}^{7} \end{aligned}$	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=1.04 \times 10 \mathrm{~A}^{4 / 3} E_{\gamma}^{7} \\ & \Gamma(\mathrm{MeV})=6.85 \times 10^{-21} A^{4 / 3} E_{\gamma}^{7} \end{aligned}$
4	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=1.07 \times 10^{-5} A^{8 / 3} E_{\gamma}^{9} \\ & \Gamma(\mathrm{MeV})=7.02 \times 10^{-27} A^{8 / 3} E_{\gamma}^{9} \end{aligned}$	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=3.27 \times 10^{-6} A^{2} E_{\gamma}^{9} \\ & \Gamma(\mathrm{MeV})=2.16 \times 10^{-27} A^{2} E_{\gamma}^{9} \end{aligned}$
5	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=2.40 \times 10^{-12} A^{10 / 3} E_{\gamma}^{11} \\ & \Gamma(\mathrm{MeV})=1.58 \times 10^{-33} A^{10 / 3} E_{\gamma}^{11} \end{aligned}$	$\begin{aligned} & \mathrm{W}\left(s^{-1}\right)=7.36 \times 10^{-13} A^{8 / 3} E_{\gamma}^{11} \\ & \Gamma(\mathrm{MeV})=4.84 \times 10^{-34} A^{8 / 3} E_{\gamma}^{11} \end{aligned}$

Intems of Weissquf units, the med redred rates have been doserved to vay selard adas of magitude indfferet nude and sameines even for the trasitions withinthesamenudes Thisemancenet of atrasition withrespeet to the singe patide Weisskof etintes indcctes the colledive motion of a sared nudeers in accheret mame .This will prodrenider vibrions and radions

114SdedionRulesandParity

If for atranition of cetainmultiplaity λ, thetranitiondenert varishes then thetrasitioniscalled' 'fardidder'. If, ontheotherhand,for atrasition of catan moltipdaity λ, thetransitiondenert does not varish,thentherraritioniscalled

"dloned". Thiscriteionyiddssdectionnues

Le us conside thetrasitions of multiplaities λ and $\lambda^{\prime}=\lambda+1$ of E and M types.Therdios

$$
R(E-\lambda)=\frac{\mathrm{W}_{W}(E-\lambda+1)}{\mathrm{W}_{W}(E-\lambda)}
$$

and $\quad R(M-\lambda)=\frac{\mathrm{W}_{W}(M-\lambda+1)}{\mathrm{W}_{W}(M-\lambda)}$
can be esimated aproximately uing (1150) and (1151). The raios $\tilde{R}(M-\lambda, E-\lambda)$ dso.

Weddainkfor ${ }_{1 \mathrm{MeV}} \gamma$ ray tobe $\frac{1}{200} \mathrm{fm}^{-1}$ andtding r to meupto 1 fm .
Wegt $R(E-\lambda) \approx(k r)^{2} \simeq\left(\frac{1}{200}\right)^{2} \simeq 3 \times 10^{-5}$
and $R(M-\lambda) \simeq 3 \times 10^{-5}$
The fator $\left(\frac{\hbar}{2 M_{P^{c}}}\right)^{2}$ is approxin*ted to be (tdking $\hbar c \simeq 200 \mathrm{MeV}$ fm and

$$
\begin{aligned}
& M_{p} c^{2} \simeq 940 \mathrm{MeV} \text {) } \\
& \left(\frac{\hbar}{2 M_{P} c}\right)^{2}=\left(\frac{200}{2 \times 940}\right)^{2} \simeq\left(\frac{1}{10}\right)^{2} \simeq 10^{-2}
\end{aligned}
$$

Thisleabto

$$
\begin{equation*}
\tilde{R}(M-\lambda, E-\lambda) \simeq\left(\frac{\hbar}{2 M_{p} c}\right)^{2} \simeq 10^{-2} \tag{1153}
\end{equation*}
$$

Transition beveen initid $\left(J_{i}^{\pi_{i}}\right)$ and find nuder stae $\left(J_{f}^{\pi_{f}}\right)$ is usally dominted by thelowest arder process allowed by angla namertumand parity sleation nules becase of the lage redution in probability with inceaing meltipolaity order λ. The angula mamtumcaried by γ photon is $\lambda \hbar$ for trasitionof λ ada.

The law of conservaion of tod anglar nometumgives an adtiona vedorid redionbetween $\overrightarrow{\vec{j}}_{i}, \vec{J}_{f}$ and $\vec{\lambda}$. Here $\vec{\lambda}$ istheangla momerturaried bythe ${ }^{\lambda}$-pleraddion,andardaionbedveentherz componets m_{i}, m_{f} andu. Thetrasitionampitudevarishesuless

$$
\begin{equation*}
\vec{J}_{i}=\vec{J}_{f}+\vec{\lambda} \operatorname{add}_{m_{i}=m_{f}+\mu} \tag{1154}
\end{equation*}
$$

Theequtionfuthersigifies

$$
\begin{equation*}
\left|J_{i}-J_{f}\right| \leq \lambda \leq J_{i}+J_{f} \tag{1155}
\end{equation*}
$$

If $J_{i}=0, J_{f}=0$ then $0 \rightarrow 0$ tranitionisadsodudyfordidden
The parity of meltipderadaion is speeffied by the paity of themanetic fidd $\vec{H}_{\lambda \mu}(E-\lambda)$ and $\vec{H}_{\lambda \mu}(M-\lambda)$ which ae $(-1)^{\lambda}$ and $(-1)^{\lambda}$. We have chosen this becase the parity of the peturding Haniltorian H^{\prime} (refer to eq1124) tes the parity of the \vec{H} fidd Theprity of a rertdanity; isnegdiveandtheparity of \vec{A} iscppostetothat of \vec{H}.
Now considr a nuder trasition frominitid stat $|i\rangle$ to find stae $f\rangle$ with π_{i} and π_{f} paities Theconeevaion of paities danand theredion bedveen initid addfing staes paitiesafdlowing

$$
\begin{equation*}
\pi_{i}=\pi_{f}(-1)^{\lambda} \quad \text { for }(E-\lambda) \text { radaion } \tag{1156}
\end{equation*}
$$

and $\pi_{i}=\pi_{f}(-1)^{\lambda+1}$ for $(M-\lambda)$ raddion

115Internal ConersionandPair Productior

Whenanexited nudesnakes atrasitionfromoneled to andher by enission of γ phdon(dectramendic radidion) whenit isisdzed anddapived of al its tanic dedrons The preserce of arditd detrons makes poside a dfferet process
Theexdtednudeslosesexitdionandtranfersittooneof thedetronof K orL orMshdl. Thisprocessiscalledconvesiondetrons
Theandher compeing process of evissiono γ raddioncenbecompredfor a giventrasitionfromanexitedste

The raio of aveage nunter of convesion eletrons and average number of γ photrsiscalledconverioncofficiet.

$$
\begin{equation*}
\alpha=\frac{N_{e}}{N_{\gamma}} \tag{1157}
\end{equation*}
$$

Theparid convesioncofficiet $\alpha_{K}, \alpha_{L}, \ldots$. rerdiosforK,L,.. eedronséection respectively.

$$
\alpha=\alpha_{K}+\alpha_{L}+\alpha_{M}+\ldots .
$$

Theenegyof convesionof dectronfromK shdl isgivenas

$$
\begin{equation*}
E_{K}^{C E}=E_{i}-E_{f}-b_{Z}^{h}(K) \tag{1158}
\end{equation*}
$$

The convesion detron spedrumis dscrete and not cortinuas such a in β^{-} decay whereitiscontinunsandlrood peeked
If enegy of nuder exitdion is getere then $2 m_{e} c^{2}$, then pair producion may ∞^{∞}.

Figrelll: Par produtioninthe presceof aheaynudesze

Figrelll2: Intemal conersionof an orbita dedron de to detranagneic interation with a nudas

Nuder Isomerism

Sanetineanudes remeenegy derajingintoloner stawith alifetineof theorde of 100 ns to seard yers Thenudes may then β decas into anew nudes. Therestdes of langer lifeimearecalledisomer Sdes Thisphamenon iscallednuderisomerism.Theisanerlevdsaeshowninfigrell3

Figre:113

Thescherdic dagramexdaringtwotypes of nuder isomesthagh β decay intodayternude B^{\prime} and $B^{\prime \prime}$ of aparetnidesA.

116Sdf LearingExacis

Q1 Wite multiple exparion of eletronrencic fied in preserce of the sarcesof raddion
Q2 Wite the expession for the Weisskqf singe patide esimates of the trasition probadility for the miltiple raddion of order λ. Disass the realt

117Summay

> For a vedor fied corespondingtoonephoten of enegy $\hbar \omega$ inthesytem volureV , theamplitudeof thededromandic vetor patetid is
$\left|\vec{A}_{0}\right|=\sqrt{\frac{8 \pi \hbar \omega}{k^{2} V}}=\sqrt{\frac{8 \pi \hbar c^{2}}{\omega V}}$
> Thetad eregy of thisfiddinteg tedour thevdureV isgivenby
$\hat{H}=\sum_{k, \mu} \hbar \omega_{k}\left(\beta_{k \mu}^{\dagger} \hat{\beta}_{k \mu}+\frac{1}{2}\right)$ andthetud nomertumis $\hat{p}=\sum_{k, \mu} \hbar \vec{k}_{k \mu}^{\beta_{k,}} \hat{\beta}_{k \mu}$
$>\quad \vec{A}_{\lambda \mu}(E \cdot \lambda, \vec{r})$ and ${ }^{\vec{A}_{\lambda \mu}}(M-\lambda, \vec{r})$ aresdutionsof Helnhlizeqution
$\left(\nabla^{2}+k^{2}\right) \vec{A}_{\lambda \mu}(G-\lambda, \vec{r})=0 \quad$ Where $G=E, M$

Magndic 2^{λ} pleradaians	Electric 2^{λ} pleradaias
$\left(\nabla^{2}+k^{2}\right) \vec{E}(M-\lambda, \vec{r})=0$,	$\left(\nabla^{2}+k^{2}\right) \vec{H}(M-\lambda, \vec{r})=0$
$\vec{\nabla} \cdot \vec{E}(M-\lambda, \vec{r})=0$	$\vec{\nabla} \cdot \vec{H}(E-\lambda, \vec{r})=0$
$\vec{H}(E-\lambda, \vec{r})=-\frac{i}{k} \sqrt{\frac{\varepsilon}{\mu}} \vec{\nabla} \times \vec{E}(M-\lambda, \vec{r})$	$\vec{E}(M-\lambda, \vec{r})=\frac{i}{k} \sqrt{\frac{\mu}{\varepsilon}} \vec{\nabla} \times \vec{H}(E-\lambda, \vec{r})$
$\vec{r} \cdot \vec{E}=0$	$\vec{r} \cdot \vec{H}=0$

> Theexpessionsfortrasitionprodadilitiesare
$\mathrm{W}(E-\lambda)=\alpha \hbar c \frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar}\left(\frac{1}{\hbar c}\right)^{2 \lambda+1} E_{\gamma}^{2 \lambda+1}[\mathrm{MeV}] B(E-\lambda)\left[e^{2} f m^{2 \lambda}\right]$
W $(M-\lambda)=\alpha \hbar c\left(\frac{\hbar}{2 M_{p} c}\right)^{2} \frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar}\left(\frac{1}{\hbar c}\right)^{2 \lambda+1} E_{\gamma}^{2 \lambda+1}[M e V] B(M-\lambda)\left[\mu_{N}^{2} f m^{(2 \lambda-2)}\right]$
> Thetranitionamplitudevarishesuless

$$
\vec{J}_{i}=\vec{J}_{f}+\vec{\lambda} \operatorname{and}_{m_{i}}=m_{f}+\mu
$$

If $J_{i}=0, J_{f}=0$ then $0 \rightarrow 0$ tranitionisdbsdudy yordidden
Thersationbedweeninitid andfing stespaities afdlowing
$\pi_{i}=\pi_{f}(-1)^{\lambda}$ for $(E-\lambda)$ raddionand
$\pi_{i}=\pi_{f}(-1)^{\lambda+1}$ for $(M-\lambda)$ radaion
> Theexitednudeslosesexditionandtrarifesittooneof thededron of KorLarMsndl. Thisprocessiscalledconersiondedrons

118Gaifay

CalanbGage: Thevedor fiedfufilstheganecondtion $\vec{\nabla} \cdot \vec{A}=0$
$j_{\lambda}(k r)$: scheicd Bessd funtionof order λ
$Y_{\lambda \mu}(\theta, \phi)$: schrica hammicsof raks (λ, μ)

11.9Exacis

Q1 Definetrasitionprobadility foremissionco amltipderaddion of ardar
(λ, μ) byanudes.Disassbriefly spinard paitysdedionnlesfor these trasitions.
Q2 For trasitions betweenlowlying stes of rude (using long wadengh aproximation) showtht $\left(\frac{\hbar}{M_{p} c R}\right) \approx \frac{v}{c}$
Q3 Witeshatndean
(i) Interna conversion of detrons
(ii) Parityandsdectionnlesforenissionof moltipderaddiorsinnude.
(iii) $0 \rightarrow 0$ Trasitionsinnude.

Q4 Whenthetransitionprodadility islarge thentheWeisskqf esimates of the singepatidetrasition probadility for moltipleraddion of ordar λ,for a nudeswhtaretheposideresons?
Q5 What are the convetiond units of redreed trasition probadiliies $B\left(E-\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right)$ and $B\left(M-\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right)$? Showthat thedffernce of dmeniorsbedweenthereunitsbyandyzingtheuritsdmensionally.
Q. 6 Calatertios
$R_{E}=\frac{\mathrm{W}_{W}(E-\lambda+1)}{\mathrm{W}_{W}(E-\lambda)}, R_{M}=\frac{\mathrm{W}_{W}(M-\lambda+1)}{\mathrm{W}_{W}(M-\lambda)} \quad$ and $\tilde{R}_{M E}=\frac{\mathrm{W}_{W}(M-\lambda)}{\mathrm{W}_{W}(E-\lambda)} \mathrm{by}$
makingaproximaiors. Thesynhodshavetherusal nering

ReferencesandSuggetedReding:

1 Nude andPatidesbyEnilioSegre
2 NuderPhysicsbyR.R. RoyandB.P. Nigam
3 Introdutary Nuder PhysicsbySamed SM. Wong
4 Elemetsof Nuder PhysicsbyW.E. Burdam
5 Theoreticd Nudear PhysicsbyJdnM. Blat\&VidarF. Weisskof.
6 NuderPPhsicsbyS.N Ghosad
7. Nuder Moddsby Watter Greiner\&JœachenA. Mamn

8 Introdutary Nuder Physics by KemethS. Krane

UNT-12 SamreffdiThearyof Hydogen/Aton

Stuctureof theUnit

120 Ojectives
121 Introdution
122 Sommeffdsedlipicadbits
123 Sommefdd'sRdativiticCorretion
124 Shatcomingsof Bdr- Sormerffddtheary
125 IllugrdiveExamdes
126 Seff LearingExerisel
127 Interpredionof quatumnmbesfor hydogenatom
128 Betronprobadilitydasity
129 Orditd anglar monetum
1210 IllustriveExamdes
1211 Sdf LerringExacisell
1212 Summy
1213 Gossary
1214 ArsmastoSeff LeamingExerises
1215 Exerise
1216 Ansnesto Exercise
RefernesandSuggetedReedngs

200bjedive:

Bdr wesddetocdalatheradi andl enegies of thestdionay ardit aound thenudes in an tamand those cdalded values werefand to be in a good ageemerwiththeeppainutd values HedsogaretheHydogenion spedrm Fort theseresons, histhery weswidły acceqtedtroughatthewarld Butafew yerslate, the ureof highresd vingponer speetroneter revededfinestuctureof thehydogen spedra linesutichcaldh'teydainedby Bdr's smods .Toeydan hydogen finestuctre, Sormmeffd evtenced Bdr Theary .In this chader we will sudy $b a a t B d r-$ Sommeffddtheory.

211 Irtrodutio

In1916Sormmefdd inandtemt toeydanthefinestrutureof hydogenatom eterded Bdr's modd by considaing that the ledron cald revdve in dlipic ardits dso, apat fromBdr's cralar adits Heesimzed thesize and shape of thepossibledlipicarditandthetad enegyof andedronredvinginsurardit Accordng to Sormerfed, the staionay ardits in which dedrons arereadving aound thenudes inthetomarent drala butellipicd inshape Itis deto theirfluarce of thecertrally locted nudes Thedecton readves in dliptica pathwithnudestoneof itsfoo. Sotherewill beamjor andanminaxaisof the pth Hesid that with the broadering of theardit, the length of thetwo axes aproachtoeqd vaveandutinady beconeequl i.e thepthberaredrala. Sowecansaythethedirala pathisjutorespeid cesedlipicd path

D2Sammefdd'sElipticOrdit

 (darge $+Z 2$) in an elipic ardit(Fig1), where a and b ae the semi-major and seni-minoraxes of dlipserespectively.

Figre1 Andedron of nass (n), and darge $(-$) is redving arandnudes (darge+Za) inandlipicardit
Ther and θ ae the pdar coordntes of eletron it instataneas position It shaldbeperiodicfundions of time motbequatizedsepardely, wherethepand j aetheradd andanylar mometurnof thedetron respectively.
ThenaccordngtoWilson-Sormeffdquatizdionnles, weknow

$$
\begin{equation*}
\oint p d r=n_{r} h \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \int_{0}^{2 \pi} j d \theta=\operatorname{lh} \tag{2}
\end{equation*}
$$

where n_{r} and l ae integas, known as radd and azimthal quatumnunbers respectively.
Insecond integd, according to dassicd meeherics, the argiar monetumj of aryisdaedsytemiscontat. Thus,

$$
\begin{array}{ll}
& j \int_{0}^{2 \pi} d \theta=l h \\
\text { or } & j=\frac{l h}{2 \pi} \tag{3}
\end{array}
$$

Thiscondtion of thearditd angiar nomertumissimilatoBdrmodd.
Tosdvethefirstintegd,

$$
\begin{equation*}
p=m \dot{r} \tag{4}
\end{equation*}
$$

and $\quad j=m r^{2} \dot{\theta}$,
wherei andr $\dot{\theta}$ aetheradd andtheangia valoity of dedron
Thepolareqtion of thedlipse

$$
\begin{equation*}
\frac{1}{r}=\frac{1}{a} \frac{1-\varepsilon \cos \theta}{1-\varepsilon^{2}} \tag{б}
\end{equation*}
$$

Where $\sqrt{1-\varepsilon^{2}} \stackrel{b}{a}$
Tajngdffertidion of rwithrespedto θ, weg \ddagger

$$
\begin{align*}
& -\frac{1}{r^{2}} \frac{d r}{d \theta}=\frac{1}{a} \frac{\varepsilon \sin \theta}{1-\varepsilon^{2}} \tag{6a}\\
& -\frac{1}{r} \frac{d r}{d \theta}=\frac{1}{a} \frac{r \varepsilon \sin \theta}{1-\varepsilon^{2}}
\end{align*}
$$

Usingeqution(6)

$$
\frac{1}{r} \frac{d r}{d \theta}=-\frac{\varepsilon \sin \theta}{1-\varepsilon \cos \theta}
$$

Bysquingthebthsides of doveeqution, wegt

$$
\begin{equation*}
\left(\frac{1}{r} \frac{d r}{d \theta}\right)^{2}=\frac{\varepsilon^{2} \sin ^{2} \theta}{(1-\varepsilon \cos \theta)^{2}} \tag{7}
\end{equation*}
$$

Now, $p=m \dot{r}=m \frac{d r}{d t}=m \frac{d r}{d \theta} \frac{d \theta}{d t}=m \frac{d r}{d \theta} \dot{\theta}$

Usingequition(5), wehave $p=\frac{j}{r^{2}} \frac{d r}{d \theta}$
Wecanwite $d r=\frac{d r}{d \theta} d \theta$

$$
\therefore p d r=j\left(\frac{1}{r} \frac{d r}{d \theta}\right)^{2} d \theta
$$

Usingequion(7), wegt

$$
p d r=j \frac{\varepsilon^{2} \sin ^{2} \theta d \theta}{(1-\varepsilon \cos \theta)^{2}}
$$

Hencetheirtegd ineqution(1) becores

$$
\begin{equation*}
j \int_{0}^{2 \pi} \frac{\varepsilon^{2} \sin ^{2} \theta d \theta}{(1-\varepsilon \cos \theta)^{2}}=n_{r} h \tag{9}
\end{equation*}
$$

Sdution of thisintegtionis

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\varepsilon^{2} \sin ^{2} \theta d \theta}{(1-\varepsilon \cos \theta)^{2}}=2 \pi\left(\frac{1}{\sqrt{1-\varepsilon^{2}}}-1\right) \tag{10}
\end{equation*}
$$

Usingeq(10) ineq(9), wegt

$$
2 \pi j\left(\frac{1}{\sqrt{1-\varepsilon^{2}}}-1\right)=n_{r} h
$$

Fromea(3) ptvalueof j

$$
\begin{array}{ll}
& \ln \left(\frac{1}{\sqrt{1-\varepsilon^{2}}}-1\right)=n_{r} h \\
\alpha & \frac{1}{\sqrt{1-\varepsilon^{2}}}-1=\frac{h}{l} \\
\alpha & \sqrt{1-\varepsilon^{2}}=\frac{l}{n_{r}+l}
\end{array}
$$

Butweknowfrompropaty of dlipse

$$
\sqrt{1-\varepsilon^{2}}=\frac{b}{a}: \therefore \frac{b}{a}=\frac{l}{n_{r}+l}
$$

Where n_{r} and l aeintegers,

$$
n_{r}+l=n,
$$

Wecanwite

$$
\begin{equation*}
\sqrt{1-\varepsilon^{2}}=\frac{l}{n} \tag{112}
\end{equation*}
$$

So $\frac{b}{a}=\frac{l}{n}$

Thisisquatumcondtionforellipicardits
Heren isprinipal ortdd quatumumber. Whenn=1, $\mathrm{b}=\mathrm{a}$ and $\varepsilon=0$, theardit becones dirala. I camotbezer, sincethedlipsewaid thendegenerteinto a strigt linepessingthaghthenides Alsol camotbegeate thann, incebis dwayslessthena Henceforagivenvalueof n quatumunher I cantkealyn dfferet values, whichmers thet therecanbealy nellipicd arbits of dfferet eccertridies

Leusnowcalalatad enegy of andetroninellipic arbit Itwill besmof thekindic enegy ${ }_{K}$ and theputerid enegy U. Thentod enegy of andetron will be

$$
\begin{equation*}
E=K+U \tag{13}
\end{equation*}
$$

Thekindicenegy of andedron $K=m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)$ lsingea(4) and(5), wegł

$$
K=\frac{1}{2 m}\left(p^{2}+\frac{j^{2}}{r^{2}}\right)
$$

Thepatetid enegy of andedron $U=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r}$
Pttingthevaues of K and v inequ(13), nehave

$$
\begin{equation*}
E=\frac{1}{2 m}\left(p^{2}+\frac{j^{2}}{r^{2}}\right)-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r} \tag{14}
\end{equation*}
$$

Usingeq(8)

$$
\begin{array}{r}
E=\frac{j^{2}}{2 m r^{2}}\left[\left(\frac{1}{r} \frac{d r}{d \theta}\right)^{2}+1\right]-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r} \\
\text { の } \quad\left(\frac{1}{r} \frac{d r}{d \theta}\right)^{2}=\frac{2 m E r^{2}}{j^{2}}+\frac{m Z e^{2} r}{2 \pi \varepsilon_{0} j^{2}}-1 \tag{15}
\end{array}
$$

Fromea,(6a)

$$
\begin{align*}
& \frac{1}{r^{2}}\left(\frac{d r}{d \theta}\right)^{2}=\frac{1}{a^{2}} \frac{r^{2} \varepsilon^{2} \sin ^{2} \theta}{\left(1-\varepsilon^{2}\right)^{2}}=\frac{\varepsilon^{2} r^{2}\left(1-\cos ^{2} \theta\right)}{\left[a\left(1-\varepsilon^{2}\right)\right]^{2}} \\
& \frac{1}{r^{2}}\left(\frac{d r}{d \theta}\right)^{2}=\frac{r^{2}\left(\varepsilon^{2}-\varepsilon^{2} \cos ^{2} \theta\right)}{\left[a\left(1-\varepsilon^{2}\right)\right]^{2}} \tag{16}
\end{align*}
$$

Usingeq(6)

$$
\begin{aligned}
& \frac{a}{r}\left(1-\varepsilon^{2}\right)=1-\cos \theta \\
& \varepsilon \cos \theta=\left(1-\frac{a}{r}\left(1-\varepsilon^{2}\right)\right)
\end{aligned}
$$

Squingbothsids of eqution, wegt

$$
\begin{equation*}
(\varepsilon \cos \theta)^{2}=\left(1-\frac{a}{r}\left(1-\varepsilon^{2}\right)\right)^{2} \tag{17}
\end{equation*}
$$

Putingthevdueof eq(17) ineq(16)

$$
\begin{align*}
\frac{1}{r^{2}}\left(\frac{d r}{d \theta}\right)^{2} & =\left[\frac{r}{a\left(1-\varepsilon^{2}\right)^{2}}\right]^{2}\left[\varepsilon^{2}-\left\{1-\frac{a}{r}\left(1-\varepsilon^{2}\right)\right\}^{2}\right] \\
& =\frac{r^{2}}{a^{2}\left(1-\varepsilon^{2}\right)^{2}}\left[\varepsilon^{2}-\left\{1+\frac{a^{2}}{r^{2}}\left(1-\varepsilon^{2}\right)^{2}-\frac{2 a\left(1-\varepsilon^{2}\right)}{r}\right\}\right] \\
& =\left[\frac{\mathrm{r}^{2} \varepsilon^{2}}{\mathrm{a}^{2}\left(1-\varepsilon^{2}\right)^{2}}-\frac{\mathrm{r}^{2}}{\mathrm{r}^{2}\left(1-\varepsilon^{2}\right)^{2}}+\frac{2 \mathrm{r}}{\mathrm{a}\left(1-\varepsilon^{2}\right)}-1\right] \\
& =\frac{r^{2} \varepsilon^{2}-r^{2}}{a^{2}\left(1-\varepsilon^{2}\right)^{2}}+\frac{2 r}{a\left(1-\varepsilon^{2}\right)}-1 \\
& =-\frac{\left(1-\varepsilon^{2}\right) r^{2}}{a^{2}\left(1-\varepsilon^{2}\right)^{2}}+\frac{2 r}{a\left(1-\varepsilon^{2}\right)}-1 \\
& =-\frac{r^{2}}{a^{2}\left(1-\varepsilon^{2}\right)}+\frac{2 r}{a\left(1-\varepsilon^{2}\right)}-1 \tag{18}
\end{align*}
$$

Comparingthecoefficiet of r^{2} and r fromequtions (15) and(18), negt

$$
\begin{align*}
\frac{2 m E}{j^{2}} & =-\frac{1}{a^{2}\left(1-\varepsilon^{2}\right)} \tag{19}\\
\text { and } \quad \frac{m Z e^{2}}{2 \pi \varepsilon_{0} j^{2}} & =\frac{2}{a\left(1-\varepsilon^{2}\right)} \tag{20}
\end{align*}
$$

Framequian(19)

$$
\begin{equation*}
E=-\frac{j^{2}}{2 m a^{2}\left(1-\varepsilon^{2}\right)} \tag{ユ}
\end{equation*}
$$

Putingthevdueof $\left(1-\varepsilon^{2}\right)$ intoeqution(21) fromequaion(20),negt

$$
\begin{align*}
E & =-\frac{j^{2}}{2 m a^{2}}\left[\frac{a m Z e^{2}}{4 \pi \varepsilon_{0} j^{2}}\right] \\
E & =-\frac{Z e^{2}}{8 \pi a \varepsilon_{0}} \tag{22}
\end{align*}
$$

Againslostittingfor a fromequition(20), wegł

$$
\begin{aligned}
E & =-\left(\frac{Z e^{2}}{8 \pi \varepsilon_{0}}\right)\left(\frac{m Z e^{2}}{2 \pi \varepsilon_{0} j^{2}}\right)\left(\frac{1-\varepsilon^{2}}{2}\right) \\
E & =-\left[\frac{m Z^{2} e^{4}}{32 \pi^{2} \varepsilon_{0}^{2}}\right] \frac{\left(1-\varepsilon^{2}\right)}{j^{2}}
\end{aligned}
$$

Puttingthevdueof $\left(1-\varepsilon^{2}\right)$ andj fromeq(3) and(1la) respedively, wegt

$$
\begin{align*}
& E=-\left[\frac{m Z^{2} e^{4}}{32 \pi^{2} \varepsilon_{0}^{2}}\right]\left[\frac{l^{2}}{n^{2}}\right]\left[\frac{4 \pi^{2}}{l^{2} h^{2}}\right] \\
& E=-\frac{m Z^{2} e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}} \tag{23}
\end{align*}
$$

This equtionshons theenegy of andedronindlipticd ardit which is eadly thesareafor theBdr's ciralar ardit Theeregy of detronstill independat ontheazinthal quatumnunber l. Thustheirtrodution of ellipicd arditsgives monevenegyleads andhemeronentrasition HenceSommeffdds attent to exdainthefinestudureof speetrd linesfailed

SreandStppeof SammefddsOrbits

Fromeqution(2), wehave

$$
a=-\frac{Z e^{2}}{8 \pi E \varepsilon_{0}}
$$

Fromequion(23) sbstitutingthevalueof E, wegt

$$
\begin{gather*}
a=\frac{n^{2} h^{2} \varepsilon_{0}}{\pi m Z e^{2}} \tag{24}\\
a=\frac{n^{2} r_{b}}{z} \\
{\text { where } r_{b}=}^{h^{2} \varepsilon_{0}} \pi \pi e^{2}=0.0529 \mathrm{~nm} \text { (Bdrradus) }
\end{gather*}
$$

Againusingeqtion(12)

$$
b=\frac{a l}{n}
$$

Subsitutingvalueof a fromeqdion(25), negł

$$
\begin{equation*}
b=\frac{n l}{2} r_{b} \tag{26}
\end{equation*}
$$

Wecandetminethesizeandstppeof Somreffddselipic arditsfromeqution (25) and (26).The lengh of semi-major axis is demmined by the pinipa quatumnumber n, while the lengh of the sermi-ninor axis depenos ypon the aimothal quatumunber l ळudl $ळ n_{n}$.

Foragivenvdueof n, theposisidevalues of l ae0,1,2,3....n, when wecorsida $l=0$, thedlipseredues to astragt lineandthededronthen pesses througthe nudestravesing theakit This leods to the collapeof the tom Therforethe valueof $l=0$ isfardidden Thusforgivenvaluen, quatumnumber l cantaken dfferet posidlevdues 1,23n. Thismersforagiven n, thereare n ardits of dfferet eccertridies which will beocapied by the edetron Let us considr hydogenatom(Z-1).
Forfirstardit $=1, \operatorname{Since}_{n}+l=1$;

$$
l \neq 0 \Longrightarrow l=1
$$

Thus with $n=l$ and $\quad n_{r}=0$, a $_{b}$ andb $_{b}$

Figre2: n-1, $=1$
This shonscirala ardit of redus r_{b} (Fig2) whichiseadly sareatheBdr's considation For $_{n}=2$, Possidevduesof l aeland2 negł
(1) $l=2$, then $a=4 r_{b}, b=4 r_{b}$
(2) $l=1$, then $a=4 r_{b}, b=2 r_{b}$

Figre ${ }^{i=1}=1, n=2$ arbits
Fromabovegivencontrindionfor $n=2$, wehaveaBdr'sciralaraditof radus $4 r_{b}$ andandlipicarditwithseri-majoraxis $4 r_{b}$ andsemi-minoraxis $2 r_{b}$ (FigOB). Butal thesearditshavesareengyEgivenbyequion(23).

For $_{n}=3$,Possidevduesf l arel, 2 and 3 wegt
(1) $l=3$, then $a=9 r_{b}, b=9 r_{b}$
(2) $l=2$, then $a=9 r_{b}, b=6 r_{b}$
(3) $l=1$, then $a=9 r_{b}, b=3 r_{b}$

Thus wefindoneBdr's dirala ordit of radus r_{b}, remaining tho aedlipdic ardits with sameseni-majo axis $9 r_{b}$ and dfferet sem-nincr axes $6 r_{b}$ and $3 r_{b}$ whichisshowninbeowfigre(OA).Thesedl threarditshavesmeenegy.

Figre4 for $n=3$, Possidevalues of l ae1,2and3
Wecanseethet foreach velueof thepinipa quatumnibern therewill ben dfferet dlowed akits Oneof these will bedrala, which is eydaned by the aigina Bdr theary. Oher will beellipic, al haingthesamessin-mjo axis, butdfferetsenti-minoraxes
Thededronis mavingindfferet posideardisfor agiven, bittheenegy of detron renains same in all ardits wsocited to n Thus we condude that Sammefdds introdrtion of elliptic ardits do not indude new enegy levds, hence it carnt exdan the finestudure Theorbits asoided to same enegy known as degenede To represet the dfferet ardits in andhe nodion corespondngto azimotha quatumnunber $l=1,2,3,4$, ec. It isdescribed by the letters.,pdf ec respeetively. Inthisndtion theardit dterminedby $n=3$ and $l=1$ isrepreseted by 3ڭ Sinilaly 4f will representheardit $n=4$ and $l=4$.

123Sammerfa'sRadivisicCarediar

Andectronhestherdio $v / c \cong 10^{-2}$ arlessinimemotarbitof hydogenatom Detothis, redtivisiccoretionwill aise In ellipic ardit the veloity of an
dectronvaries pointto poirtinardit It is anaximmat neresthenudesanda mirimemfather aney fromthenudes Accordingtothetheory of redivity, we knowthet thevaridion of vecoity mensvaidion of messof thededron
Taking this effet into accant, Sommeffd calaled the todd enegy of an dedroninanaditwhichischatateizedbythequatumumbernandl as

$$
E=-\frac{m_{0} Z^{2} e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}}\left[1+\frac{Z^{2} \alpha^{2}}{n}\left(\frac{1}{l}-\frac{3}{4 n}\right)\right]
$$

Whre $\alpha=\frac{e^{2}}{8 \varepsilon_{0} h c}=\frac{1}{137}$ is'fine-stucturecontat'". It isdmensionlessquatity and equd totherdio of thevelocity of dedroninthefirst Bdr ardit of hydogen to thevdocity of ligttcinvaum
Thedboveefressionnmy dsobewittenas

$$
E=-\frac{R_{\infty} Z^{2} h c}{n^{2}}\left[1+\frac{Z^{2} \propto^{2}}{n}\left(\frac{1}{l}-\frac{3}{4 n}\right)\right]
$$

Where $R_{\infty}=\frac{m_{0} e^{4}}{\varepsilon_{0}^{2} h^{3} c}=.097 \times 10^{7} \mathrm{~m}^{-1}$ is Rydorg contat for anirfintedy heavy nudes
Thetemndues of thehydogen-likeatomare

$$
\begin{aligned}
T & =-\frac{E}{h c}=\frac{R_{\infty} Z^{2}}{n^{2}}\left[1+\frac{Z^{2} \alpha^{2}}{n}\left(\frac{1}{l}-\frac{3}{4 n}\right)\right] \\
\sigma \quad T & =\frac{R_{\infty} Z^{2}}{n^{2} .}+\frac{R_{\infty} Z^{4} \alpha^{2}}{n^{3}}\left(\frac{1}{l}-\frac{3}{4 n}\right) .
\end{aligned}
$$

Thefirst termissimila to Bdr daivetionfor drala ardits Theserandtemis therddivisitic corredion Δt, sowecan wite

$$
\Delta \mathrm{T}=\frac{\mathrm{R}_{\infty} \mathrm{Z}^{4} \propto^{2}}{\mathrm{n}^{3}}\left(\frac{1}{1}-\frac{3}{4 \mathrm{n}}\right)
$$

Beabe $R_{\infty} \propto^{2}=5.84 \mathrm{~cm}^{-1}$
So

$$
\begin{equation*}
\Delta T=\frac{5.84 Z^{4}}{n^{3}}\left(\frac{1}{l}-\frac{3}{4 n}\right) \mathrm{cm}^{-1} \tag{27}
\end{equation*}
$$

Finally wecancalaltetheredivisticshiftintheeregylead of vaiasl values forechBdrenegyled nwiththehdp of thelatepression

D4Shatcaningsof Bdr- SammefiddThear

Therearegivensomeshatcomingsf Bdr-Sommeffdtheoryafdlowing-
(1) Bdr's theary ddeto colalatetheenegies of the allowed staes of andom and the frequency of radition enitted α dbsabed in tranitions between allowed states But it is undeto cdalattherate t which surhtranitions tikepareardintenity of thespeetral lines
(2) The theary fails for dans which have norethen onededron, for examde natra hdiumatomwhichhesaly thodedrons Itisapdicddealy to ane detrondons likehydogen hydogenistapes, singy-iarizedhdiumec
(3) Evenitwesunddetoeydanthefinestuctureof spedrad linesinthesimdest hydrogenatom
(4) Theremerent given proper reesonfor theintrodution of quatumnunbers Thequatumunhersureintrodredby Bdrmapostute
(5) Both the theories cald not exdain the dstribtion and arangenett of detronsinatons
(6) BoththetheoriescaildnoteddananomłasZeenæneffet andStak effet

25IllustrativeExamples

Exaple: Cadietheergy sift fromBdrlead of andectoninhyorogen

Sd. Givenpinipal quatumunhern $n=$, adforhydogentamZ $=1$
Azinthd quatumunber forn-1 will bel=1
EnegystiftfromBdrlead

$$
\begin{aligned}
& \Delta \mathrm{T}=\frac{\mathrm{R}_{\infty} \mathrm{Z}^{4} \alpha^{2}}{\mathrm{n}^{3}}\left(\frac{1}{l}-\frac{3}{4 \mathrm{n}}\right), \\
& \therefore R_{\infty} \alpha^{2}=5.84 \mathrm{~cm}^{-1}
\end{aligned}
$$

Then pattingthegivenvalues, wegt
の $\quad \Delta \mathrm{T}=\frac{5.84 \mathrm{~cm}^{-1}}{1}\left(\frac{1}{1}-\frac{3}{4}\right)$
or $\quad \Delta T=\frac{5.84 \mathrm{~cm}^{-1}}{4}$
StiftfromBdrlerd

$$
\Delta \mathrm{T}=1.46 \mathrm{~cm}^{-1}
$$

Exampe2 Cadattheiarizdionenegy of hydogenatom($h=663 \times 10^{34} \mathrm{~J}$.s,
$\left.\mathrm{e}=16 \times 10^{19} \mathrm{C}, \mathrm{m}=9.1 \times 10^{31} \mathrm{~kg}, \operatorname{and} \varepsilon_{0}=885 \times 10^{12} \mathrm{C}^{2} \mathrm{~N}-\mathrm{m}^{2}\right)$

Sd. Inceeof hydogenatom(ZZ) iarizdioneregy neerslindngengy the dedrantothenudas, whichisequ totheenegy of thelowestste corespondngton:1

$$
E=-\frac{m Z^{2} e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}}
$$

Usingaboveequtionforiorizaionpatetid (n=,Z=1)

$$
\begin{aligned}
& E=-\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{2}} \\
& =-\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{4}}{8\left(8.85 \times 10^{-12} \frac{C^{2}}{N-m^{2}}\right)^{2}\left(6.63 \times 10^{-34} \mathrm{~J} \mathrm{~S}\right)^{2}} \\
& =2.17 \times 10^{-18} \mathrm{~J}=13.6 \mathrm{eV} \quad \therefore 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

D26Saf LemingExacise-I

 Q2 Why ddSormeefedintrodrendativisic corretion?

127nteppretaionof QuertumNumbasfor HydrogenAtoms

 coars in nture It have a positively darged nudas and negitively darged dedron(-e , moving under their calonto atration and bound together by the ttration The star of the ledron aound the nudes in tems of its loction redive to the nudes and the enegy asomited with it is described by a se of quatumumbes Eachdedronis chacteized by far qatimnumbers called thepinopa (todd) quatununher, theazimthd (arditd) quatunumber, the magneic arbitd quatumnumer add themageic spinquatumnumers Now wewattodescribeintermof size, shape, ciettion of thearditin spaceandspin aoundthenudes

(1) Thetodd andpincipa quatumumber(n)

Thisisidaticd withtheoneusedinBdh-Sarmerffddstheory. Itcantakevdues $1,2,3,4, \ldots, \infty$. Thisdandesthemajoraxis of theedlipsewithwtichtheenegy of thedectronisassoitedandhemepestainstotheminenegylevd orshall.
Theseenegylevdshaingvalues of $n=1,2,3,4$, \&c Thesevauesreprested bysynhodsof shallsK, L, M, N, ec

Theeregy (E) of dfferetlendsisineasdy yportional to n^{2}. Thet is

$$
E \propto \frac{1}{n^{2}}
$$

(2Theabitd quatumumber ()-

Thisquatumnumber isanirtegrandforagivenvdueof n itcantakeary of the values $0,1,2,3,4, \ldots$, , $n-1$). It dvides themeinshdl intonsigtly dfferet enegy leads of sbb shalls so that the number of sb shalls in main shall is represeted by its pinipal quatumnumbers It neas the shall with pinipa
 (1) .
This quatumunber is called the angla nomertumquatumnime,wtich represets mecharicd angla monetum of the dedron The arbitd anglar monetumLiswittena

$$
L=l \frac{h}{2 \pi} \text {, wherel }=0,1,2,3 \ldots \mathrm{Ac}
$$

Accordngtoquatumneekric, thevdueof arditd anglar nomertum is int equat to $\frac{h}{2 \pi}$ atgivenby

$$
L=\sqrt{l(l+1)}\left(\frac{h}{2 \pi}\right)
$$

The L-shall will have tho sabshalls having values $1=0$ and I=A They are represetedæs and psibshalls. Thus wecanfinddfferetsibshals wsocized todfferetshals

(3)Magnticablatd quatumumber $\left(n_{l}\right)$)

An dectron revdves aand the nudes possesses angila nometuminterats with aneteral magneic fiddB. Themagnic quatumnumber m_{l} represets thedretion of Lbydłemiringthecomponet of Linthefidddreetion Thisis knownesspacequatiztion

$$
L_{z}=m_{l} \frac{h}{2 \pi}
$$

Wh丹er $m_{l}=0, \pm 1, \pm 2, \ldots \pm l$
Theposibidevalues of m_{l} frogivenvalueof l rangesfrom l to $-l$. Then unter of posideaietdions of theangla nomettumedor Linnmedic fidd will be $2 l+1$.

For $l=0, \quad L_{z}=0$ (drlysingevdua)

$$
l=1, \quad L_{z}=\frac{h}{2 \pi}, 0,-\frac{h}{2 \pi}
$$

Similady wecanfindatdfferent L_{z} vauesassoidedtodfferet l.

Figre5-Spacequarization of arditd anglar nanetum

Thenagnicspinquarumumbe $\left(m_{s}\right)$:-

In 195 ,tno Dtch grodstestudats, Sami Gananit and GergeU Ulerbed, proposed that every dedron have an irtiric angla momertum colled spin, whosenagitudeishaf (1/2).It is samefor all detrons and asocized withthis arglarmonetumismageicnomet
Thequatumnunter s describes the spin angla nometumof thedectron It fdlonsbothDira's theary andfromspeetrd dta Theanglar nometumS de todectronspinisgiveninterms of thespinquatumunhersby

$$
\vec{s}=\sqrt{s(s+1)} \frac{h}{2 \pi}=\frac{\sqrt{3}}{2} \frac{h}{2 \pi}
$$

Thesparequatizdionof detronspinisdexcibedby thespinnmegeicquatum nunber m. Thesain angla nomertumvedor canhavethe $2 s t 1=2$ cietdions speeifiedby $m=+1 / 2$ (spinup) adm $=-1 / 2$ (sqindbun).
Z-componet of spinangla mometum

$$
S_{z}=m_{s} \frac{h}{2 \pi}= \pm \frac{1}{2} \frac{h}{2 \pi}
$$

128EledronProbsbilityDasity

 besdvedbyspardion of vaiddeintheform

$$
\Psi(r, \theta, \varphi)=\mathrm{R}(r) \Theta(\theta) \Phi(\varphi)
$$

Quatummedarically, we cand consider an dectron an roving aound the nudes in dfirite orbits It is proadilistic phamera In thee dmeniors, probadility danity $\Psi^{2}(r, \theta, \varphi)$ gives the prodadility per unt vdure for the dectrontobefandinasnal vdumedenettthecoordnte((r, θ, Φ).

$$
\Psi^{2}(r, \theta, \varphi)=\left.|R|^{2}\left|\Theta^{2}\right| \Phi\right|^{2}
$$

Where $\left.\Psi\right|^{2}=\Psi \Psi^{*}$, Ac
The wavefundion $\Psi(r, \theta, \varphi)$ is symmericed daat thez-axis Sol $\left.\Psi\right|^{2}$ depends aly $|R|^{2}$ and $|\Theta|^{2}$. Firstly wewill dsass thedapendarce of $|\Psi|^{2}$ an $|R|^{2}$. For this we dafine the radd proddility dansity $P(r)$, this is dafined so thet $P(r) d r$ givestheprodadility thetregadessthedrection dectronwill befardto theliebdweentwosdereswhoseradi ae ${ }_{r}$ and $r+d r$, thevdurfe $d v$ between therescheresis $4 \pi r^{2} d r$. Sowecanwite

$$
\begin{equation*}
\mathrm{P}(\mathrm{r}) \mathrm{dr}=\Psi^{2}(r) d V=\Psi^{2}(r) 4 \pi r^{2} d r \tag{28}
\end{equation*}
$$

Thegrach of $P(r)$ agint r / r_{b}, where r_{b} isBdrradus, isgivenbedowforvaues of n and l (stels 2 sand 3 fforthehydogenatom ($\mathrm{z}=1$) aeshowninFig6

Figre 6Graphbeweenp(r)andr/r r_{b}

Wecanseffrom fig6thedectronis nost likdy to befand at theloctions of Bdr ardits Now wewill cansidr thedpenderceof $|\Psi|^{2}$ on $|\Theta|^{2}$ (dreetiond) whichisshown Fig7 and Fig8 Theformof $|\Theta|^{2}$ intems of polar dagamin which theaiginist $r=0$ andthez- axsistakendangthedreetionfromwtich theange isnared

Fig7Pdardagamforsstel $=0, m=0$

Fig 8 Pdardagansforpstes(a) $m=0$ (b) $m= \pm 1$ (c) $m=0$ rdtedaond z-axis, (d) $m=$-l rddedaoundz-axis

Fromabovefigres wecansay $|\Theta|^{2}$ is contartfor ansstede($(=\theta)$ andfor cher stdesit vaieswithe andtakes lagestvdueindffintedretion

1290rbita Anglar Manertun

An deetron revdves aound nuees in tom which hes an orbid angrar nonertum \vec{i} whichhavedrediondangtheardid axis Theanglar nomertum \vec{L} of a patidebound to and noving aound accordntecrignis dfined by the equation

$$
\vec{L} \vec{F} X \vec{p},
$$

Where \vec{r} and \vec{p} area position vetor with respet to cigignad liner nonetum vedor respectively. Theredanglarcomponets of \vec{L} ae
Usingaossprodit,

$$
\begin{aligned}
& L_{x}=y p_{z}-z p_{y} \\
& L_{y}=z p_{x}-x p_{z} \\
& L_{z}=x p_{y}-y p_{x}
\end{aligned}
$$

wherexy,zarethecomponets of \vec{r}, and p_{x}, p_{y}, p_{z} aethecomponets ${ }_{\vec{p}}$.

Usingeqivdetdfferetid qeertorformenertumoamponets

$$
p_{x}=-\frac{i}{2} \frac{h}{\pi} \frac{\partial}{\partial x}, p_{y}=-\frac{i}{2} \frac{h}{\pi} \frac{\partial}{\partial y}, p_{z}=-\frac{i}{2} \frac{h}{\pi} \frac{\partial}{\partial z}
$$

Nownege redangla componet of angla nometuminquatummederica qpatas, whichare

$$
\begin{aligned}
& \hat{L}_{x}=-\frac{i}{2} \frac{h}{\pi}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
& \hat{L}_{y}=-\frac{i}{2} \frac{h}{\pi}\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)
\end{aligned}
$$

and

$$
\hat{L}_{z}=-\frac{i}{2} \frac{h}{\pi}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

Inspheica plarcordintes theseqperdasbeecre

$$
\begin{gather*}
\hat{L}_{x}=\frac{i}{2} \frac{h}{\pi}\left(\sin \varphi \frac{\partial}{\partial \theta}+\cot \theta \cos \varphi \frac{\partial}{\partial \varphi}\right) \tag{29}\\
\hat{L}_{y}=\frac{i}{2} \frac{h}{\pi}\left(-\cos \varphi \frac{\partial}{\partial \theta}+\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}\right) \tag{30}
\end{gather*}
$$

$$
\begin{equation*}
\text { and } \widehat{L}_{z}=-\frac{i}{2} \frac{h}{\pi} \frac{\partial}{\partial \varphi} \tag{31}
\end{equation*}
$$

Thesquere themaritudeof theanglarmertumeator \vec{L} is

$$
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

Thecorespondingqpedtor is

$$
\hat{L}^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}
$$

Putthesquers of $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}$ fromequaion(29),(30),(31) wegt

$$
\begin{aligned}
\hat{L}^{2}=-\frac{h^{2}}{4 \pi^{2}}[\{ & \left.\sin ^{2} \varphi \frac{\partial^{2}}{\partial \theta^{2}}+\cot ^{2} \theta \cos ^{2} \varphi \frac{\partial^{2}}{\partial \varphi^{2}}+\sin \varphi \frac{\partial}{\partial \theta}+\cot \theta \cos \varphi \frac{\partial}{\partial \varphi}\left(\sin \varphi \frac{\partial}{\partial \varphi}\right)\right\} \\
& +\left\{\cos ^{2} \varphi \frac{\partial^{2}}{\partial \theta^{2}}+\cot ^{2} \theta \sin ^{2} \varphi \frac{\partial^{2}}{\partial \varphi^{2}}\right. \\
& \left.\left.-\cos \varphi \frac{\partial}{\partial \theta}\left(\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}\right)+\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}\left(-\cos \varphi \frac{\partial}{\partial \theta}\right)\right\}+\left\{\frac{\partial^{2}}{\partial \varphi^{2}}\right\}\right]
\end{aligned}
$$

Bymeresdving wegetfinal solution

$$
\begin{align*}
\hat{L}^{2} & =-\frac{h^{2}}{4 \pi^{2}}\left[\frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}+\cot \theta \frac{\partial}{\partial \theta}\right] \\
& =-\frac{h^{2}}{4 \pi^{2}}\left[\frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta}+\frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \\
\text { or } \quad \hat{L}^{2}= & -\frac{h^{2}}{4 \pi^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \tag{32}
\end{align*}
$$

Itisqpatarof thesquereof theanguarmantum
Byapdyingtheqperdor \hat{L}_{z} totheare-dectronatommenefundion

$$
\Psi(r, \theta, \varphi)=\mathrm{R}(r) \Theta(\theta) \Phi(\varphi)
$$

Thisgives $\hat{L}_{Z} \Psi=-\frac{i}{2} \frac{h}{\pi} \frac{\partial \Psi}{\partial \varphi}$
or $\quad \hat{L}_{z} \Psi=-\frac{i}{2} \frac{h}{\pi} \mathrm{R} \Theta \frac{\partial \Phi}{\partial \varphi}$
Thefundian $\Phi(\varphi)$ fortheatamisgivenby

$$
\Phi=A e^{i m_{l} \varphi}
$$

Bydffertiatingw.r.t φ, negt

$$
\frac{\partial \Phi}{\partial \varphi}=\mathrm{A}_{\mathrm{im}}^{l} e^{i m_{l} \varphi}=i m_{l} \Phi
$$

Putthisvdueineqdianv, wegł

$$
\begin{aligned}
& \hat{L}_{z} \Psi=-\frac{i}{2} \frac{h}{\pi} i m_{l} \mathrm{R} \Theta \Phi \\
& \hat{L}_{z} \Psi=m_{l} \frac{h}{2 \pi} \Psi
\end{aligned}
$$

Givendoweequtianshonsthewerefuncions Ψ of theoredectranamarethe égerfundionof \hat{L}_{z} haingeiganduesgiventy

$$
\begin{equation*}
L_{z}=m_{l} \frac{h}{2 \pi} \tag{34}
\end{equation*}
$$

Where $m_{l}=0, \pm 1, \pm 2, \ldots . \pm l$

D10Illustrive Exampes

Exampe3 caduathetwopossideanetansa spanvetarswthrespeetto amænelicfidd
Sd. Thenægitudeof spinanglar mometumS,

$$
\vec{S}=\sqrt{s(s+1)} \frac{h}{2 \pi}, \quad s=1 / 2
$$

andz-componat

$$
\mathrm{S}_{2}=\mathrm{m}_{2 \pi}^{h} \quad, \quad \mathrm{~m}_{\mathrm{B}} \pm 1 / 2
$$

TheangebetweenS andthez- axisisdateminedbythequatumnumesmand S,

$$
\cos \theta=\frac{s_{z}}{s}=\frac{m_{s}}{\sqrt{s(s+1)}}=\frac{2}{\sqrt{3}} m_{s}, \quad(\therefore \mathrm{~S}-1 / 2)
$$

Form $=1 / 2$, wege

$$
\cos \theta=+\frac{1}{\sqrt{3}}=0.577 \quad \therefore \theta=\cos ^{-1}(0.577)=54.7^{0}
$$

Form $=-1 / 2$ weg \neq

$$
\cos \theta=-\frac{1}{\sqrt{3}}=-0.577 \quad \therefore \theta=\cos ^{-1}(-0.577)=125.3^{\circ}
$$

Example4 Find the poside vilues of the componets of angla monetum dongaspeeifieddreetionfor andectronarditwithquatumunherl $=1$
Sd. Forthegivendectron I=1 (pedetron) ands=1/2
Thetwoposidevalue of j are

$$
j \neq \pm \mathrm{s}= \pm \pm 1 / 2=3 / 2 \mathrm{and}^{1} / 2
$$

Forj $=32$, theposidevalues m_{j} ae

$$
m_{j}=\frac{3}{2}, \frac{1}{2},-\frac{3}{2},-\frac{1}{2}
$$

For $j=1 / 2$, thepossildevalues m_{j} ae

$$
m_{j}=\frac{1}{2},-\frac{1}{2}
$$

Z-Componet of todd anglarmonertumwill be

$$
j_{z}=m_{j} \frac{h}{2 \pi},
$$

Sotheposildevaluesforz-camponet of tod anglar mometim

$$
\pm \frac{3}{2}\left(\frac{h}{2 \pi}\right), \pm \frac{1}{2}\left(\frac{h}{2 \pi}\right)
$$

Example5 Hownany readutions des an detronin n-3 state of a hydogen tammakebeforedroping to then-1 ste? Theavacyelifetimeof anexited steis 10^{8} secand ($R_{\infty}=1.097 \times 10^{7} \mathrm{~m}^{-1}$)

Sd. ForhyctogenatomZ=1

Thenumber of revdutionsper seeondof thededroninthearbit is

$$
f=v / 2 \pi r
$$

For finding the value of v from Bdr postultes for condtion of mertariced stdility of dedronis

$$
\frac{m v^{2}}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r}
$$

andquatumcondionis

$$
\begin{equation*}
m v r=\frac{n h}{2 \pi} \tag{n-1,23.......}
\end{equation*}
$$

Wefindfromaboveeqdiors

$$
v=\frac{e^{2}}{2 n h \varepsilon_{0}} \text { and } r=\frac{n^{2} h^{2} \varepsilon_{0}}{\pi m e^{2}}
$$

Thus

$$
f=\frac{m e^{4}}{4 \varepsilon_{0} n^{3} h^{3}}=\frac{m e^{4}}{4 \varepsilon_{0}{ }^{2} h^{3} c}\left(\frac{2 c}{n^{3}}\right)=R_{\infty}\left(\frac{2 c}{n^{3}}\right)
$$

Forthen=3stae, thefrequancy of revilutionis

$$
\begin{aligned}
& f=R_{\infty}\left(\frac{2 c}{n^{3}}\right) \\
& f=\frac{\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)\left(3.0 \times 10^{8} \mathrm{~ms}^{-1}\right.}{9}=3.66 \times 10^{14} \mathrm{~s}^{-1}
\end{aligned}
$$

Hercethenumber of revduiansof thedectroninitslifetimeof 10^{-8} secondis

$$
\left.\neq 3.66 \times 10^{14} s^{-1}\right) \times 10^{-8} s=3.66 \times 10^{6}
$$

211 SafLemingExacis- II

Q1 What is the meang of degeneay of the ellipic arbits in Sommeffd's theary of dlipicardits?
Q2 Calalate the possidecriettions of the tod arbitd angla monetum vettor \vec{L} coresponding to $l=1$ with respeet to a magnic fidd dang the z-axis
Q3Show thet theirizaionpeterid of Li+ is inetimes thevduefor hydogen tom

D2SUmmay

The unit stats with Sonmerfed's ellipic arait Find the carivation for enegy, shepeandsizefordfferettlipicd arbits Sormeefdd'smodd car'texdannfine stuctre of speetrd lines Weintrodreredtivisic corretionfor singedetron dans
Futher, quatumnumbers and dedron probdility derity are introdred for hydogen tom. Wetry to daw plar dagans for dfferet enegy stas Inlat, wedfined abditd angiar nometum Thereind ved nany solved and uned ved podenstimetotimeaterdaivaion

213Gomay

Dagneat Tho or morequatustes thet shereo retethesmequitum nunbers
Sctioney-Renzininginthesarecondionorstate

214AnenastoSeff LeamingExarcise

ArevastoSdf LeamingExacisel

Ansl: Therewill betotnopossideardits
(i) Crala (withradus r_{b})
(ii) Elipticd (withsemi-majoraxis $a=4 r_{b}$ andsemi-mincraxis $b=2 r_{b}$)

Ans2 Toeydänfinestudureof hydogenspedrd lines

AranastoSdfLamingExacisell

 prqpety of orditsknownadegersacy.
Ans2 $\cos \theta=0.7071,0,-0.7071, \theta=45^{\circ}, 90^{\circ}, 135^{\circ}$
AnE3 Using $_{E_{1}}=-R_{\infty} Z^{2} h c$

1215 Exacis

Q1 DescribeBdr's tamnode. Assming thet thenudes is infinitey heav andthededronhes mass manddragee findat theengy of thedetrons mavinginthenthardit Cadaltetheiorizdionpatetid of hydogentom
Q2 Calaltethetimetakenby the dedronto travesethefirst Bdr's arbit in hycrogenspectum
Q3 Whtarethesdietfeatures of Bdr-Sommeffddatomrodd?
Q4 Hownary revduionsdes andectroninthen=2stedeof ahydogentom makebforedqpaingtothen=1ste? (Theareagelifetineof anedited staeisdat $10^{8} \mathrm{~s}$).
Q5 Calalatethe posideaietdions of the tod anglar nometumvedor \vec{J} correspondingtoj 5 2 withrespedtoamagnicfidddangthez-axis

1216AnsnastoExarcis

AnEl: Seinsetionl22
Ans2 $1526 \times 10^{5} \mathrm{sec}$
Ans3 Seeinsetion123\&124
Ans4 82×10^{6}
AnE5: 32.20, 59.53, $80.20,99.72,12046,147.77^{0}$
ReforencesandSuggetedResding:
1 Raj Kumar, Atomic and Mdeala Speetra LASER, Fifth edtion (2008), KedarNathRamNah
2 Arthr Beisg, Concegt of Modm Physics, Sixth edtion (2006), Tta McGrantill.
3 R. Resick, D. Halliday, K. S KraePPysics (Vdure - I) 5th Edtion (Engish) WlegIndaPtt Ltd 2002

UNT-1E Vettor AtomModa

SrutureoftheUnit

130 Ojectives

131 Introdution VetorAtomMod!
132 SpirningEledrans
1321IntringicMagndicMonert
133 SpaceQuatizaion
1331Oiettiono Ordit
134 QartumNunbe'sandThér Physicd Intepredion
135 MageicMonertof anEledroninanAtomandLandesgfator
136 LamorPreession(Lamro'sTheeren)
137 Spin-OhditCapling Vetor AtomModa
138 QatumNunhessforMultidetronAtom
139 Speedrd TemsandTheir Nadtions
1310 Descipionof GrandState
1311 Sten-Gelach ExpainertandEletronSpan
1312 IllugrdiveExamdes
1313 Seff LearingExacise
1314 Summy
1315 Gossay
1316 ArsmastoSeff LeamingExerise
1317 Exerise
13.18 AnsnestoExeriseRefercesandSuggestedReedngs

13C Ogjedive

 conceptulized with two feetures, narely, thequatizaion of space(arientions of arbits) andeletronspan Theidæacf quatizdion of aietaians wesintrodred bytheconcet of proietionof eachquatizedabitonthefidddredion Thislad down the introdution of addtiond quatumnunbers, revely nageic arditd $\left(m_{l}\right)$ and spin quatumnumber (m_{s}). Wth compee narendare of quatum nunbers of sing edetronsystem, say Hydogen atom thismodd neetly exdains the priodc tdde w wll a describetherrandic propaties of dedron (aton) and the todd anglar nomertum results framL-S capling Stem - Gelach experimet provides the dreet experimetd evidanes for theevistenceof spinof detronanddscreteariestdians of orbits, whenan atomispacedinastrong non - unfommageticfied

13] Introdidior : Vedtor AtcmMod

The vector-annmad is an exenson d RuthetorchBor-Sommeted atom moda. Rutheford-Bdr-Sammeffdd tom noda surcessully exdans singe valence tom, i.e Hydogen atambt incopade of resdving the speetroscopic issues of tans cantans rore velencedetrons. Ths, to vercarethelimitdion of Bdr-Sommefdd nodd as udl a to exdain new expeimetd phenomen, like anandaus Zeenan's effeet, Paschen's-Bark effet, Stak effet Futher, the theory proposed by Bdr andSommeffd aretwodmensional wilean atomisa thredmeriond etity. Therefre, to incorpordethethreedmensiond concett and to explain the compeity of the spetrd dstribtions, exterion of BdrSammeffd modd wes given by Ulerbeck and Gandmit, known as VetorAtom modd. The vector tam modd basically dads with the tod angula momertum of an tomwich is reslts of the contrintion of aditd and spin angula nometa The main two features of vetar tammodds ae, nenely, spiring eetransandspareQuatizdion of detronabits

132Spiningof EletraE

Since the Bodr-Sommeted rode coultit expain compedy the speetra betavia of Hydogen domand thus it beeare neeessary to adtress samedter propeties of naving deetron Todescribethemiliplecharater of speetrd lines,
i.e moltiples (for exandeduble of sodum tripe of magesiumandmerary) andlsotoaccart thebehavior of speetrd lines undr the effet of magndicfied Ullerbeck and Gaddnit propoedthehypothesis of spiring dectrons incrdes to exdan sone of speetrd phemmern an Zemm effet, finestucture etc Accordngto its, deetron revd ves abat its own axis whilerevdving inits abdit aandthenides Thusmaingdectronhestwokinds of notion, arbitd notion andspinnetion

As weknowthtaralar motion of a meeharica booyleadstomedaricd anglar nomettum, similaly a dage booly, i.e dectron prodres a dralar aret which dso rddes with body. This dirala areet then gives rise to a magneic monett Therfore concept of dedron sain introdices tho argiar noremtumand two magneic nomets anefromis deto arbitd mation while ather isdetospinnation Thetdd angla nomertumof thededronisthesm of arditd andsananglar nomertum Sinilaly, thetdd nageticnemetisthe sumof orbitd andspinsmageticment
Thespirningnedion of dedronisquatizedinbthnrogitudeanddretion The intrinsicsainanglar monetumisgivenby

$$
\begin{equation*}
\vec{p}_{s}=\vec{s} \hbar \tag{1}
\end{equation*}
$$

The intrinsic span angla monetumis a shown in Fig (131) sain anglar momertumeantikealytwocietdionsinthepreenceof magndicfidd

Fig: $\mathbf{1 3 1}$
Theprgectiono \vec{p}_{s} isgivenby

$$
\begin{equation*}
p_{s_{z}}=m_{s} \hbar \tag{2}
\end{equation*}
$$

with andogy, theorditd anglar mometumvetor and spin anglar mometum vedor canhevetrovalues ($2 s+1$). Foreample if $s=\frac{1}{2}$, macanhavearlytwo values, nenedy $+\frac{1}{2}, \alpha_{-}-\frac{1}{2}$, i.e spin-up (pardld) and spindown (ati pardld) dredionscorespondngy andthwsp cantakealytwocietdions

1321IntrinsicMagricManetum

Duto thespiring of eledron adralar arret is prodreed which genertes a magnic fild This fied is the same as the prodred by a bor maget and darataizedby magnicmertart isgivenby

$$
\begin{equation*}
\vec{\mu}_{s}=2 \frac{e}{2 m} \cdot \vec{p}_{s} \tag{3}
\end{equation*}
$$

13: SpareQuarlizctiar

In Bor's noad, deetron hes any one quatum numer, neney, pinapa quatumnunber n to describethemetion of edetron notion Thus detiontes aly anedeyee of freedminBdr's modd. Leter an accardngto Sarmeffdd dectronredves indlipticd arditswhicharetwodmersiond andhancedetron tes tho degree of freedm. Therfore, tho quatumnmes nenedy, pincipa quatumniber nandtherzimuthe quatunnnherk Butingened, antom is a threedmersiona boly and therfare, possesses three degree of freedm Since, dasically, detronardit moy aiet indl posidedrections in spoce, i.e naytakedffertaietdiansinthedomashowninFig (132).

Fig: 132
Thus, thirdquatumunherquatizesthearieldian of ellipdicd arbitinttre
 rulef sparequatizdion at of infiniteposidecietdiansorly cetaindscrete aietdions aredlowed Therfore thearietdion of anabit is needed to fixed بp

1331OriatdiansoftheOrbit

The prefered dredion or crietdion of an ardit can be find at with the help of arditd angla nomertumvetor p_{l} which is drected dang the axis of rodtionof detronandperpendalar tothe paneof ordit(Fig 133).
The rodting dectron dbat the nudes forms a areatlophes magneic menet $\mu=I A$, where I is the arret in lop and A is the aea vedor. Theenegy of chaged loppisgivenby $\mu B \cos \theta$. Since an orbiting dedron possesses angla

Fig:13: norertum $\left(p_{t}\right)$ whichinterats with etern magndic fied Therforeaccordng toquatumhery vedor p_{l} canhavecetaindsordedredionsradivetoeteral magneic fidd dredion known a spocequatizdion Thespacequatizdion of anadit is speedied by projection of its abitd angla momethmato drection of eternd magneticfidd(dang z-dretion).
Theardit anglar nometumisgivenby

$$
\begin{equation*}
\vec{p}_{l}=\frac{l h}{2 \pi}=\vec{l} \hbar \tag{4}
\end{equation*}
$$

Accordngto sparequatizaion, p_{l} canhavealy thosecieltaionforwhichits componetinthefieddreetion \vec{B} will tekeintegd values of \hbar. FromFig (134), $p_{l} \cos \theta$ isgivenby

$$
\begin{equation*}
p_{l_{2}}=p_{l} \cos \theta=m_{l} \hbar \tag{5}
\end{equation*}
$$

where m_{l} is known ∞ arditd mageic quatumnumber add θ is the ange betveen p_{l} and fidd drection since m_{l}, hes to be an integr and $\cos \theta$ carnt exceed urity, thus the permitted values of m_{l} ae from $+l$ to $-l$, i.e take fdlowingvaues

$$
I,(I-2),(I-2) \ldots \ldots, 1,0,-1,-2, \ldots \ldots .(\mid-2),-I
$$

This implies that for each valueof I, therewill be $(21+1)$ velues that mcanhave and p canhave $(21+1)$ possidedredions

Fig: 134 Sprequarizationofpforl $=2$
When antomis aljectedto magneic fidd, theeregy of thededronin itsarditvaiesforal redivearietdion of p withrespeettofiedddredion
Now the detron is visdized क thre dmensiond notion quatized by thee quatumunter $n i$ andm.

As both the arditd angla nomatum p and intringic spin angla
 thenles of vedas, thedommodd isknownaVetor Atommoda.
This, theirtrodution of quatizdion of spareardquatizdion of spin of detion futher ledtosamenewquatumnnherwtichwewill dsassinnet.

134QuentumNunba'sandTheir Phyicd Intepretetion

In Bdr's Sormeefedd nodd, tho quatum numbes, renedy, pinipal and aximotha quatumnumes ae dfined which ae not enagh to describe the mation of an dedron inits ardit BLt in vetor tammodd, ech componet is asigned a quatumnumber whose numerice vaue may bethagt of as the lengh of vedor andtherforefdllowingquatumn mbes ae ueed todescribethe mation of andectroncompledy.
(i) Pincipa QuartumNumber (\mathbf{n}):- Cassicaly, thepinjipa quatumnumber ' n ' repesests ardna number of patiala ardit ccapied by dedron aredfined कK, L, M, Narditforn $=1,2,3,4$ respedively. Butinquatumneeharics, mo dfinitenessisallowed

Thequatumunter ' n ' cantikeontheintegd vdues $1,2,3,4 \ldots \infty$ and govemsthetdd enegy $\left(\mathrm{E}_{n} \propto \frac{1}{\mathrm{n}^{2}}\right)$ admajor axis of ellipicd arbit, evenit givesthelageneendstanceof thededronfromthenudes Thus theK, L, M, N... not orly reperests theneen dstamebt dso agrop of detrons t the nearsdstancefromthearkit
(ii) AnOrbitd QuartumNumbr (l):- Thearditd quatumnumer I cantake an values $0,1,2,3, \ldots . .(n-1)$ for each n and govens the arditd anglar monertum(p). Itistobendedthat canhavevduezerobtitisndallowedfor k (zimithd quatumnimer), becaseof therddion $\mathrm{l}=\mathrm{k}-1$.
Angla monetumaccordngtowavemecharisisgivenby

$$
\begin{equation*}
\mathrm{P}=\sqrt{(1+1)} \hbar \tag{6}
\end{equation*}
$$

Ofbitd havethesanevdueof I dfinesthenturd ssies $0,1,2,3, \ldots$.. ae labdedm (s) shap, (p) prinipa, (d) dffise (f) funderetd given to the linesinthehycogenspedra
(iii) SpinQuatumNumbr (s):-Aswehavedsabsed that thequatizdion of spin of dectron wes needed to exdan fine stucture of spectrd line spin of dedron can take $1 / 2$ arly add redtes to the intrinsic, propety known a spin anglarmanetumas

$$
p_{3}=\sqrt{s(s+1)} \hbar
$$

Forsingededronsystemp $=0.866 \hbar$
(iv) Tdal Anglar ManertumQuatumNumber ()):-Itisdsoknownaimer quatumnumer. This dandes thetud anglar monertumof thedectronwtich aises detoarditd notionandsaimingof detron
For asingedectronsytem vetor T, i.e pand s, i.e pcoudevetarially ina weakfiedtog venvedor j, i.e $j=\Gamma \pm s$ andthetdd angla nomertumof the dedronis p i.e $\mathrm{p}=\mathrm{p} \pm \mathrm{p}_{\text {. }}$. Thequatizedtod anglar mometumisgivenby

$$
\begin{equation*}
\mathrm{p}_{\mathrm{s}}=\sqrt{\mathrm{j}(\mathrm{j}+1)} \hbar \tag{8}
\end{equation*}
$$

where jis positive add dwass $1 / 2$ integd for a singe detron Each I lead degengates intotho ر leads, remey $\mathrm{I}+\frac{1}{2}$ and $\mathrm{I}-\frac{1}{2}$.
When andomissubected to amagnic fidd, theerreqequamnunters are asoizedwithdedrondetospocequatizdion

Fig 135
(v) Magntic Orbitd QuatumNumber (n):- misthenureicd vaueof the prietion of orbitd quatumn (vedorl) in the magndic fied dreation i.e I precesses doat thenroneic fidddretion andforms a conedbat axis Dueto the rue of spore quatizdion, proection of I mot be qaatized in the fied dretionthenl canhevecientdionincetan dretions and m may dso bean integr, isgivenby

$$
\begin{equation*}
m=1 \cos \theta \tag{9}
\end{equation*}
$$

Posside values of mare $m=1,(\mid-1),(\mid-2) \ldots \ldots . . ., \ldots-1, \ldots . .-2 \ldots . . .(\mid-1) \ldots \ldots . .-\mid$ i.e $(21+1)$ possideaietdionsof I.

Possible orientation of l

Possible value of m_{l}

Fig 136
 is crietted apposite to the drection of magetic fied Fig (136) shons the aietdiansof \mid andpossidevaluesof $m f o r \mid=2$.
(i) Megndic Spin Quartum Number (m):- Sinilar the arditd angla nonertum, misthen meicd vaued theprgetion of thespinvetor 's's anthe fieddreetion andsain vetars canhavealy $(2+1)$ vduesfrom-sto + st unit inteva.
(vii) Tdal Magntic QuarumNumber (\mathbf{n}):- It is thenumiced valueof the proectionof tod anglar nomettuminthefidddrection Since, J canhaveorly $1 / 2 i$ itegd values malso assureshalf integd values Theperittedarietdion of J ae $(2 \mathrm{j}+1)$ andherceposiblevdues of m ae $-\mathrm{j},(-\mathrm{j}+1) \ldots \ldots(\mathrm{j}-1)$, i.e, ($2 \mathrm{j}+1$) exdudngzar

135 Magntic Manet of an Eletron in an Atom and Landesc- Fada

 mometof andedronprodreedbyintinsic propeties of spinandedtric charge
In an atom it is knowntht an dedron revdves arond thenudes with cetain angla veloity ω inaarbit of radusr. Thisreadution of detronprodres the arglarmonetumabathecetreof thepth isgivenby

Fig: 137

$$
\begin{equation*}
p=m a r^{2} \quad(\because v=r \omega) \tag{10}
\end{equation*}
$$

whichisquatizeddangtheperpendalardreciontothedaneof ardit
From dasicd eledrodyranics, we krow that when a darged booly rodtes, it produces mandic fidd de to a rett This cretes magnic dpoles of equl magitudebtopposteplaity, whichgivesrisetothearditd magnicmomet
Thus, an dectron waild gives riseto a arret in a completeredution of time priodT is

$$
\begin{equation*}
\mathrm{i}=\frac{\mathrm{Q}}{\mathrm{~T}}=-\frac{\mathrm{e}}{\mathrm{~T}} \tag{11}
\end{equation*}
$$

As wealsoknowthat thefidd dearditd iraitd arret dbes not dapend upon theshapexandhaingarditd mageicnomet

$$
\begin{equation*}
\mu=\mathrm{iA} \tag{12}
\end{equation*}
$$

where $A=\pi r^{2}$ (Areaco arbit)

$$
\begin{align*}
\Rightarrow \quad H & =-\frac{\mathrm{e}}{\mathrm{~T}} \pi \mathrm{r}^{2}=-\frac{e 0}{2 \pi} \pi \mathrm{r}^{2} \\
& =-\frac{\mathrm{e}}{2 \mathrm{~m}} m r^{2} \\
H & =-\frac{\mathrm{e}}{2 \mathrm{~m}} \mathrm{p} \tag{13}
\end{align*}
$$

-vesign indcaes that μ_{e} and pareqpositdy aieted Thenumicd valueof therdio of μ_{e} and p_{e}, i.e $\frac{|\mu|}{|\eta|}=\frac{e}{2 m}=g$ isknownesgyonageticrdio.

Fig 138
From the quatizdion of angla mometum ($p=1 \hbar$), the arbitd magnic monert $\mathrm{H}=-\frac{\text { Tht }}{2 \mathrm{r}}$ JaleTeda
Forthecæeof gandstaco hydogenatom($\mathrm{n}=1$), thisabitd magneic nomet iscalledBdr-Magndon, givenby

$$
\begin{align*}
\mu_{B} & =\frac{\theta_{h}}{2 \mathrm{~m}}=\frac{1.6 \times 10^{-19} \times 1.05 \times 10^{-34}}{2 \times 9.1 \times 10^{-31}} \mathrm{~J} / T \\
& =9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T} \tag{15}
\end{align*}
$$

Thus, equian(14) iswittennarecaretlyas

$$
\begin{equation*}
\mathrm{H}=-\mathrm{g} \mu_{B} T \tag{16}
\end{equation*}
$$

Similaly, futher, dectron possesses anintrinsicsananglar mometum hance it will dsohaveaspinnagnic nomet, followingtheequion (16), spinnagndic nenertcanbewittena

$$
\begin{equation*}
\mathrm{H}_{5}=-g_{H_{8}} \mathrm{~s} \tag{17}
\end{equation*}
$$

 spinnmegticnomettospinneedaricd monetumis

$$
\begin{equation*}
\frac{\left|\mathrm{p}_{\mathrm{m}}\right|}{\left|\mathrm{p}_{\mathrm{s}}\right|}=\frac{-\mathrm{e}}{\mathrm{~m}} \tag{18}
\end{equation*}
$$

Sincethespinfrequany istwicealageasorditd frequany, thuswemay wite

$$
g_{=2}
$$

hre gis is called "sping fata", which givesthenumicd neareof magic monertinurits of Bdrmageton
Qaxtummedarically, wehave

$$
\begin{align*}
& \mathrm{H}=-\mathrm{g} \frac{\mathrm{e}}{2 \mathrm{~m}} \mathrm{r} \tag{19}\\
& \mathrm{H}=-\mathrm{g} \frac{\mathrm{e}}{2 \mathrm{~m}} \mathrm{~s} \tag{20}
\end{align*}
$$

The tod magnic morert of the tomis the vetor sumof orbitd and spin mandicnemet

$$
\begin{equation*}
\mathrm{H}_{\mathrm{j}}=-\mathrm{g} \frac{\mathrm{e}}{2 \mathrm{~m}} \mathrm{j} \tag{27}
\end{equation*}
$$

ThisgiscalledLandesg fator.
 givenby

$$
\begin{equation*}
V_{m}=-\vec{\mu}_{\mathrm{B}} \cdot \mathrm{~B}=-\mu \cdot \mathrm{B} \cos \theta \tag{2}
\end{equation*}
$$

where θ istheangethet theangla mometumnakes withthefidddretion is givenby (accardngtothen leof sparequatizdion).

$$
\begin{equation*}
\operatorname{los} \theta=m \tag{23}
\end{equation*}
$$

anddsofromequion(14) $\mu=-\frac{\mathrm{d} \hbar}{2 \mathrm{~m}}$
then $V_{m}=\frac{d i}{2 m} B m$

13E Lamor Preestion(Lamur'sThered)

inphyscs, Lamer peessonis thepressson o thenrgetc nomert a any djeet with magneic nomert in an extend nagnic fiedd The concept of preession is illustraed balow for the eath well as for a sparing top. On both cosestheeterna forceisjutgraity.

Fig 1309
When a magnic nomert is plaed in a magneic fied it is digned with thefied Cassicaly, amagnicmeretcanberedizedæaumetinaloppand the influnce for being digned by the etand magnic fidd can betreated as torqe When a magnic nomert drected t sore finite ange with respeet to magneic fidd dreetion thefied will exet tarqe $(\vec{\tau}=\mu \times B)$ onthenmegic nomert, which casesthepreeessiondat themrgnic fidd Sincethemagnic nomet is asoided with angla nomettumj preesses dbat anaxis padld totherrgndicfidd

Thephenomeof precessioncanbedsaribedintermof (a) angebedween symmery axis and angla nomertumvedar, danded by θ, and (b) angla vacoity $\omega_{\mathrm{p}}=\frac{\mathrm{d} \phi}{\mathrm{d}}$, wherethearylar dsdacemet $\Delta \phi$ inthetimeintend $\Delta \mathrm{t}$ is $\Delta \phi \Delta t$ doiady.
FromtheFig (1310), itcanbeeegily wittenthat

$$
\begin{equation*}
\Delta \mathrm{j} \approx J \sin \theta\left(\omega_{\mathrm{p}} \Delta \mathrm{t}\right) \tag{25}
\end{equation*}
$$

Foranirfintesinallysmal $\Delta \phi$ and Δ, wenay wite

$$
\begin{equation*}
\frac{d}{\mathrm{~d}}=\omega_{\mathrm{p}} \mathrm{~s} \sin \theta \tag{26}
\end{equation*}
$$

Fig 1310

But the anglar monetumcarnt dange if there is mo torque, iffat, rate of dangeof angla monertumis equal totorque, givenby

$$
\vec{\tau}=\mu \times \mathrm{B}=\mu \mathrm{B} \sin \theta
$$

Thus, cremay have

$$
\begin{aligned}
& \mu \mathrm{Bin} \theta=\omega_{\mathrm{p}} \sin \theta \\
& \omega_{\mathrm{p}}=\frac{\mu \mathrm{B}}{\mathrm{~J}}
\end{aligned}
$$

where $\frac{\mu}{j}=\frac{e}{2 m} g$
$\therefore \quad \omega_{\mathrm{p}}=\mathrm{g} \frac{\mathrm{e}}{2 \mathrm{~m}} \mathrm{~B}$
which staes that anyiar veloity of the preession is propationd to the magitude of the eterna fidd and the propationdity constat $\left(\frac{g e}{2 m}\right)$. Thus the frequacy of thepreessioni.e isgivenby

$$
\begin{equation*}
\mathrm{f}_{\mathrm{p}}=\frac{\dot{\mathrm{o}}_{\mathrm{p}}}{2 \pi}=\mathrm{g} \frac{\Theta \mathrm{~B}}{4 \pi \mathrm{~m}} \tag{29}
\end{equation*}
$$

Sinceaccordng to the dasicd theory, in an tom the edectron ardit and spinshald preess inamagnic fied whichhdos goodinquatumneedaricd treatert dso bt the mering of preession in quatummechaic is uadly referedæLamra' peecesionandfreannies dovearedtendafinedæLamra'
frequaies, where the constat $\left(\frac{g}{2 m}\right)$ is usally witten a γ, knownas
gronagneic (nægetogric) rdio Thus,

$$
\begin{equation*}
\omega_{\mathrm{p}}=\gamma B \tag{30}
\end{equation*}
$$

Forasingededronsytemit isqitesimdetoundastandthebdaviar of system But it beeones nore complicted when many dedrons are indved which futher beecme mare complicted when eterna magnic fidd is introdred To resd vetheisse, Lamor hes proved atheremthat baically stae that "notion of thesytemis the saneas it wald bein the absence of thefidd ecept thatauriformrodionarandtheaxis of magnticfidd"
Mrespeafically, theardedrddionwill haveananglar frequencyinaneterna mageticfidd equat to

$$
\begin{equation*}
\omega_{\mathrm{L}}=\frac{\mathrm{e}}{2 \mathrm{~m}} \cdot \mathrm{~B} \tag{31}
\end{equation*}
$$

which is the sare formila, a we have doserved for anglar veloity of the peecessionuhen $\mathrm{g}=1$.
So, when an tomis paced in an eternd fidd B , the eledron arbit precesses doatthefidddreetioneaxis Thedectronabitd anylar momertumL tracesa coneaoundthe B surththeangebeween L\&Brenwinsconstat
i.e $B=B \hat{z}$
and $\mathrm{L}_{\mathrm{z}}=|\mathrm{C}| \cos \theta$
Bitquammechaicaly, \mid IL $=\sqrt{(1+1) \hbar} \Rightarrow \mathrm{L}_{2}=\mathrm{m}_{1} \hbar$
$\Rightarrow \quad \cos \theta=\frac{\mathrm{L}_{\mathrm{z}}}{|\mathrm{C}|}=\frac{\mathrm{nh}}{\sqrt{\mid(1+1)}}$
Thus ange θ canhavedscretevause mhes (2l+1) posildeaietdiorswith respedtomagnicfidd Thisisknownæsperequatizdion

137 Spir-OrbitCapling: Vector Atam'Moda

Thetod anglar momertumof an atorresits fromthecontrinition of thearatd and spin angla mometa of its dedrons Thetod angla nomertumof one dedrontomisgivenbythevetorsumof T ads, i.e $\mathrm{j}=\mathrm{F}+\mathrm{s}$.
This leads to the vetor rood of tam Since the magiude of the angla nometumt of anatoric dedronisgivenby

$$
\begin{equation*}
\|\|=\sqrt{\mid(1+1)} \hbar \tag{33}
\end{equation*}
$$

additsz-componet $\mathrm{I}_{\mathrm{z}}=\mathrm{m},{ }_{n}$
Similaly themagitudeof spananglarmometums isgivenby

$$
\begin{equation*}
|s|=\sqrt{s(s+1)} \hbar \tag{34}
\end{equation*}
$$

adits-camponet $\mathrm{s}_{2}=\mathrm{m}_{s} \hbar$
Tdd anglarmenetum $j=T+5$. Then thenægitudeandz-componetof j are givenbyaccordngtousi quatizaioncondtion

$$
\begin{equation*}
|\bar{j}|=\sqrt{j(j+1)} \hbar \tag{35}
\end{equation*}
$$

and $j_{z}=m_{j} \hbar$
Thepossidevelues of mirangesfrom- j to +j inintegd steps Wemmy wite

$$
\begin{equation*}
\mathrm{j}_{\mathrm{z}}=\mathrm{I}_{\mathrm{z}} \pm \mathrm{s}_{2} \tag{36}
\end{equation*}
$$

and $m=m \pm m$
In cæe of onededron sytem, there arealy two redtive criettions posilde, corespondingto

Fig1311

$$
\begin{aligned}
& j=1+s \text { sotht } j>1 \\
& j=1-s s o t h t i \\
& j<1
\end{aligned}
$$

Theangla nomertaof anatomic detroninterats magneicelly, thusknownas spin-abditinteation Thetorquedeto I ands exetonechotherwhichcase
then to preess uniformly dbat their resltatj . If noeterna torqueatsonit, thentod anglar moretiumj is conserved Thustheangebebwen T and s wouldreneinconserved

Fig 1312

$$
\begin{align*}
\quad|\vec{j}|^{2} & =\left|T T^{2}+|s|^{2}+2\right| T| | s \mid \cos (T, s) \tag{38}\\
\Rightarrow \quad \cos (T, s) & =\frac{\left|j p^{2}-|T|\right.}{2|T||s|} \\
& =\frac{j(j+1)-|(\mid+1)-s|^{2}}{2 \sqrt{(1+1)} \sqrt{s(s+1)}} \tag{39}
\end{align*}
$$

Fromthefig 1312 , it is nded that T and s carnt bepardle or atipardle to erch other. For a weak eternal fidd B , the vetor preesses aund Band spatidly quatized Honever, a B inceeme, the T and s are uncapled and

13\& QuartumNunbarsfor MultidedronAtor

Farasingedetron(singeviece tom lettersareusedtodesonibethedfferet quatumn unes weredl siall andso wes theletterss, p, d, f. ... wheres for a comdet atom i.e moltidetron sytem, capitd lettes ae used for vaias quatumunhess
(i) L:- Aswehavenowundastood thet for asingevdencedectronsytem (Hydogen tomand alkdi medds), the tod angla orbitd momertumfor the tomis the sareæ for asinge detron Thus, the value of L is the sareal
value, whenthreisnorethenonedetroninanatomthendscretevelues of I is asigred each detron mot be acded yp vetaridly to dtain resilat arditd anglarmenetumof theatom

$$
\begin{equation*}
\mathrm{L}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots \ldots=\sum_{i} T_{i} \tag{40}
\end{equation*}
$$

If all l_{i} 's areinsanedretion L beconesmaximemeqd to $\sum_{i} \Gamma_{i}$. Theminimem possidevdueforL caldbezero, atif oreof thel, 'sislager thenthes mof al thes, nirimemndueisntzero
Fortwodedrontom valueof $[$ fortheatomiswittenas

$$
\begin{equation*}
L=\left(I_{1}+I_{2}\right),\left(I_{1}+I_{2}-1\right),\left(I_{1}+I_{2}-2\right) \ldots \ldots . .\left(I_{1}-I_{2}\right) \tag{41}
\end{equation*}
$$

Forearmde say $\mathrm{I}_{1}=2 \& \mathrm{I}_{2}=1$, thenL cantavealy oreof thevdue3, $2 \alpha 1$ (æFFig1312).

Fig 1312
(ii) 5 :-Asweknowdready thet valuef spanforeach andevery dectronis $1 / 2$ whichcaldbeether pardle or artipardle to theprefereddreetion Unikethe cæeof L, echeledronis asignedwithadsoceeanddefinitevilueof spin șand all ş continetoformaresilat 5 for theatom For Ne eetrons, possidevaues forScanbewittena

$$
\begin{equation*}
\frac{\mathrm{N}}{2},\left(\frac{\mathrm{~N}}{2}-1\right),\left(\frac{\mathrm{N}}{2}-2\right), \ldots \ldots . \frac{1}{2} \cos 0 \tag{42}
\end{equation*}
$$

Theminimmpossidevaluiseithe ${ }^{1 / 2 / 2 f}$ Nisoddorzeoif Niselen

Fig 1313

Since $\&$ Saeasoized with their corespondng magneic manert and thw inteation between $[$ and 5 yidds tod anglar nomettum厂. The poside desoctevalueof 5 depends uponthepossibledlowedarietdion of Lands.
(iii) $5:-$ In quatummederics, tod anglar monetum of the atom is esseridly the function of 5 and it is written $\infty \sqrt{J(1+1)} \hbar$ and have cetain dscretevaluesinbetween

$$
\begin{equation*}
|L+S|,|L+S-1| \tag{43}
\end{equation*}
$$

Theminimumandmximemvalues of Γ aedtaned by sidrating and adbing veluesof [ands.
 will have (2L+1).

13C Spatrd TemsandTheir NodtianE

The speetrd betavio of an denet is chaterized by the aternot deetrons whichaent interlockedindosedshalls To describethesteof eedron, small lettes (1, ,j) ar used while the capitd letter L, S, and describe the ste of completamæuhde
For thecæeof singededronssytem theviueof L, Sand arethesaneatht of I, s, andj becaseimer most dectrons do not contribteto thetad anglar nonetum Themltiplidty of a stae is degided by ($2 \mathrm{~S}+1$). Thus, for singe dedronsystem $\left(\mathrm{S}=+\frac{1}{2}\right)$. Themelipidity of stevistwo, coresponding to the values $\left(\mathrm{L}+\frac{1}{2}\right)$ and $\left(\mathrm{L}-\frac{1}{2}\right)$ for J in adtion to the grand stae But for meltidectron systemS canhave any valuent preaseto $\frac{1}{2}$. For eample, thre eletron sytem $\mathrm{S}=\frac{1}{2} \propto \frac{1}{3}$, thus meltipiaty of the stete is either dalde σ quter except thegrandstate
Therfaretodescribethestateof andom,itisdsinedas
n_{5}^{25+1}

For eramde the stathaing J and $\mathrm{J}=\frac{3}{2}$ then state is dfined $\mathrm{a}_{2} \mathrm{P}_{3 / 2}$ which derly illustrates that thevaueof L isgivenby the capitd letter. Herethevdues of n (pinipal quatumnumer) is 2 Futher, stae of thesystemniay dso be dfineda

$$
n 1^{2 x^{25+1}}
$$

Wherel isthearditd quatumnumber of dedron i.e, s, p, d. andxisthe number of dedrons in thet aditd (x is 1 ar 2 for sarbitd, 1 to 6 for paditd). Adually n^{\times}isthecorigurdionof theatermest edrons

131C Desaiptianof GrandState

Foranededronsystem $\mathrm{S}= \pm \frac{1}{2}$ withrespecttoL. Thus $\mathrm{J}=\mathrm{L}+\frac{1}{2}$ and $\mathrm{L}-\frac{1}{2}$ i.e cable But for the grand state $\mathrm{L}=0$ and then $\mathrm{J}=+\frac{1}{2} \quad \alpha_{-}-\frac{1}{2}$. Wekrow the valuefJ isgivenby ($\mathrm{L}+\mathrm{S}$) \propto ($(\mathrm{L}-\mathrm{S}$) andmetbepositive, thusthepossibility of $-\frac{1}{2}$ is not allowed Hence, for a ainge detron system gand stae is dways
 J canheveanyvaueळ S an i.e $0, \frac{1}{2}, \frac{3}{2}$..... . If $\mathrm{L}<\mathrm{S}$, meltiplidity of thesteris givenby $(2 L+1)$ yiddtothepossidevalues of J ळの๓ $(L=0)$ andthusstais singe

1311 Ster-GerlachExparinertandEedranSpir

In 1922, this experimert wes peformedby O. Stem and Gellah, wich dreetly marifet the mainfeatures of vetor tommodd. This epreinet denenstrates
 etibits the evistence of dedron spin and provides expeimetd veificaion of vetor tommod. Since, the atomis considred w asmall magnt, where the magnismaises detospin(sananglar memetum) andarditd (arditd anglar morertum) motions of the dedrons When this tomic nagnt is plaed in a homogeneas (unifar) magnic fied, i.e haing equl and qposite magnic strengh, it głs dignedinthedredion of magdic fiidd and dbes not experience
any transtary motion i.e the mage noves in a stragt path withat any devidion But whenthis tomic maget is placed in nonuniformnagndic fied ,thentherment not aly digndorgthedretion of nagnic fiddbat dsohave transtary motion i.e theprgedar is aarvedpathdetodsdacenert

Fig 1314 TheStanGalacheypainert
Theplan of expeimetd arangenet is showninFig 1314 Thesubtace of natrd siver tons isheted upinandetricd oven Onheating subtanceenits abeemof natrd tons indl dreetion andcodlinztedbyfensits andthen pesses through a non-honogeneas magnic fidd The nonuiformmandic fied is prodred by speidly designed plepiees, uhosecoss setiond view isshown separddy. The atonic bermis then madeto strikeon a phocogadic pate The magnic fidd is madenareinterse and morenon-uiformes much a posible Ondesdquingthephagradic plte, nonetraceof dreet beemisdosevedrather thotraces aeddaned which aesymmeric with respeet to thedreet beem This implies that the beemis spditted in two dsomedredions, oneis in tz drection anddhe in-zdredion Thesamehesbeendose vedfordfferetatas
Intepreddion of reelts- Inthe ceese silver, astraigt lineis dtained withat fied anddadetrace with someimeglaities is ddaned inthepresence of fiedd Theirreguaities includetraceocar detoirmeglaities of magnic fidd neer thekrifeedgeof thepdes of magnts
Sorreimportat fectures of vetor tomnoda canbeexdainedeaily.
(a) Spin of thedetron- It wes wcetained by uing beem of Hydogen tans Theatomconsists of singededroningaundste(sstae I $=0$). If there werenospanthen f waild dso bezzo $(\mathrm{j}=\mathrm{l}+\mathrm{s})$, sotht $\mathrm{m}=(2 \mathrm{j}+1)=1$ implies thetspiting of linewill nottkeplaceandthus $\mu=\mathrm{mg}=0$. Butithesbeenfard
the bermto bespitted in tho symmerically defleted componets giving riseto thotraces This ccar whentheevistenceof detronspinisadnitted andavdue $1 / 2$ is asigned to soin quatum number. Thus, $j=1 \pm \frac{1}{2} \mathrm{~s}=0 \pm \frac{1}{2}= \pm \frac{1}{2} 50$ that $2 \mathrm{j}+1=2$, then raturdly μ will havetwo values H and -1 Hence, two traces dadanedaeincondeeageeretwiththeory.
(b) Quatization of Spree Clasicdly, tomic magets canaiet-thensdves in ayy dretion shald givedffised path insterd of two dsindly visidetraces But deto quatizdion of spin, aly catandscreacietdions are pemiside If weconside silver tambengingto onededroninits gandstethen $1=0$ and $\mathrm{J}=\mathrm{s}$, and the possideariettionwill be $(2 \mathrm{j}+1)=2$, i.e wemat get dable trace which shons thet the tons pessing thraigh the fidd becone arieted in spoce in dscretedretions TherforeH, Na K, Cu Ag balang to one detron sytemshowing thevdue $s=\frac{1}{2}, \mathrm{l}=0$, for ga ndstate Then $2 \mathrm{j}+1=2$, traces are posside Futher $\mu=$ mghave +1 and-1, thodsoteposidecietdions Butin ceseof many dedronsytem, number of traces dapends yponthevdueof s. Zn, Cd and Hg have 2 s-dedrons in their atemot abit and their nomad ste is dafined by ${ }^{1}$ s, which men $\mathrm{j}=0$. Thus $\mu=0$, which mens that apdiction of fidd brings no effet Inthecæeof N, Co, Fetheeffet doserved dealy deto lagevdueof detronspin
Threfore, Stem-Gelach eyprimet not aly veifies themainfetures of vedor tammoda but dso estdishs thefat that damandic substaces do not have resitat magnic nomert while paramedic subtaces do have, whichagee witheypeinentd data

1312IllustrdiveExampe

ExampeI3I: Andeetranisin 2 p sted Hyorogn tom Findtheragitura of orditd angiar nomertumadz-componet of τ.
Sd: \because Thearbitd anglarmantumisgivenby

$$
\begin{aligned}
& \quad|\mathrm{T}|=\sqrt{(\mathrm{I}+1)} \hbar \\
& \text { addforpstae, } \mathrm{I}=1 \quad \Rightarrow \quad|\mathrm{~T}|=\sqrt{2} \hbar
\end{aligned}
$$

Asoz-componetof \mid isdsinedas

$$
\mathrm{I}_{\mathrm{z}}=\mathrm{m} \hbar
$$

wherem $=-1,0,+1$ for $\mathrm{I}=1$ (pstae), hercel $=\hbar, 0,-\hbar$
Example132Wht aethe possideaiettion of j for the $j=3 / 2$ and $j=\frac{1}{2}$ steswhich carespondtol $=1$.
Sd: For any valuef todd arditd angla nonettuml, the posidecrietdions aegivenby
i.e, for $\mathrm{j}=3 / 2$ stae, $\mathrm{m}=-3 / 2,-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$
andfor $\mathrm{j}=\frac{1}{2}$ state $\mathrm{m}=-\frac{1}{2}, \frac{1}{2}$.
ExampleB3 Foronedetronaton, cadalat|r ||s||j| |forapedetron
Sd: Fordecroninpstalel=1,S=2,
Thus j will havetwovdues
(i) $\mathrm{j}=\mathrm{T}+\mathrm{S}=1+\frac{1}{2}=\frac{3}{2}$
(ii) $\mathrm{j}=\mathrm{T}-\mathrm{S}=1-\frac{1}{2}=\frac{1}{2}$

Therefre $|\mathrm{T}|=\sqrt{(1+1)} t=\sqrt{2} \hbar$
and $\quad|s|=\sqrt{s(s+1)} t=\sqrt{\frac{3}{2}} \hbar$

$$
\begin{aligned}
\mid \vec{j} & \left\lvert\,=\sqrt{j(j+1)} \hbar=\sqrt{\frac{\sqrt{2}}{2}(3 / 2+1)} \hbar=\sqrt{\frac{15}{2}} \hbar\right. \text { for } \mathrm{j}=\frac{3}{2} \\
& =\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \hbar=\frac{\sqrt{3}}{2} \hbar \text { for } \mathrm{j}=\frac{1}{2}
\end{aligned}
$$

ExampleB4: Ddeminethearbitd staefor $\mathrm{n}=3, \mathrm{~s}=\frac{1}{2}$
Sd: For $n=3$ thecorespondngvalueof \mid ae $0,1,2$
(i) $\mathrm{I}=0, \mathrm{~s}=\frac{1}{2}$ ($\mathrm{I}=0$ stad $)$
$\Rightarrow \mathrm{j}=\mathrm{I}+\mathrm{s}=\frac{1}{2}$ thencorespondingstais $3 \mathrm{~s}_{\frac{1}{2}}$
(ii) $\quad \mathrm{I}=1, \mathrm{~S}=\frac{1}{2}((\mathrm{l}=1 \mathrm{psta})$
$\Rightarrow \mathrm{j}=\mathrm{I} \pm \mathrm{s}=\frac{3}{2}, \frac{1}{2}$ thencorespondingstesare $3 \mathrm{p}_{12}, 3 \mathrm{p}_{12}$
(iii) $\mathrm{I}=2, \mathrm{~s}=\frac{1}{2}(\mathrm{I}=2$; dstad $)$
$\Rightarrow \mathrm{j}=\mathrm{I} \pm \mathrm{s}=\frac{5}{2}, \frac{3}{2}$ thencorespondingstes are $3 \mathrm{~d}_{/ 2}, 3 \mathrm{~d}_{3 / 2}$
\because Otbitd staes aredfinedby $\mathrm{n}_{\mathrm{j}}^{2 s+1}$, where ($2 \mathrm{~s}+1$) isknown spannmeltiplidity.
Example135 Wht waid bethetod quatunumber ij fortwodectronswith samel $=1$ ands $=\frac{1}{2}$.
Sd: $I_{1}=I_{2}=1$ forbotheletrons,
then \mid 냐 $\left|\left(I_{1}+I_{2}\right)\right|\left|\left(I_{1}+I_{2}-1\right)\right| \ldots\left|\left(I_{1}-I_{2}\right)\right|=2,1,0$
Similaly, $s=s_{2}=\frac{1}{2}$ forbotheletrons

$$
|s|=\left|s_{1}+s_{2}+\left|s_{1}+s_{2}-1\right| \ldots \ldots . .\left|s_{-}-s_{2}\right|\right.
$$

Then theallowedvauesfor J aemfdlows.
(i) $\mathrm{L}=2, \mathrm{~s}=1 ; \mathrm{J}=\mathrm{L}+\mathrm{S}, \ldots . \mathrm{to}$........ $\mathrm{L}-\mathrm{S}=3,2,1$
(ii) $\mathrm{L}=2, \mathrm{~S}=0 ; \mathrm{J}=2$
(iii) $\mathrm{L}=1, \mathrm{~S}=1 \Rightarrow \mathrm{~J}=2,1,0$
(iv) $\mathrm{L}=0, \mathrm{~S}=1 \Rightarrow \mathrm{~J}=1$
(v) $\mathrm{L}=1, \mathrm{~S}=0 \Rightarrow \mathrm{~J}=1$
(i) $\mathrm{L}=0, \mathrm{~S}=0 \Rightarrow \mathrm{~J}=0$

ExampleB6 Stete ${ }^{2} s_{s / 2}$ isposidearnd?
Sd: For s-stele $=0 \infty s=\frac{1}{2}$ given $j=1+s=\frac{1}{2}$ there $s_{/ / 2}$ carnterst, $\mathrm{bt}^{2} \mathrm{~s}_{/ 2}$ canext
Example 137: Cadalte the poside tho arietdians of spin vetor s with respecttoanagedicfieddrection
Sd: $\because s=\sqrt{s(s+1) \hbar}$ where $s=\frac{1}{2}$ and z - componet of spinanglar mometum $s_{2}=m_{s} t$, where $m_{3}= \pm \frac{1}{2}$.
Therefre $\cos \theta=\frac{\mathrm{S}_{2}}{3}=\frac{\mathrm{m}_{\mathrm{c}}^{\hbar}}{\sqrt{(s+1)} \hbar}=\frac{\mathrm{m}_{s}}{\sqrt{5(s+1)}}$
for

$$
m_{3}= \pm \frac{1}{2},
$$

$$
\cos \theta_{1}=\frac{1}{\sqrt{3}}=0.577 \Rightarrow \theta_{1} \cong 54^{\circ} 55^{\prime}
$$

and

$$
\cos \theta_{2}=-\frac{1}{\sqrt{3}}=-0.577 \Rightarrow \theta_{2} \cong 125^{\circ} 14^{\prime}
$$

Herce two possideaietdionsare5455 \& 12514.
ExampeB8Forthedetronis $2 \mathrm{D}_{1 / 2}$ sta, calalte(i) possidevdues of m
and $_{z}$, (ii) possidecrietdiorsof 5 invedtor space
Sd: For $2 D_{1 / 2}$ stae $I=2, S=\frac{1}{2}$ add $j=\frac{5}{2}$
(i) Theposide of $m=+\frac{5}{2},+\frac{3}{2}+\frac{1}{2},-\frac{1}{2},-\frac{3}{2},-\frac{5}{2}$ andz-compnet of tod arditd anglarmantum
$J_{2}=m \hbar=\frac{5}{2} \hbar, \frac{3}{2} \hbar, \frac{1}{2} \hbar,-\frac{1}{2} \hbar,-\frac{3}{2} \hbar,-\frac{5}{2} \hbar$
(ii) Possidearietdion of jinspaceaegivenby
$\cos \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{j}(\mathrm{j}+1)}}=\frac{2 \mathrm{~m}}{\sqrt{35}}$
$\cos \theta= \pm .35, \pm .51, \pm .17$ respedivelyfor $\pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$

1313Sedf LeamingExaris

Q1 Whatisthetod anglar nonetiumo anatom
Q2 WhatisBdrmageton?
Q3 Forandedronin $p_{3 / 2}$ stde findthevdues of m_{j} and j_{z}.
Q4 What wald bethetad quatumnumber ${ }_{j}$ for detron with $l_{1}=1$ and $l_{2}=2$.
Q5 Howthedfferetatomicenegylevdsinatomaredsignted?

1.14Summay

Sofar, this unit initidizes withthedssoipion of Vetar Atamnodd, wherethe tomis treadtitreedmeriord ertity rathe a tho dmentiond sytem Giving theundestanding of thequatizdion of spaceand san, magnic nomerta of the tamhavebeendescribed Thebdavior of atominthepresenceof magneic fied thes been undastood with the concept of precession a Lama's precession (frequacy). Capdingof spinandanyla monetumbeebeenundestood inthe Vetor Atomnodd. Extendngtheidæa of capdingformany detronssytemhes been summized Finally, experimetd veificition of fetures of the Veetor Atormoda hesbeenstudedbyStem-Gelacheypainert

1315Glowary

 finterageof dscret vdues
Orientain : Position or digmert redtive to points of the campess or other speejificdrections
Monert: Itisacontrindionof aphysicd quatityandadstace Themonetof afrceis amere itsterdency to caseabody to rddedant aspeeific poirt arax
Peeresion: It is a dange in the criettion of therddiond axis of a roding bodyor thesownevertof theaxis of aspiring boly a oundandhe axisde to atorqe(such graitdiond influnce) ating to dangethedretion of the firstaxs

1316AnsnastoSelf LeaningExarcisf

AnE3 $m_{j}=+\frac{3}{2}$ to $-\frac{3}{2} ; j_{z}=+\frac{3}{2} \hbar t o-\frac{3}{2} \hbar$
Ans4 $\mathrm{L}=4,3,2, \mathrm{~S}=1,0$

1317 Exaris

SetionA: VeyShotAnsver Typequestions
Q1 Whytheconcept of dectronspinwesintrodred?
Q2 Commetonanglarmenetumconervaion
Q3 Whtcbyou dastandby Lama' preessionandLama'sfrequany?
Q4 Whatisdpdememet?

SeationB: ShotAnser TypeQuetions

Q5 Fraddedron findthevdueof $\overrightarrow{s, l}$ and \vec{j}^{j}.
Q6 If andeetronis in 4d led of hydogen tom calaltethemagitudeand ardid anglar mometumangwithitspossidez-amponets
Q7 Odtanthearditd stdes (termvdues) for detron with $l_{1}=1$ and $l_{2}=2$.
Q8 Calalethepossidecietdions of thetad angla monetumveta \vec{j}_{j} corespondngto $j=3 / 2$ withrespeettonmedic fied

Q9 Abermof detronseter auriformmageicfidd fof fluxdensity 12Tesa Findtheeregy dfferncebeweenthedectornswhosespinarepardld and atipardle tothefidd
Q10 What do you mean by sporeqatizdion? Exdain by daNing a sitdde dagam
Q11 Disasstheariginof vetor tammod.
QD Whataequatumunhes? Exdanthesigificareof eechinthetheary of tom

SetionC: LangArsver TypeQuetiors

Q13 Deiveaneyressionfortad mandic momet of andanic dedron
Q14 What do you men by spiming of an dedron? How the spin dedron capledwitharbitd notionof detron?
Q15 Whtarequatumnumes? Exdanthesigificaceof ecchinthetheory of tom
Q16 Odtin an eyression for Lamor frequarcy. Calalate it is the cere of

Q1 DescribeSten-Gelach experimert neetly. How it veifies the fetures of vetor tammode?
Q.18 In Stem-Gellach experinet, whit heppers if ians are leed insted of tamic beemisnonhonogenasmagnicfidd?

1318AnsMastoExacis

AnE5 Forddection $l=\sqrt{6} \hbar ; s=\sqrt{\frac{3}{2}} \hbar ; j=\sqrt{\frac{35}{2}} \hbar$
AVEG $\mathrm{L}=\sqrt{6} \hbar ; \mathrm{L}_{2}=+2 \hbar$ to $-2 \hbar$
Ans8 $\theta \cong 392^{\circ}, 75^{\circ}, 105^{\circ}, 140.8^{\circ}$
Ans9 $\because \mathrm{V}_{\mathrm{m}}= \pm \frac{\mathrm{Ch}^{2}}{2 \mathrm{~m}} \mathrm{~B}$
Enegydfferace $\Delta V_{m}=\frac{2 \mathrm{et}}{2 \mathrm{~m}} \mathrm{~B}=1.39 \times 10^{-4} \mathrm{eV}$.
AnsI: \because Lamorfrequacy $\mathrm{f}=\frac{\mathrm{e}}{4 \pi \mathrm{~m}} \mathrm{~B}$

$$
\begin{aligned}
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{~m}=9.1 \times 10^{-31} \mathrm{~kg} \mathrm{~B}=10^{4} \mathrm{~W} \mathrm{~Wb} \quad / \mathrm{m}^{2} \\
& \mathrm{f}=1.4 \times 110^{14} \mathrm{per} \text { second }
\end{aligned}
$$

Ans18 InStem-Geladeypainet, abermof natrd tom-sis pessedinanon honogeneas magntic fild and each atomenperiences atrasveseforce depending ypon the crietdion of apdied fied If ins were used they would expeience Laretz frce inseed of traserse farce and thir dffletion waild mo lange be transerse and hance no traces waild be dataned

ReferencesandSuggetedRexding:

1 Brasden and Joakin Phyics of Atons and Mdeales, (2009), Bejjanin Cumings
2 Raj Kumæ, AtomicandMdealarSpeetra Lææ, KedamithRamNAthRub
3 S.L. Gupa V. Kurar, RC. Shama, Berets of Speetroscopy, Pragid Proderan
4 Räaml B, Atomic Physics(2007), S. Chand\&CO, NewDdhi.
5 S.N. Thekur add.K. Rai, Atom, Læer andSpedroscopy, PH LeemingPt. Ltd
6 Fenkes.H. andYanoodJ. Atomic Physics Vd II (1991) Oxford University Press
7. RitaKakka, Atomic andmoedala speetroscopy, CantridgeUnivesity Press (2015).

8 htpa/Lsersdber.acuk/runtead3327/sj.jpp
9 htp//mww.chemwimmaedujn/cousesRCoudinghtm
$10 \mathrm{htp} / /$ /dhysicsristgo/Pubs/AtSpee/

UNT-14
 SpinOrbit Interadionand Idartica Patides

SrutureoftheUnit

14.0 Ogetives
14.1 Spinarditinteration
14.2 Quatummedaricd redivisticcorection
14.3 Hydogenfinestucture
14.4 Lantbsift
14.5 IllustriveExamdes
14.6 Seff LeamingExerisel
14.7 Idaticd patideerdangesymmery
14.8 Formuldionof Pali'sprinipe

149 AtamicarditsandtheHund'snle
14.10 IllustriveExamples
14.11 Sedf LeamingExerisell
14.12 Summy
14.13 Gossary
14.14 ArsmastoSeff LeamingExerises
14.15 Exerise
14.16 ArbnestoExercise

ReferncesandSuggestedReedngs

1400gedive

The fine stucture dosesved in hycoogen speetrd lines were first exdained by Sammefdd He weedtherddivistic varidionof massof thedectronnavingito ellipic orbits A nere pafet pidure of finestruture wes given by Qatum
needarics using spin-abit conding and tding into accart the redtivistic coretions Thearert unt desoribes in d\&al thespin-ardit interation andfine stucture of hydogen speetrd lines The depder aso exdans the structre of molti dedronsytens

141Spir-Orbitl Interatiar

Thespan-arat interation whicistheinteactionbetheen eetronssanangur monertumS and its arbitd anglar nometumL is responible for the fine strutreof theeritedstes of onededronsytens
If thedectronisnovinginandetric filedE, thefiddcanbeexpessedintems of ascar poterid $\mathrm{V}(\mathrm{r}) \infty^{\text {a }}$

$$
\boldsymbol{E}=\operatorname{gradV}(r)
$$

Where risthedstancebewwenthedectronardthenudes
Thearditd motion of thededronwithveloity vinthededricfidd E producesa magniciciddB, whichisgivenby,

$$
\boldsymbol{B}=\frac{1}{c^{2}} \boldsymbol{E} \times \boldsymbol{v}=\frac{1}{c^{2} r} \frac{d V(r)}{d r}(\boldsymbol{r} \times \boldsymbol{v})
$$

Thearditd angla nonertumof thedectron \mathbf{L} is given by $\mathrm{mr} \times v$, so the aboveexressioncanbewittena

$$
\boldsymbol{B}=\frac{1}{m c^{2} r} \frac{d V(r)}{d r} \boldsymbol{L}
$$

Interns of dedron'sspinanglarmontums themagdic petentid enegy an bewittenas

$$
\Delta E_{l, s}=-\boldsymbol{\mu}_{3} \cdot \boldsymbol{B}
$$

μ_{3} isgivenby,

$$
\boldsymbol{\mu}_{s}=-g_{s}\left(\frac{e}{2 m}\right) \boldsymbol{S}
$$

where $g_{s}=2$ Thus the magneic paterid eregy in tems of detron's sain angiarmenetumenbewittenas

$$
\Delta E_{l, S}=\frac{e}{m} \boldsymbol{S} . \boldsymbol{B}
$$

SubstittingforB, wegł

$$
\Delta E_{l, s}=\frac{e}{m^{2} c^{2}} \frac{1}{r} \frac{d V(r)}{d r} \boldsymbol{S} . \boldsymbol{L}
$$

This istheexressionfor magntic patetia enegy in aframewherethedetron istrest Inafrareuhere thenudes isatrest, theenegygitredreedbyafadtor tha. The aigin of this fatar in the spin orbit Hamiltorian on reddivisic tranformaionisknown "Thonm preession". Indudngthecoredionfata, thespin-ardititerationengy canbewittenas

$$
\Delta E_{l, s}=\frac{e}{2 m^{2} c^{2}} \frac{1}{r} \frac{d V(r)}{d r} \boldsymbol{S} . \boldsymbol{L}
$$

Theaboveepressioncandsobeexressedintemsof quatumumberl, sandj

$$
\begin{aligned}
& J=L+S \\
& J . J=(L+S) .(L+S) \\
& J . J=L \cdot L+S . S+2 S . L
\end{aligned}
$$

Snce

$$
\begin{aligned}
\boldsymbol{S} . \boldsymbol{L} & =\boldsymbol{L} \cdot \boldsymbol{S}, \\
\boldsymbol{S} . \boldsymbol{L} & =\frac{\mathbf{1}}{\mathbf{2}}(\boldsymbol{J} \cdot \boldsymbol{J}-\boldsymbol{L} \cdot \boldsymbol{L}-\boldsymbol{S} \cdot \boldsymbol{S}) \\
& =\frac{\mathbf{1}}{\mathbf{2}}\left(J^{2}-L^{2}-S^{2}\right) \\
& =\frac{\mathbf{1}}{\mathbf{2}}[j(j+1)-l(l+1)-s(s+1)]\left(\frac{h}{2 \pi}\right)^{2}
\end{aligned}
$$

Subsititingtheepressionfor SL, theeyressionfor spin-arditinterationeregy canbewittenas

$$
\Delta E_{l, s}=\frac{e h^{2}}{16 \pi m^{2} c^{2}}[j(j+1)-l(l+1)-s(s+1)] \overline{\frac{1}{r} \frac{d V(r)}{d r}}
$$

This is thegened expessionfor spin-ardit interationeregy of an tom Inthe dove exression, the averge value of $\frac{1}{r} \frac{d V(r)}{d r}$ hes been token over the unpeturbedmetionsinceitisnotconstatdringthededronnotion
Foragiventom, theaveage value of $\frac{1}{r} \frac{d V(r)}{d r}$ can be calalated using the patetid fundion $\mathbf{V r}$), andtherodal probadilitydanity.

SpinObat IntaradianEnegyfor HydocgelikeAtom

Incereof hydogentom, the ledronmwesinaCalantianfidd Theptertid eneryisgivenby,

$$
V(r)=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e}{r}
$$

Using this expression for puterid in the expression for spin-abdit interation energy canbewittenas

$$
\Delta E_{l, s}=\frac{Z e^{2} h^{2}}{4 \pi \varepsilon_{0}\left(16 \pi m^{2} c^{2}\right)}[j(j+1)-l(l+1)-s(s+1)] \frac{\overline{1}}{r^{3}}
$$

wheretheavargevelueof $\frac{1}{r^{3}}$ isgivenw,

$$
\frac{\overline{1}}{r^{3}}=\frac{Z^{3}}{a_{0}^{3} n^{3} l^{3}\left(l+\frac{1}{2}\right)(l+1)}
$$

$a_{0}=4 \pi \varepsilon_{0} \frac{h^{2}}{4 \pi^{2} m e^{2}}$ is theradus of the smallest Borr ardit of the Hydogen tomUsingthese, thefiral expressonfortheengy redresto

$$
\Delta E_{l, s}=\frac{R_{\infty} \alpha^{2} Z^{4} h c}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}[j(j+1)-l(l+1)-s(s+1)]
$$

 knownofinestuctreconstatandisdmensioless
Now, frasingedecronsytem $S=\frac{1}{2}$

$$
j=l \pm \frac{1}{2}
$$

Subsituing these values of j in the expression for enegy, the eregy shift carespondngto $j=l+\frac{1}{2}$ and $j=l-\frac{1}{2}$ canbegivena,

$$
\Delta E=\frac{R_{\infty} \alpha^{2} Z^{4} h c}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}[2 l+1]
$$

$$
\Delta E=\frac{R_{\infty} \alpha^{2} Z^{4} h c}{n^{3} l(l+1)}
$$

Thisexpresionshonsthat,

Heavier atoms	larger spin-orbit coupling	
Larger n		smaller spin-orbit coupling

142QuertumMesherica ReldivisticCarediar

In order to calalattheenegy shit, which is deto thereddivisic effeets, the redivistic Hamiltorian of thededronwithrestmasm, canbewittenas

$$
H=K+V
$$

where $K=\left(p^{2} c^{2}+m_{0}^{2} c^{4}\right)^{\frac{1}{2}}-m_{0} c^{2}$ istheredivisickindicenegy, and Vistheptetid enegy.
SubsituingforK, intheexressionfor Handater simdificdion, theexpression forredivisticHaniltoriancenbewittena

$$
\begin{aligned}
H & =\left(p^{2} c^{2}+m_{0}^{2} c^{4}\right)^{\frac{1}{2}}-m_{0} c^{2}+V \\
& =\frac{p^{2}}{2 m_{0}}-\frac{p^{4}}{8 m_{0}^{3} c^{2}}+\cdots \ldots \ldots \ldots+V
\end{aligned}
$$

Thefirst tem is the stadard non-redivistic expression for kindic eregy. The seecond temis the lowet-rdar redivistic corretion to this enegy. Thee the corretiontoHaniltorianis,

$$
\Delta H_{r e l}=-\frac{1}{8 m_{0}^{3} c^{2}} p^{4}
$$

Thiscanbeconsidgedæa paturbationterm, whichusingeqivaletdiffertial qpatorforp, canbewittena

$$
\begin{aligned}
& =-\frac{1}{8 m_{0}^{3} c^{2}}\left(-\frac{i h}{2 \pi} \frac{\partial}{\partial q}\right)^{4} \\
& =-\frac{1}{8 m_{0}^{3} c^{2}} \frac{h^{4}}{16 \pi^{4}} \nabla^{4}
\end{aligned}
$$

If ψ_{0} istheu peeturbed werefindion of thehyctogenatom thefirst-ardar eregy shiftdetotherddivisiccorectionisgivenby,

$$
\Delta E_{\text {rel }}=-\int \psi_{0}^{*}\left(\frac{h^{4} / 16 \pi^{4}}{8 m_{0}^{3} c^{2}}\right) \nabla^{4} \psi_{0} d \tau
$$

Uponedudingtheirtegd, thecorrectionintheenegy isgivena

$$
\Delta E_{\text {rel }}=-\frac{2 R_{\infty} \alpha^{2} Z^{4} h c}{n^{3}}\left(\frac{1}{2 l+1}-\frac{3}{8 n}\right)
$$

where R_{∞} istheRydbergconstat, and α isfinestudurecontat.

143HydrogenFineStructure

Thetamsiftdetospar-arbitinteationisgivenby,

$$
\Delta T_{l, s}=-\frac{\Delta E_{l, s}}{h c}
$$

Thus thent termshift deto spin-ardit interationand redivistic effets, which contrimeinalinermarmerisgivenby,

$$
\Delta \boldsymbol{T}=\Delta T_{l, s}+\Delta T_{r e l}=\frac{\Delta E_{l, s}}{h c}+\frac{\Delta E_{r e l}}{h c}
$$

where the expressions for $\Delta E_{l, s}$ and $\Delta E_{\text {rel }}$ tes been daived in the previas setions
For a singe dectron systen $S=\frac{1}{2}$, hence for $j=l+s=l+\frac{1}{2}$ and $j=l-s=l-\frac{1}{2}$, thenettemsiftisgivenas

$$
\Delta T=\frac{R_{\infty} \alpha^{2} Z^{4}}{n^{3}}\left(\frac{1}{l+1}-\frac{3}{4 n}\right)
$$

and

$$
\Delta T=\frac{R_{\infty} \alpha^{2} Z^{4}}{n^{3}}\left(\frac{1}{l}-\frac{3}{4 n}\right)
$$

Interms of \mathbf{j}, thetwoequionscanbecontinedtoasingeequition

$$
\Delta T=\frac{R_{\infty} \alpha^{2} Z^{4}}{n^{3}}\left(\frac{1}{j+\frac{1}{2}}-\frac{3}{4 n}\right)
$$

This equation wes dso datainedby Dirccuingquatumnedarica treatmet of hydogen likeatomadhencethisequtionisdsoknownesDiracequion
Sommerfddsformla Sormeefdddsodaived arddivisic equionfor eregy levdsof hydrogentikedans

$$
\Delta T=\frac{R_{\infty} \alpha^{2} Z^{4}}{n^{3}}\left(\frac{1}{k}-\frac{3}{4 n}\right)
$$

Inhisequion $j+\frac{1}{2}$ isreqdaedby k.
Comprisondenagyledsofhychognatom

$$
R_{\infty}=1.097 \times 10^{7} \mathrm{~m}^{-1}, \alpha=\frac{1}{137}, Z=1(\text { For hydrogen })
$$

Letucconsidr Bodrledscorespondngton=1, 2,3

Bdrledd	Sommefddledt		Diracleds		
r	k	$\Delta \mathrm{T}\left(\mathrm{m}^{1}\right)$	l	$j=l \pm \frac{1}{2}$	$\Delta \mathrm{~T}\left(\mathrm{~m}^{1}\right)$
1	1	146	C	$\frac{1}{2}$	146
2	2	0.09	1	$\frac{3}{2}, \frac{1}{2}$	$0.091,0.456$
	1	0.456	0	$\frac{1}{2}$	0.456
\equiv	\equiv	0.01ε	2	$\frac{5}{2}, \frac{3}{2}$	$0.018,0.064$
	2	0.054	1	$\frac{3}{2}, \frac{1}{2}$	$0.054,0.162$
	1	0.1Ω	0	$\frac{1}{2}$	0.1Ω

Fig 1(a), (b),and (c) shons theerergy led for hydogen atome predided by SommeffdandDiracforleadsn=, 2 and3 Boththepreddionsaesimila in ceref hydogentom

Fig. 1 (c)

FineStuctureof Hychogen

> Effect of the fine structure energy-shift on then=1,2 and 3 states of hydrogen atom.

For nhl, in the absence of fine stucture there are two ${ }^{1} S_{\sqrt{2}}$ stdes The fine stucture indreed enegy shift is same for both the staes Hence finestucture dbent tbrek thedegenacy of thisstaeo hydogenatom
For $n=2$, threaetwo ${ }^{2} \mathrm{~S}_{12}$, tho ${ }^{2} \mathrm{P}_{12}$, and for ${ }^{2} \mathrm{P}_{32}$ stdes All therestdes are degenede Finestudurebreas thedegenaray of thestdes rediviveto ${ }^{2} \mathrm{P}_{32}$
For $n=3$, therearetho ${ }^{3} \mathrm{~S}_{12}$, two ${ }^{3} \mathrm{P}_{12}$, far ${ }^{3} \mathrm{P}_{32}$, far ${ }^{3} \mathrm{D}_{32}$, andsix ${ }^{3} \mathrm{D}_{52}$. All of thesestdes redegenate Finestucturebreds thesestes into threegaps ${ }^{3} \mathrm{~S}_{12}, \mathrm{add}^{3} \mathrm{P}_{12}, 3 \mathrm{P}_{32},{ }^{3} \mathrm{D}_{32}$, and $^{3} \mathrm{D}_{52}$ stdes

144LanbSifi

TheLrac theay apdiedto hyorogenikeatonspreads thet theenegy levdsd the hydogen dedron shald dapend arly on the prinipal quatumnumber \mathbf{n} Hencethestes with samen, and thesaretod anglar monertumquatum
numberj aedegerede Thus, accordngto Diractheery, the $2^{2} P_{12}$ and $2 S_{12}$ Stdes of hychogen are degenerte Howere it wes found that 2 $^{2} P_{12}$ wes lower then 2 ${ }^{2} S_{12}$. This ffeet wes first meared by Lantb and Rutheford in 1977 in the experimertanthehydogen miconavespeetum They showedthat for hydogen like dons stees of pariala n having same jat dfferet I values are not degeneatebutsparated Thesift of the $2^{2} S_{12}$ levd abovethe $2^{2} P_{12}$ levd iscalled Lanbsift

Mmarenersof Lanbshift

TheLanbshit isetrenely sidl and isdffialt to meas asditing in the adicd or uv spedrd lines Honever it is posilde to make use of trasitions dreetly bedveen the sudeads by gring to ather regions of the edetromagnic speetum Willis Lamb nade his mereets of the shift in the miconave region Heformedabermof hydogentonsinthe $\Sigma_{1 / 2}$ ste Theredonscald notdredty tikethetrasitiontothe 1_{122} statebecaseof thesdetionnulewtich requires thearditd anglar monetumtodangeby 1 uritinatrasition Puting theatons ina mandic fidd to split thelevds by theZeman effet, heexposed the dons to micronave radtion t 2395 MHz (not too far from the ordmay miconaveovenfrequercy of 2560M-Z).

magneic fied spiting of these lends corespond to 100 MHz By the Pland redtionstip, thisenegy sepprdionnesabat $4.372 \times 10^{6} \mathrm{E}$.

SgificanceoftheLanbSift

WhentheLanbs sift wes expeinettally daemined it provided ahighpreision veifiction of therericd calalions macd with the quatum theary of detrodyravics Thesecalaldionspredidedtht dedranscortinu lly exdanged phtors, this being the medarismby wichthedetronagndic forceated The effet of the cortinuas enission and dssantion of phatens on the deetrangfatorcaldbecdalaed with geatpreision
Thetiny Lanbsift, nearedwith geet preision, ayeedtomanydeeinal paces withthecalal ted resit fromquatumedrodyravics Themed preision givesusthededronspingfadoras

g-2002319304386

145IllustraiveExample

Example: If thedaddespiting of thefirst exatedstae $2 \mathrm{P}_{32} 2 \mathrm{P}_{12}$ of Hetis $584 \mathrm{~cm}^{1}$. Calaltethecorespondingspardionfor \mathbf{H}
Sd: Thedadet spiting of a conededron damic stae aising deto spinarat interadionisgivenby

$$
\Delta T=\frac{\Delta E}{h c}=\frac{R_{\infty} \alpha^{2} Z^{4}}{n^{3} l(l+1)}
$$

Where R_{∞} is Rydberg constat, α is fine stucture constat, and Z is tomic nunber.
Foragivenstae(n I constat), $\Delta T \propto Z$
For Hed, Z=2 andfor H Z $=1$ Herce,

$$
\begin{aligned}
& \frac{\Delta T_{H e^{+}}}{\Delta T_{H}}=\frac{(2)^{4}}{(1)^{4}}=16 \\
& \Delta T_{H}=\frac{1}{16} \Delta T_{H e^{+}} \\
& \Delta T_{H}=\frac{1}{16} \times 0.584 \mathrm{~cm}^{-1} \\
& \Delta T_{H}=0.365 \mathrm{~cm}^{-1}
\end{aligned}
$$

146SedfLearingExaris-I

Q1 vneistnesgnicancea quiumumer]?
Q2 What isequl to?
Q3 WhatisRydbagconstat?
Q4 Whatisthevdueof finestudureconstat?
Q5 The dable spiting of the first exdited state ${ }^{2} \mathrm{P}_{32}-{ }^{2} \mathrm{P}_{12}$ of H tom is $0.36 \mathrm{~cm}^{1}$. CalalathecarespondngsepadionforLi+ .

ICatica pratides A sytemis said to be cority d idatica patides if on interchanging theposition andco-adintes of ayy two patides thereism way to knowthtadangehesbeennackinthesytem
In dassicd desoripion of systemcontaring idatica patides, a labd can be asignedtoidaticd patides Foreg, inaboxcontainingdedrons, thedeetrons can be ldaded $m a$ and b While the dedrans trave in their well-dfined trgeetories, tayg giveninstanceit canbetddthtwhicheetronisaandwtich dedronisb Honerr, inaquatumnedaricd descripionitwill notbeposide atheuncetainty prinidedoest't allowus to doservethemation of thedectron withatdsturdingthesstem Tha ghit canbestadthtatagivenpoirtof time an ledron wes locted bat not which dedranit wes Indher wards, deto the ovelapping of the wavefundions of the two dectrons, it is imposide to say which naveuncion wes asoized with which patide Therfore, the indstingishadility of idatical paridesmetbetzeninto accartinthequatum medarical desoipion of idatical patides
Consids asytemof twodedrons TheH Haniltarianfor thesystemcanbewitten क $H=H_{a}+H_{b}$ where H_{a}, and H_{b} are the heniltorians for the indvidel dedrans
Thewavefuntion for thesystemcen bewritten atheprodit of theindvid. naveundions

$$
\psi(a, b)=\psi(a) \psi(b)
$$

If thedetrona isinstel, andeletronbinste2, thenthetod waveinction canbewittenळ

$$
\psi(a, b)=\psi_{1}(a) \psi_{2}(b)
$$

$$
\psi_{12}=\psi_{1}(a) \psi_{2}(b)
$$

Thepdoddilitydanityfundionforthissystemwill be

$$
\psi_{12}^{*} \psi_{12}=\psi_{1}^{*}(a) \psi_{2}^{*}(b) \psi_{1}(a) \psi_{2}(b)
$$

Onittechangingthestdesi.e detronaisinste2, andedronbinstele1, the tod wavefundionwill be,

$$
\psi_{21}=\psi_{2}(a) \psi_{1}(b)
$$

Theprdosdilitydstribtionfundionforthisnewarangerertwaldbe

$$
\psi_{21}^{*} \psi_{21}=\psi_{2}^{*}(a) \psi_{1}^{*}(b) \psi_{2}(a) \psi_{1}(b)
$$

Since the edectrons are indstingishade, danging the labds shauld not dange aty of thephysically maddequatity. If wedangetheldadsin $\psi_{12}^{*} \psi_{12}$, then

$$
\psi_{1}^{*}(a) \psi_{2}^{*}(b) \psi_{1}(a) \psi_{2}(b) \rightarrow \psi_{1}^{*}(b) \psi_{2}^{*}(a) \psi_{1}(b) \psi_{2}(a)
$$

This interchangeleab to thedstribtionfundion $\psi_{21}^{*} \psi_{21}$ whichisdfferet then $\psi_{12}^{*} \psi_{12}$. Thus merdy dangingtheldads of thedectrons resalted into thedange of the probadility dersity. Hence for a two dectron sytem, the waveundiors descibedabovechen't tpropely repreat thesysem Considr a system of Npatides Let us say that the tod waveuntion of the systemis $\psi(a b, N)$. As weknow thet the Haniltorian of asstemis invaiat withrespeet tothepositionandspinof thepatides, le usconsidr anqperdor $\mathbf{C}_{\text {b }}$, whoseationistointerchagethecoordintes of any two patides i.e

$$
C_{d b}(a b, \ldots . N)=\psi(b a \ldots . . . N)
$$

$\mathbf{C}_{\text {bb }}$ isdsolinerl likeparity q perdor.

$$
C_{b b} \psi \neq \alpha \psi
$$

whrea istheigenvilu Operdingomeerrere,

$$
C_{a b}^{2} \psi=\alpha^{2} \psi
$$

By dfirition the qpertor ater tho qpertions brings bedk the systeminto the crigind stae Hence

$$
\boldsymbol{C}_{a b}^{2} \psi=\psi
$$

Sothat $\alpha^{2}=1$
O, $\quad \alpha=$ H
Thus, $\quad C_{d b} \psi(a b, \ldots . N)= \pm \psi(a, b \ldots N)$
Oncomparisannegt,

Thusif thetwopatides of thesystemarednaged, thewevefundianeither reman undanged or danges itssig Thuswith respett to the exdangeof thepatides, thewerefundiansaeithersymmericaratisymmenic
The patides, which can be described by symmetric waveundion areknown as bosons. Thusfor aboson

$$
\psi(\mathrm{ab}, \ldots \ldots . . . \mathrm{N})=+\psi(\mathrm{b}, \mathrm{a}, \ldots \ldots . . . \mathrm{N})
$$

All patideshaingintegr spinsarebosons
Thepatideswhichcanbedescribedusingatisymmeeric wevefundionareknown கfemions Thusforafermion

$$
\psi(a b, \ldots \ldots \ldots . . N)=\psi(b, a, \ldots \ldots
$$

Patideshainghdf-irtegd sqinareknownafemions Eledronsarefemions

148Famidioncf Fali'sPrinoipk

Wbtogng Pali, in 195 , gaekiseduion pincipetoeddantrearacyenet
 idaticd quatumnnters". This is an eample of a gened pingide which apdies al the patides haing raffirintegr sin (femiors). It coes not apdy to patidesf irteges sign(bosern).
Corridr asstemof twoidaticd and noniriteatingpatidesa, andl Thetad Hemiltrainof thesstemcanbewittena

$$
H=H_{a}+H_{b}
$$

Where \mathbf{H}_{a}, and \mathbf{H}_{b} areHaniltorians for sppratepatides The wavefundionfor thetwodecronsytemmaldbe

$$
\psi(a, b)=\psi(a) \psi(b)
$$

If thepatideais inquatumstale, and patidebisinquatumsta2, then the contined waveundionof thesystemis

$$
\psi_{12}(a, b)=\psi_{1}(a) \psi_{2}(b)
$$

If thepatidesexdangetheir respeetivestes, therewwereundionwaldbe

$$
\psi_{21}(a, b)=\psi_{2}(a) \psi_{1}(b)
$$

Since the patides ae idaticed andindstingiskade both ψ_{12} and ψ_{21} will
eqully describethesystem Hencealineer contrindion of theeetwo will bencre apropitetodesorbethesytemThus

$$
\psi(a, b)=\frac{1}{\sqrt{2}}\left[\psi_{1}(a) \psi_{2}(b) \pm \psi_{2}(a) \psi_{1}(b)\right]
$$

where $\frac{1}{\sqrt{2}}$ is the nomalizdion fator. Wth the excrange of coardnates, this havefundionisethersymmic(+sign) oratsymmetic(-sign).
Symmeric $\quad \psi_{\text {Bosons }}(a, b)=\frac{1}{\sqrt{2}}\left[\psi_{1}(a) \psi_{2}(b)+\psi_{2}(a) \psi_{1}(b)\right]$
Artisymadric $\psi_{\text {Fermions }}(a, b)=\frac{1}{\sqrt{2}}\left[\psi_{1}(a) \psi_{2}(b)-\psi_{2}(a) \psi_{1}(b)\right]$
Thus, if boththepatides areinsamesta,

$$
\begin{aligned}
& \psi_{\text {Bosons }}(a, b) \neq 0 \\
& \psi_{\text {Fermions }}(a, b)=0
\end{aligned}
$$

Thus, notwofemionscancapythesarequatumstes Itcanbestaedw, in amdi-dectronsystem it is imposidefor tho dedrons to hevethesarevdues of al thequatumnumes Andher sterertisthat, withrespect totheexchange of the patides, the todd navefundion for tho idaticd femions is atisymmetric Thismenthet thewaveindiondrangs its signif thesporeand spinco-rdnates of ayytwo patides areinterchanged Incher waros, it candso be stded ∞ if two patides are described by atisymmetric wavefuntion, they carot coapy the same qaitumste This a meltidedron systemmet be describedby anatisymmenic warefundion

149Atonic OrbitsendiheHundsRule

Fillingof shoshalshaing norethencreaditd aedoneaccordngtotheHunds rue In 1927 Hundformidedtwoemóricd rules
Hunds rule-1: Of the staes aising froma given detron corfigrtion, the lonest ineregy is theonehaing highet meltipliaty. In ohe ward, deetron paring will not theplæeinaditds of sareengy (samestbshal) util æach arbitd is first singy filled with pardle sain This is known a Hunds nue of naximmmoltipidity.
Hunds rule-II: For a given moltipidity, the lowe in eregy is the one with higre L value

Intheprocess of asiging the ededronsto anarbitd, thededronfirst fill al the abitds haing same enegy before it pairs with andher dedron in a haff-filled ardit. Thetonsintheir gandstestendtohaveamany upairedlectronsæ poside
ForExample: NtrogenAtons
Considg thecoreet detroncorfigurdion of theritrogen $(Z=7)$ tam $1 s^{2} 2 s^{2} 20^{3}$

Theporditds arehdf-filled thereaethrepaddtds andthreededrans This is becase the threedetrons in the2psubshl will fill dl theemty arditds first befreparingwith dectrarsinthem

HundsRuleEydained

Accardngto thefirst ne andedronfirstfills anemdy arbitd beforeit ckides to par yp Neegively darged dedrons repd eech athe. Henceto mirimizethe repulsion dedronstendtocapy their ownaditds rather thenstaring anaditd with andher detron Futhemere, thecdaldionshaveshownthet the ededrons in singy coapied arditds ar less effedively screened ar shidded from the nudes
For thesecond nue, unpared detrons insingly coapied arbitds havethesare sains Oncethespinof thefirstedroninasideld ischosen, hovere, thespins of dl of the cher dectronsinthet suded dqpendonthttfirstspon

Example CarbonandOxgen

Considg the dectron corfigrotion for cabon tons $1 s^{2} 25^{2} 2 z^{2}$: The tho 25 dedrons will ocapy thesarearditd, wheess thetho $2 p$ dedrons will be in dfferetarditd (anddignedthesaredreetion) inaccordancewithHundsule

Consider dso the edetron corfigurdion of oxygen Oxygentes 8 dedrans The dedron carfigrdion can be written a $1 s^{2} 2 s^{2} 24^{4}$. To daw the orditd dagam
begn withthefdlowing doservaions thefirst twodectrons will par upinthels arditd; thenettwodetronswill pair pinthe2sarditd. Thit leaves 4detrons, whichmestbepredintheZparditds Accordngto Hundsule all arditdswill besingy ocapied beforeany iscuidy coapied Therfore two parditd gi ane dedronandonewill havetvodedrons Hundsneasostiplates that all of the unpared dectrons mat have the sare sain In keeping with converion, the unparreddedransaredanna "spin-up"..

1410IllustrdiveExampe

Exampel Showthit thetded numer of ectronsinashel is 2 tr, wherenisthe pinidequatumnunber of theshdl.
Sd: Todffirethestateof andedron, weneedast of farquatumumbers
$n \mathrm{l}, \mathrm{m}$ andm
Foragivenn, theazimitha quatumnunberl, cantakevaus
|=0,1,2,3...n-1

Foreachl,mentakevaus

$$
m=-1, .0, \ldots . .+
$$

thetisatod of $(2+1)$ vdues Foreach of thesevdues, themagnic spinquatum nunber m_{3} canbeeither $+1 / 2 \alpha$-1/2 Thusfor agivenl, thereae2 $2(1+1)$ ses of qaitumnumbers Surming over all the possidevdues of I, for agivenn the nunber of thepossideses of q artumumbersl, $\mathrm{m}_{\mathrm{i}} \mathrm{m}_{3}$

$$
\begin{aligned}
& \sum_{l=0}^{n-1} 2(2 l+1) \\
&=21+3+5+7+\ldots \ldots \ldots \ldots \ldots \ldots .2(n-1)+1] \\
&=21+3+5+7+\ldots \ldots \ldots \ldots \ldots . .2 n+1] \\
& \Rightarrow \times \frac{n}{2}[1+2 n-1]=2 n^{2}
\end{aligned}
$$

1411SdfLeamingExeris-II

Q1 Calate the enegy of trasition indving $n_{1}=6$ to $n_{2}=3$ in a hydogen tom
Q2 Whtarethegandsterarigrdiono
(a) Ar
(b) K
(c) C

Q3 StateHundsule
Q4 Calaltethewavdengh of firstlineinLynanseies of hydogenspectrm
Q5 What transition in the hydogen speetrm waid have the sare wavdengh ∞ theBadmertrasition $n=4$ ton $=2$ of He^{+}speetrm?

1212Summay

Thearertuntsumanize the obsevedinestuxureinhyorogen speetra lines
 dadil. Thenoda by Sommeffdubes dasicd meeharics to evdutetheenagy sift while the theary by Dirac hes used quatumneedaricd desoripion The thearybyDirac pred dedadabledegreracy of motlevds Thefinestuctureof H_{t} lines hes dso been dsassed A quatumneeharicd descoipion of meltidedronsytensardPali'serdusionprinipehesdsobeendsassedindtal.

1413Goman

Shel : Ofitas with samevaued thepinipa quatumnumer n comprisea shal.
Enagyled: Inandomalocdionorarditd dbovethegrandstainutichan dedronisfandwhenitginsaspeeficanaut of enegy.
Enegyled dagam: A dagamshowingthearangenet of andon'senegy levds
Exitedstate: A stde of antomionor molealewith a hige eregy thenthe gaundste
Balmerline : Anemissionardbsandionlineinthespednuof hydogencased by andectrontranitionbedveenthesecondadhdiger enegyleds

1414AnsMestoSaf LeamingExarcise

AnarastosaflemingExadis-I

Ansl: Inligter denets, sain-abditcondingissmal, whileinheavier demets it is lage Hence the rev quatimnunber j becones importat. This qatimnunbergivesthetad anglarmometum

Ans2 $j \neq+s$

AnE3 Seesetion 141

Ans4 Finestuctureconstat $\alpha=1 / 137$
Ans5 $206 \mathrm{~cm}^{1}$

ArsuastoSdf LermingExacise-II

Ansl: - 1812×10^{19}.
Ans2 (a) $1 s^{2} 2^{2} 28^{6} 35^{2} 3 \sigma^{6}$
(b)Theaddrevizededetroncorfigurdionforpatasiumis $\mathrm{K}[\mathrm{Ar}] 4^{1}$
(d)Thecarfigrdianfordlarineis $\mathrm{Q}_{1 s^{2}} z^{2} 26^{6} 33^{2} 35^{5}$.

Ans3 Seesection 149
Anst 1275A.
Ans5: Thetrasitionn $n_{2}=2$ ton $_{1}=1$ (Lymanseries) inhychogentarnhes thesaree wavdengh क the Bamer series trasition $\mathrm{n}_{2}=4$ to $\mathrm{n}_{1}=2$ of of He^{+} spedrum

1415Exacis

Q1 Calaltethespin-abitinterationsditing of alevd carespondngton:2 addl=1 of hydogenatom
Q2 Showthaf orbitd canaccommodte14dedrans?
Q3 Asteiscancedas ${ }^{4} D_{52}$. Whtareitsvdues of $1, \mathrm{j}$. .
Q4 Thenumicd valuef thefirstabit of hydogenis?
Q5 Whatisthevdueof Rydargconstat for hydogen?

1416AnswastoExacis

Ansl: $0.36 \mathrm{~cm}^{1}$
Ans2 Seesetion1410Examde1
AnE3 $\mathrm{s}=32,1=2 \mathrm{j}=5 / 2$
Ans5 Seesetion 141

ReferencesandSuggested Resing:

1 C. N. Banndl andE M. McCah Fundanetds ơ Mdeala Speetroscopy, 4hEd, TdaMcGrawHill, 1994.
2 G. Anides, Mdeala Sturtureand Spectroscopy ,PH Leaming Pt Ltd, 01-Feb2004
3. H. S. Randana, ModanMdealar Speetroscopy, MdMillanIndaLtd, 2003

UNT-15 LS\&jj Capling:

Strutureof theUnit

15.0 Ojectives
151 Introdution
15.2 CapdingSchere
15.21 Russed - Sandas(LS) Capling
15.22 jj-Capding
153 SedetionRuesforThoValemeEletrons
15.4 TemsinMaryElecronsSystem
15.41 TemsdetoLS-Caping
15.42 Temsdetojj- Capding
155 TemsinEquivdetEledrons
15.51 LS-Capling
15.52 jj-Capding
156 HundsRules
157 LandésIIterva Rule
158 Norrd and InvetedTems
159 Ordar of FineStrutureMuliplds
15.91 LS-Caping15.10 SeledionRUesforManyEletronsSytem1510.1SdectionRUesforLS-Caping
1510.2SdetionRUesforjj-Caping
15.11IllusraiveExamdes
15.12Sdf LeqmingExercise
15.13 Summa
15.14 Gossay
15.15 Exerise

RefrencesandSuggetedReedngs

150Ogedive

Inthetdlowing dsasson, wewill shoy the cracterisics, remedy, the speetraco deverts, thatheretwoor morethantwodetronsintheir vilenceshd, for which onehes to fdlow the vaias capling schenes, atherefailitatethe undastandngsof posidetrasitionsocar inbeweenthefilledhalf filledshalls Thus, the possibilities and effets of LS and jj- capdings will be of ar main dsassion ∞ thesehave dret consequrices in the tomic spedra New Tems (stdes) aise atter the vaias inteadions, ae of geet impatance, have been exdained Futher, sane restridions, rendy, slection rues, Hunds rules, and Landes inteval rues ae impatat to sudy the eaat betavia of atoric trasitionsandth seyperimetd speetra, thushavebeen paidattetion

151 Introdutior

Thespeetra of derets (Be, Mg Ca Zn, Sr, Ba CdadHg) resentle with the spednum of He in sare wey. Dring the exitdion of tans, the exitdians of either sing edetronor bothdedrons areposideresltinginto the speetra Dieto two valencedetrons, thednicefor thetrasition incees and therfore, we ddain a lage number of speedra lines of these akdineeath denerts Thessies, likepinopa, shap, dffuseandfundenetd ae doserved whereonecarespandstosinge andather bedongstotriple It thes beenfandtht enagy leads ae dso influenced when a singe dectron trasition tokes pare between these, which is not the same a in the cose of alkdi demerts To undastandthespeetraof alkdineerths, it wes proposedtht, (i) al svetars, dl I vedors arestrangy ca ped indviddlly with little effet of s vetor anl vedtr indvidally, and (ii) the s vedtor of singedetroncontrined with vetor of sare dedronto givej with needigideirfluenceonother dedrans and thus findly we get singeresltatt. The wide spedn mocataining nunber of lines is datained whensitddesdectionprinipdeisapdiedtothequatumnumerJ. Therfare,
we git the revilat vetars S, L andJ which are govemed by the sfection pinoides

152CaplingShane

The dans may hae tho or nore detcons with differt abitd ad sain
 with the abidd and sin motions in manydetron-tans can be contined togethe and vaied Theirtrations the con ccar aeof threetypes (nde A bif dbat thecup inghesbendsussedinthesetion 137 \& 138)

(a) ObjtOtit(H)capling:

Fraydetionintheatom patetid eregy of replisnissinila innagitud to that deto the dtration by thender drage Under the assmdion eech
 values Realtat angla menertumof an dom which in tum will dso have
 the depenson thenumbe, thenragitue \& drection of erch of thedetion's aglarmenetum

 when all the nomets ae in the sane drection i.e $L=\left(l_{1}+l_{2}, l_{1}+l_{2}-1\right),\left(l_{1}+l_{2}-2\right)$....... $\left.\right|_{1}-l_{2} \mid$. Futtre, thedetrors do biffuence
 corstat in time rathe posesses preessiond motion doat the realtat ardogas to the preeession of I and s dat their realtat j. Stronger the interation getes will be the peressiond valoity of the detrons which is reflectedinthespardionsof dfferetvause of L(Temsof andorn). TheTems
 termulusforvaiascarigurdiorsof twodetronsytemaregivenbedow.

${ }_{1}$	I_{2}	Eetran		Temsy
c	c	s,	C	\leqslant
c	1	st]	F
c	2	s,	z	
1	1	pr		D, P, S

$$
\begin{array}{lllll}
1 & 2 & p, c & 3,2,1 & \text { F, D,F } \\
2 & 2 & d, & 4,3,2,1, C & G, F, D, P, S
\end{array}
$$

For three dectrons sytem, vetor addtion of erch of L (darived tding two dedrars) istanenwithl of thirddedrontodadinthefing staed/Tem玉

(b) Spin-Spin(ss) cayding:

Bedrostic facees apat from the arditd mation, dso dfeet the sain motion of eletrons As inthec⿸e of abitd angla nomettum anecan datan theresulat spon of theatambytding that sains of theindvided dedransinan tomaeeither pardle oratipardld tomeandher. Theresltart spinmotion of a systemof seved dedrons is derived exadly the same woy x for the arditd anglar mometum, that is by toding vetor addion of indvided sin angla monertum $s=\sum_{s_{i}}$ (temed as ss ar spinspin couding). Since sain agular monetumof indvidal detron can be $\pm \frac{1}{2} \hbar$, their resitat, S will dso have aly dsocte values with naximmunen all the sidn arein thesamedredion and minimemof $0 \propto 1 / 2$, respetively deperdng ypon whethe the nuntier of dedronsiselenarod

Thedectronspins inhdiumcenbeether $\uparrow \downarrow$ (ati-padld) $\propto \uparrow \uparrow \uparrow$ (pardld) giving $S=0 \propto 1$, respedively. So is the coes with all two vance dectrons sytens Obviady, therewill betho dfferet Termseries, onewith $\mathrm{S}=0$ and secondhaingS $=1$ Intrreedectranssstems saindrections canbe $\uparrow \downarrow \alpha \uparrow \uparrow \downarrow$ and $\uparrow \downarrow \uparrow \alpha \uparrow \uparrow \uparrow$. As the detrons ae indsingishade first three continations yiddS $=1 / 2$ and theforthgives $S=3 / 2$ Themægitudeof therealtat spin is givenby $S=\left(s_{1}+s_{2}\right),\left(s_{1}+s_{2}-1\right),\left(S_{1}+S_{2}-2\right), \ldots, \ldots, S_{1}-S_{2} \mid$
(d) SpinOXit (s) capding This ocars between the resiltat spon and arditd monerta of an dectron which gives rise to J, the todd anglar nometum quatumumber.
Mairly, therearetnopinipal caplingschemesused
(i) Russell-SandasorLS-capding
(ii) jj -copling

1521Rumell-Sandars(LS) Capling

Theorditd anglar mometa of the dedrons arecapled to giveatdd arbitd anglarmenetumL= $\sum l_{\mathrm{i}}$ and(ii) Thespansof thededronsarecapledtogive
atodd spain $\mathrm{S}=\sum \mathrm{s}$. Strang capling of I's ands's is dectrostic innture In addion to therededrostdic farces, thereaenagnic forces, oneduto arditd notion of the edetrons and anther cased by their sqin metions. Thesenotions doat their respediveresltats proidethe magnic monets (μ_{L} becase of arditd and μ_{s} detosainmetions). Thesetwointeat weedy. Onemay visdize
 fiddof magnic nomert μ_{L}. Thisweek inteationwill nakeL andSto preess a a undtheir resltat, J. Therefore, likethtof thepreessionof I andsabat their realtat j, the redaive mation of L and S is govemed by their realtat which renains notaly fixedinspacelat dso contart intine Thitis LandSpeform precessiond mation together as a rigd booly daat their resilat J. The contintion of a patiala S value with a patialar L velue comprises a speetroscopic term, thenddionfor whichis ${ }^{2 x+1} \mathrm{~L}$. Thequatumnunter $25+1$ is the moltipicity of thetem $T h e \mathbf{S}$ and L vectors are capded to dtain the tod anglarmontum $J=S+L$ for alend of theterm, thelend isdanded $\infty^{25+1} \mathrm{~L}_{\mathrm{j}}$.J will beanirtege ($0,1,2,3$. .) whenSisanirteger for evennumber of dectrons and will beanhaff ittegr ($1 / 2,32,52 \ldots$. ...) whenS is ahalf integer for ood number of dedrons Caping of ${ }_{l}$ 'stoL ands'stoSandfindly thecaplingof L and S to yidd the resilat angla nomettumJ is temed a LS copling $a r$ Russell-Sandascapling stownbadow.

For exampe, an atomwith orly onededroningoundstee $(I=0)$, L will haveorly orevdue, sincethevdueof Sis $1 / 2$ andthus $=\$ 1 / 2$ Whileforan atamhaingtwodetronssuchthatonewithl $=0$ and the inexited statewith $I=1$, then $L=I_{1}+I_{2}$ an $S=s_{1}+s_{2}$ gives $L=1$ and $=1$ (if dedron spins are pardld) orL $=1$ andS $=0$ (if dedronspinsareati-pardld).Therfore, $=0,1,2$ aedksigntedby ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}$, i.e Pscteissditingintotriple

Possidenumber of way inutich ${ }^{(6)}$ andStray continegiveriseto thej ${ }^{\mathrm{S}=2}$ vaues (non negdive) ar ($2 S+1$) if $\mathrm{L}>5$ and ($2 \mathrm{~L}+1$) if L S . This typeof capding is commorly usedineydainingthespeetraof secondgap

Inthiscoudingschene, it is rassmedthet sainsaincading >ardit-ardit capling >spin-arbitcapling Itisagood approxinđtionfor ligter dans(say up to atomic number 30arso); for highe atomic number spin-abit capling is mere porninetleedngtojij- coudingschere

1522jj-Capling

Considr a tho valencedetrons tom one with quatumnumbers I_{1} add s_{1} and thesecond with I_{2} and s_{2}. Differet types of inteations anong thefor quatumnumbersaeposside First, l_{1} interats strongy with I_{2} yiddingL and s_{1} with silledingtoS; finally L capdes weekly withStoformLScapding Secand possibility, thay hraeone is I_{1} may interat with spin s_{2} of theother detron and l_{2} with spin ss of thefirst Surhirter detrons interations are very weak to doseve, therfore will no be considred Third possibility is predbnirat \& frequat inheay dons (lagevdume) wherethededrons aresituted tlagr dstances and the ededrostdic interation anong themdnirishes in compaison with the irteration of indvidd ededron's arditd mation with its ann sain mation Thus, I_{1} interats strandy with its ann span $s_{1}(j=l+s)$ leadng to realtat angla nometum j_{1} of orededronand l_{2} withitsown s_{2} to yidd j_{2} forthesecondederon findly j_{1} caplesweakly with j_{2} toformij-caping The todd angla nonertumof the domis given by $\mathrm{J}=\sum \mathrm{j}_{\mathrm{i}}$. Therefore for tho valence dedrons tom $\mathrm{J}=\left(\mathrm{j}_{1}+\mathrm{j}_{2}\right),\left(\mathrm{j}_{1}+\mathrm{j}_{2}-1\right),\left(\mathrm{j}_{1}+\mathrm{j}_{2}-2\right) \ldots \ldots \ldots ., \mathrm{j}_{1}-\mathrm{j}_{2} \mid$. The copdingschereisshowninthenetfigre, where LS capding i.e arbitd and sainangla monerts ae contrined horizantaly, then vetically jj-capding
i.e orbitd andsginanglarmantsaecontinedvetically, thenhorizartally.

153SededianRulesfor TwoValenceEedran

If two eetrons cortribtein produing the speetrathenoly those trasitionsaedlowedinutichtwodectronsjumpwiththeenissionof radians of sing efrequancy. Onthedthe handif aly onededrontrasis, then vilueof I danges by urity and of ther does not dangeand if both dedrons trasit sch that I values dangeby urity and the dhe dbes not dangeor dangeby tho. In these two types of capling de to athe tems, addional condtions ae aso rearired
(i) InL-Scapding. $\Delta \mathrm{L}=0, \pm 1 ; \Delta \mathrm{S}=0 ; \Delta \mathrm{J}=0, \pm 1(0 \rightarrow 0$ nd dloweed).
(ii) Inj-j capling $\Delta j_{1}=0 ; \Delta j_{2}=0 \propto \pm 1 ;$ and $\Delta J=0, \pm 1(0 \rightarrow 0$ ntalloned).

Qaxtum medarically, even tems contine with odd tems and odd tems contone with eventems Theerenterms arethosefor wich $\mathrm{I}_{1}+\mathrm{l}_{2}=$ even and thesareod

It hes been doserved that presence of etra dedrons thes then vience dedrons, thespedrabecoreconplicted (eg speetraof Hgis morecomplicted then of H). Asthenumber of norethentwo dedrans inceses, the compleity incees beeaseof number of tems aises deto vaias continations of spin and additd vetars In comple speetra in addtion to ardnay ssies of singe, dude andtripe, thereeisss amltiplelend of series likefar, five, six, seeen areigt withequl spared Expeimetdly, ithesbeenfound thet theselevds are ether all ordl oddinthespedtum

Fdlowing tede lists realtat spin quatum nunter and the posside moltipliditiesforvaiasnumbers of detrons.

No. of Electran	SporiValue	FosildeMulitdes(2SH)
1	$1 / 2$	2(Dablet)
2	0,1	1(Singes), 3(Tripes)
ミ	1/23/2	2(Dabes), 4(Qates)
4	0,1,2	1(Singes), 3(Tripds), 5(Qirtes)
5	1/332,5/4	2(Dables), 4(Quates), 6(Sextes)

154TemsinManyEletronSytan

Dretothecortribtion of abtiond tems, theatonshavebeen dasified broedy into tho caegries theore in which sainspin corredion as deidng fatars tes LS-capling and the other dass in which spin-abit interation predoninsteshesj-j capding

1541TemsdietoLS capling

Tofindatthepossidetems, Brandingndeis usedaccordngtowtichif the domis iarized compledy, the dectrons reum to it oneater the andher to formaneatrd tomThs, thepossidesaincontinntiorscanbefoundat.

Wecanundastand this by considaing andomhaingtheevdencedetrors in followinguas.
(i) Consids andomhaingthreevancededronslike25304d
(ii) Tofindtheposiblevdues of S, spinof twodedrors arecontinedfirstand thethird dedron is dlowed to contine with ech of them Fromthe dove brancing schere, twosts of dable ($\mathrm{S}=1 / 2$) sdes andonest of quate (S=3/2) aedoseved
(iii) For theL values first contriningthearditd maiarsof first twodetronsand then contrined thethird onewith each of them Contrinstion of first two p

(iv) Now, thirdddedronis adkedtotheesthreeternsa

$$
\begin{array}{ll}
\mathrm{S}+\mathrm{d} \rightarrow \mathrm{O}+2=2 & \rightarrow \mathrm{D} \\
\mathrm{P}+\mathrm{d} \rightarrow(2+1) \mathrm{to}(2-1) \rightarrow 3,1,1 & \rightarrow \mathrm{~F}, \mathrm{D}, \mathrm{P} \\
\mathrm{D}+\mathrm{d} \rightarrow(2+2) \operatorname{to}(2-2) \rightarrow 4,32,1, \rightarrow \mathrm{G}, \mathrm{~F}, \mathrm{D}, \mathrm{P}, \mathrm{~S}
\end{array}
$$

(v) Firally, irtrodringLS capdinggivestiseto) staes, i.e $J=L \pm S$.

Thetwo sets of dade will havethefdlowingstes
${ }^{2} \mathrm{D}_{3252}$
${ }^{2} F_{52,72},{ }^{2} \mathrm{D}_{32,522},{ }^{2} \mathrm{P}_{12,32}$,
${ }^{2} G_{7 / 2922},{ }^{2} F_{52,72},{ }^{2} D_{325,52},{ }^{2} \mathrm{P}_{1232},{ }^{2} \mathrm{~S}_{1 / 2}$,
i.e todd 34tems Inquatest, thefdlowingwehave

$$
\begin{aligned}
& { }^{4} D_{112,3 / 2,51 / 2,72} \text {, } \\
& { }^{4} P_{12,32,52}{ }^{4} \mathrm{D}_{12,32,52,72}{ }^{4} F_{32,5272,992}, \\
& { }^{4} \mathrm{~S}_{32}{ }^{4} \mathrm{P}_{12332,52}{ }^{4} \mathrm{D}_{1 / 232,527272}{ }^{4} \mathrm{~F}_{32,52,72,92}{ }^{4} \mathrm{G}_{52,7 / 29211 / 2},
\end{aligned}
$$

i.e indll 31terms Thus todd 6 dsindleves.

1542 Temsdetojj-capling

Here we consids aly the addion of ane dectron to paret system, gereded with aneor morevalencededrons Mering of paret systemis, the eregylevd of aniorized domto which weaddandhe dectonvia jj- capling toformeneregylead fornatrd tom

Le us undersand this with a simple erample Consider a paret sytem haingspcarfigurdion and wearegaingtoadl pdectrontothissytem Posidle terms of paretsytemaeafdions.

$$
\begin{aligned}
& l_{1} \pm s_{1}=j_{1}=1 / 2 \\
& l_{2} \pm s_{2}=j_{2}=1 / 2,3 / 2
\end{aligned}
$$

Thus, $J=j_{1} \pm j_{2}=1,0,1,2$. Now, then addingupthep dectronhesj velues $1 / 20 r$ 32totheseandthusthefiral tedd 18tems will havethefdlowing) vaues

155TemsinEqivdeat EledronSydar

1551LSCCapling

Weundastandthisbythefdlowing cees
(i) Thos detrons (Unerited Heaton): Here we have $\mathrm{I}_{1}=0, \mathrm{I}_{2}=0$ and $s_{1}=1 / 2, s_{2}=1 / 2$. To know the posideterms following thesamepocedrea attinedinsection 15.51, thespincontrindionresits to $\mathrm{S}=0$ and 1 , for which thereisonly onepossideL value i.e $\mathrm{L}=0$. Thusthetemsar ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~s}_{0}$. Lee casmethet if the edecrons have pincipa quetumnunber $n=1$ and $n=2$, i.e onedectronisinexitedstethenthelowesterisingstewill be ${ }_{3} s_{1}$. Butfor the unexited stat, two dectrons will be compledy in same stucture and thus becoreindstingishadde thegra ndstae of hdiumatomis ' S_{0}.
(ii) Thop detrons (Unecritedcatonaton) Vey first, le us considg the case of two nonequivelet pp dedrons, i.e say p and n '. The following calaliongiverisetotheposildeterms

$$
\mathrm{I}_{1}=1 \mathrm{I}_{2}=1 \Rightarrow \mathrm{~L}=2,10 \text { and } \mathrm{s}_{1}=\mathrm{s}_{2}=1 / 2 \Rightarrow \mathrm{~S}=1,0
$$

Therefre, theTemsare ${ }^{3} \mathrm{D},{ }^{3} \mathrm{P},{ }^{3} \mathrm{~S}$ (triples) and ${ }^{1} \mathrm{D},{ }^{1} \mathrm{P},{ }^{1} \mathrm{~S}$ (singes); ; xin all.J valuesforech of thetripetandsingestaesare

For ${ }^{3} \mathrm{D}, \mathrm{J}=321$; Tems ar ${ }^{3} \mathrm{D}_{3},{ }^{3} \mathrm{D}_{2},{ }^{3} \mathrm{D}_{1}\left({ }^{3} \mathrm{D}_{321}\right)$. Each will have sigtty dfferet enegy. For ${ }^{3} \mathrm{P}, \mathrm{J}=21,0$; Tems are ${ }^{3} \mathrm{P}_{2},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{0}\left({ }^{3} \mathrm{P}_{210}\right)$. Eadh

 ${ }^{1}{ }^{1}, \mathrm{~J}=0$, Temis ${ }^{\prime} S_{0}$. Likeintripes cæe, J valueof thesing \notin Sis not uadly witten

Nownessitch ove tothecæeof theeqivilet pp dedrons then thePali'spincipa restridsthecontingionwhichherethesarest of quatum numbers Wherem for nonequivdet dedrons, values of $n \& \alpha I$ aedfferet imdyingtht Pali's pinipleis stisfied However, when nandl aesamethen m and or ment have dfferet values to reed the reairenerts of Pali's Exdusion pingipe By daing so, sareof thestes which ae posible for the nonequivdet dectrons nay not eist for the eqivdent dedrons. Thus, in ar œese eco thetwo pectronshes $m=1,0$ - 1 and canhave $m=$ ithe $+1 / 2 \alpha$ $-1 / 2$ Therefore each of the m vdues canheve m either $+1 / 2 \alpha-1 / 2$ Values are tdaltebsowldadingwitha, b, c, d, ef.

If thopeqivilettectronseis, then mber of posildecontinntionsat of thesixdfferetcdumstdingthottimeis ${ }^{6} \mathrm{C}_{2}=\frac{\theta}{\{(6-2 \mid) \times 2\}}=15$, whichare da, $a c, a d$ æ, a, bc, bol be lf; coces, d, \mathfrak{C},
f.
 eist when the detrons are two p dedrons Futher, we have to cdalde the values of M_{L}, M_{s}, and M_{l} forwtichtheeregy levdsareerdudedaccordngto Pali's pindipa. Thus, theseposidecontintions providethefdlowing vaus of M_{L}, M_{s}, add M_{j}.

M_{L}	1	C	2	1	C	-1	1	C	-1	C	-1	-2	1	C	1
M_{S}	1	1	C	C	C	1	C	C	C	C	C	C	-1	-1	-1
M_{J}	2	1	2	1	C	C	1	C	-1	C	-1	-2	C	-1	-2
Grar	$=$	$=$	1				$=$	$=$	-		$=$	$=$		$=$	$=$

Statingwiththetignest valueof M_{L} andacordngtoquatizdion rue, itshould beequl tothehighest vdueof L Maximmvalueof M_{L} is 2 with M_{s}. Since M_{L} being sparequatized vdueof L, vdueof L mest therfarebe2, represeting possidy ${ }^{1} D_{2}$ tem If this is 50 , there mat be continaions $M_{L}=1,0,-1,-2$ echhaing $M_{S}=0$ All theseareshownindark boxes (indcaed by|inthelatrow). Thentherearethregropsof $M_{L}=1,0-1$; wherethelagent vdueof M_{L} is +1 andlagest vdueof M_{S} is +1 ,thentheymetbangto ${ }^{3} P$ stae andfor thevdueof M_{L} is 0 and -1 , the M_{S} hes $+1,0$ and- 1 which corespondto ${ }^{3} P$ stde(indccted by =inthelat row). Futhe, therenainingtembees $M_{L}=0$ and $M_{s}=0$ bdangsto ${ }^{1} S_{0}$ stede(indcated by-inlatrow). Thenumber of stes is redreed to thre ${ }^{1} D_{2},{ }^{3} P,{ }^{1} S_{0}$ a agant the six for the tho nanequivdet p eletrans.

Tems of equivdert dedranscaneaily becalalted using Breit's nethodsexdainedbalow. For ppedectraiccorfigurdion, $m=1,0$-1forechof thetwo detrans\& m_{s} iseither $+1 / 2 \alpha-1 / 2$ Witing m_{1} and m_{12} inahaizartd row and cdum (witten in bold). Similaly, witing the vdues of m_{12} and m_{22} as shown in following tddes Fill the booly of the todes with $\sum m=M_{L}$ and $\sum m_{s}=M_{s}$.

Tddel

Tade2

$\mathrm{m}_{1} \rightarrow$	$+1 /:$	-1
$\mathrm{~m}_{2} \downarrow+1 / 2$	1	C
$-1 /$	C^{-1}	-1
	$\mathrm{~S}=\mathrm{C}$	$\mathrm{S}=1$

Eqivdentededrasfor agiven values of nardl, canhaveithersare m_{s} orsarevdues of m. If m_{s} vduesaresarethensomecontrintions of m_{l} will nt bedlonedandiceversa

If m_{3} aresme M_{L} valuesonthedagord of thetadel haesame mand therefore notalowed Likevise, ML vaus dovethedagond areminrorimægeof thevduesbodowthedagond; harcefardiden Whatisleftare $M_{L}=1,0,1$ which aethenmegic quatumnumbes corespondingto $\mathrm{L}=1$ Thecontinetions of M_{L} and M_{S} whichaelftandalowedbythePali'sexdusionpinideare

$$
\begin{align*}
& \sum m_{3}=M_{S}=1 \sigma-1 \tag{1}\\
& \sum m=M_{L}=1,0-1 \tag{2}
\end{align*}
$$

Each of the M_{L} value contrines with erc of the M_{S} vdue yiddng $M_{L}=10,-1$ forech of the M_{s} velues, thet is 1 and- 1 dl danehes nomering unless thereis andher continntion with $M_{s}=0$ and $M_{L}=1,0-1$. Thisdficiency maybefixed upfromthefdlowing corsidardionswhenserem isconsidred

If m vilues aresme Eedrons can't have same vdues of m_{s} (that is dlowedvdueof M_{s} is Oady) but, on the ther hand each of thededronsisfree to haveany of the value of m. Pali's prinide, therforeallons thefdlowing conlointions

$$
\begin{align*}
& M_{L}=2,10-1,-2 \text { with } M_{S}=0 \tag{3}\\
& M_{L}=1,-1 \text { with } M_{S}=0 \tag{4}\\
& M_{L}=0 \text { with } M_{S}=0 \tag{5}
\end{align*}
$$

Redions(1), (2) add(4) leadtoL = landS =1givingtheTem³ ; (3) and(5) yidd theTems ${ }^{1} D$ and ${ }^{1} S$ respeetively. Thus two eqivelet p detrons yidd Tems(stes) ${ }^{1} \mathrm{~S},{ }^{3} \mathrm{P}, \mathrm{and}^{1} \mathrm{D}$.

Sinila nedarismcan befdlowed for caldaing theTems (Stes) for otherdfferetnumber of eqivdettp-Aedronsytens
(iii) Three eqivelet \mathbf{p} - deatrons (Unerited Nitrogen aton): Posidle nunter of contringionsis 20 . Thevdues of M_{L} and M_{s} canbegapedas

Thespedrad Temsfor nomid nitrogentomare

$$
\begin{array}{ll}
\mathrm{L}=1, \mathrm{~S}=\frac{1}{2} & { }^{2} \mathrm{P}_{32,72} \\
\mathrm{~L}=2, \mathrm{~S}=\frac{1}{2} & { }^{2} \mathrm{D}_{52,32} \\
\mathrm{~L}=\mathrm{Q}, \mathrm{~S}=\frac{3}{2} & { }^{2} \mathrm{~S}_{322}
\end{array}
$$

Spedrd Temsforexitedritrogenatomare

$$
\left.\begin{array}{l}
\left.\left.\begin{array}{c}
{ }^{1} S \\
\left.+{ }^{2} P\right\}
\end{array}\right\} \begin{array}{l}
L=0, S=0 \\
L=1, S=\frac{1}{2}
\end{array}\right\} S=\frac{1}{2}
\end{array}\right\} \quad{ }^{2} P
$$

(iv) Far eqiveletpdetrons Indl posidecontinntion ${ }^{6} \mathrm{C}_{4}=15$. With the same reans, thefind spedrd Tems are ${ }^{1} S_{0},{ }^{3} \mathrm{P}_{012}$ and ${ }^{1} \mathrm{D}_{2}$, which is the sareadetothop-detrons
(v) Tvoeqivelertd detrors Thepossidevalues of m and m for oned dedronare

| m_{s} | $1 /$ | $1 / 1$ | $1 /$ | $1 /$ | $1 /$ | $-1 /$ | $-1 /$ | $-1 /$ | $-1 /$ | $-1 /$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| m^{2} | 2 | 1 | c | -1 | -2 | 2 | 1 | C | -1 | -2 |
| | a | b | c | d | e | f | g | h | i | j |

Tdally, indl thereare10stas andtheposidecontindionsare ${ }^{10} \mathrm{C}_{2}=45$. Addingthevalues of m_{l} and m_{s} tothesecontinstions, weg ${ }^{1} \mathrm{~S},{ }^{3} \mathrm{P},{ }^{1} \mathrm{D},{ }^{3} \mathrm{~F}$ and ${ }^{1} \mathrm{G}$

1552jj-Capling

Considr the we of thee eqivdet p dedrons in j j- copding The possidevdues of quatumunter m arelistedbado.

Ot of thesesix stases, we can tokethreat a time with mo two of sane kind Thesarecontinstionsaredtainedæintheceeof $L S$ copling

$$
\begin{aligned}
& j_{1}=3 / 2 j_{2}=3 / 2 j_{3}=3 / 2 \quad \Rightarrow m=3 / 21 / 2-1 / 2-3 / 2 \\
& j_{1}=3 / 2 j_{2}=3 / 2 j_{3}=1 / 2 \quad \Rightarrow m=1 / 2-1 / 2 \\
& \text { 5/23/21/2-1/2-3/2-5/2 } \\
& \text { 3/21/2-1/2-3/2 } \\
& \mathrm{j}_{1}=3 / 2 \mathrm{j}_{2}=1 / 2 \mathrm{j}_{3}=1 / 2 \quad \Rightarrow \mathrm{~m}=3 / 21 / 2-1 / 2-3 / 2
\end{aligned}
$$

These20terms corespondtofiveTems $(3 / 23 / 23 / 2)_{32}$,
$(3 / 2,1 / 2, / 2)_{12}$, $(3 / 23 / 21 / 2)_{52},(3 / 23 / 21 / 2)_{32} \operatorname{add}(3 / 2,1 / 21 / 2)_{12}$.

156HundsRule

This neis apdicddealy to LS capding InLScapling theeffect of spinspaninteration is las lly lager compred tothededrodtic repulion It is fand that lagest S hes lovest enegy beeasethe repulsion is token invesdy propationd to thedstace bedweenthem Futhe thededrostaic enegy will be nirimem if the valence detrons ae vey far fromerch other. Therefre, the dedrons of thelowest enegy lead's will bethen aranged symmetically a aund thendes Thissymmeric corfigrdionrotdes likearigd booly, makngtherey indvided detrons to rate in sare drection which finally makes naximum possidevaluef L Thus, thelagest L valulies inthelowet enegy led. Theee realtsaeknownæHundsnles

In mili-dedron atons the enegy staes with maximutad spon are morebound ∞ evidat by their enegy. It is becase no spadid arbitd m of a givensubshal (I valu) will havetwodetransulessall thashaveonedectron each For eample a $p^{4} \mathrm{sb}$ shdl hes coapancy of its dedrons a $(\uparrow)(\uparrow)(\uparrow)$
rather then $(\uparrow)(\uparrow)(\nu) \alpha_{(\uparrow \nu)(\uparrow \nu)() \text {. It hes been shown that with symmerric sain }}$ eigenfundion thedectras arefar ppat realting inless screering of thenuder drageby theime dectrons This realt inmorebindng and therfore, loweing of thestdes of lagemeretdd spin

Hundsnuesmayberestadafdilons

(i) Foragivendetroncorfigrtion, theTemwithnaximmmoltipidity (2S+1) aelonest
(ii) AnrongtheTems with samemelipidity, Temshainglagestabitd anglar monetumLlielonestaneregyscde

Thenlehdosgoodfor theceref dectroncorfigrdionindvingnomat stae(example ritrogen cabon scandumec).

157LandésIrtaval Rule

Thenle d\#emines thespardion of finestucturelinein LS capding LS-capdinghes thedradaisics thet thespardionbedweenthetripdes and the singes is large compared to the spardion betveen the meltipde finestucture which intum fdlons Lande intevd rue These daradaistics hdp recogize thecapling.

As, it isknownthat finestuctreof alead for agivenvalueof L andS is deto sainardit interation and th is the crangeintheeregy is codalaed with thehspof paturbationtheary. Thednangeintheenegy valueisgivenby

$$
\begin{equation*}
\Delta \mathrm{E}=\frac{\mathrm{A}}{2}[J(\mathrm{~J}+1)-\mathrm{L}(\mathrm{~L}+1)-S(\mathrm{~S}+1)], \tag{6}
\end{equation*}
$$

whereA isconstat
Thus, theenegy vdues carespondngtothefixedL andSvduesaegivenby

$$
\begin{align*}
& \mathrm{E}_{\mathrm{J}}=\mathrm{E}_{0}+\Delta \mathrm{E} \tag{7}\\
&=\mathrm{E}_{0}+\frac{\mathrm{A}}{2}[\mathrm{~J}(\mathrm{~J}+1)-\mathrm{L}(\mathrm{~L}+1)-\mathrm{S}(\mathrm{~S}+1)] \\
&\left.\mathrm{E}_{\mathrm{J}+1}=\frac{-1}{2}(\mathrm{O}+1)(\mathrm{O}+2)-\mathrm{L}(\mathrm{~L}+1)-\mathrm{S}(\mathrm{~S}+1)\right] \tag{8}
\end{align*}
$$

Thus, the sppadion between two conseative leveds of fine stucture leds is $\mathrm{E}_{\mathrm{j}+1} \rightarrow \mathrm{E}_{\mathrm{j}}=\Delta \mathrm{E}_{(+1)-\mathrm{J}}=\mathrm{A}(\mathrm{J}+\mathrm{I})$, i.e propationd to ($\left.\mathrm{J}+\mathrm{I}\right)$. In other norots, separdionispropational tothelargrJ value Consequatly, foratiipt, onemay wites

$$
\Delta \mathrm{E}_{(+2)(J+1)} \propto(\mathrm{J}+2)
$$

$$
\Delta \mathrm{E}_{(\mathrm{l}+1)-\mathrm{J}} \propto(\mathrm{~J}+1)
$$

$$
\left[\Delta \mathrm{E}_{(J+2)-(\mathrm{J}+1)}\right] /\left[\Delta \mathrm{E}_{(\mathrm{l}+1)-\mathrm{J}}\right]=(\mathrm{J}+2) /(\mathrm{J}+1)
$$

Thet is rdio of thetwo conseativespardions is equal to therdio of thelarger J values This is known क Lande intervd nle Therefre for ${ }^{3} \mathrm{P}_{0,12} ;{ }^{3} \mathrm{D}_{1,23}$ and ${ }^{3} F_{2,34}$ aeintherdioof 1:2; 23and3:4respedivdy.

158Namal andinatedTems

 of valuesthithettreled with smalletJ vaus lielonet, knows m rama Tenswhereb theineted Tems is dfinedfor thosewhentheeragy leds of finestudureaearangedin φ puarddredion withthederereingard of J vilue archthatled withlagets valulieslowest Fromeperinetid eiderces ithes dso beennciced the nomad Tems apper whenthedetroric corfigurtion of the concermedenerthes less then haf filledsubshdl of deticrs, whileif the shbsdl a rencrethenhaff filled theninutedTems वpper.

Freeande, thegand ${ }^{3}$ P temof cabon famedfrimtuoequivertp detrons forms anama meltipte andtregandste ${ }^{3} P_{0}$. Onthedthe hand thegound ${ }^{3} \mathrm{P}$ temof oxygen fomedfromfor eqivdet pdetrons formsan inveted meltipd add the gand state is ${ }^{3} P_{2}$. For dans haing a gand corfigrdion with an eadty hadf filled abitd, the gandtemis dwass ans tem, for whichthealy orestee (gand sta) aise For eande, thegound steef droniumis ${ }^{7} \mathrm{~s}$, beearethequitumumberl $=0 a \mathrm{adS}=3$, add can tekealy vilue3 addtregandstdeis ${ }^{7} s_{3}$.

Futhrs, the finestrutureof spectumof andenettasogerated deto theinteation renedy, san-arbit inteation Thes it is posisibethat ader of eregy leds may dso govered by spinatitititeation eregy. Nowwhenthe interationeregy realts negsive, the Temsaeinetedadfor positiveeregy ittumstothenama Tems

159Orctr of FineStudureMLtiples

1591LSCapling

 notionand dsodetrostic enegy of detrons inatration and repision spits up the unpeturbed eregy leves into nary levds and the realtat of those of carse lie in a arder dosing the Pali's prindipe. Hund's rue and Landes intervar rue
a InLScapding spin-spincoredaionisnostdmindingfator andbecase of it upaturbed enegy leds sdit upinto alagenumber of well spaced levds Thenumber is eqal to the posiddevelues of S. Whilecaldaing the posideS vdues, in accordancewiththePali's pinide, thespit lexds liein ancror of dereesingSsuchthat theleve withthelagest vdueof S, lies lowest
b The seeand dominging fator is dectrostic effect, which futher iffluerces andsdits yperch of theaboveleds Thenunter of levds isequl to the poside values of L, which can be forred from the indvidd anglar nomerta of agiven number of valencedectrons following thePali's priniple Theseleveslieinarde of dereering Lfor agivenvelue of Ssurthththeled withlagest vaduelieslonet
c Thenet effecivetermis spinardit interation This interation spits the
 valueff lieslonestand dhessininoreaingardar of value

1592ij-Capling

a Inthiscouding spin-abit interation is themostdminding fator and it sodits uptheurpeturbed led into a number of well separded leds Theled withsmallej valuewill liedeypestaitheslowetenegy.
b Net effective fatars are eledrostdic eregy and spinspin interation which cortribute in spiting upeach of the dovelerds into a lage nunter of levdscharateized by dfferetvaues of J. Thelend withlonet valueof Jies lonest, againinaccordancewiththePali'spinide

1510SdedionRule

In crab to have compee undastandng doat the eat netre of the trasitions, it is requiredtoknowthenles, revedy, Selection Rules whichgoven theallowed danges in varias quatumnumbers when an domjumps fromore state othe. Thessetionnlesfor complicted tomaedrost sareasfor the
thodedronsytemOther sdetionnuescandsobedtaneduringthesymmery propeties of thestates and of theinterationdpde A dadiled andysis lead to thefdlowingsdetionnues

15101SdedionRulesfor LSCOpling

Thesdetion rues, whenLS capding is patinat aresmilar to thosefor onedectron sytens Although, the slection nles for ane detron tons are bosedonntherwics of d plemomet, thesdetionnlesformany lectronsare besed an both mathendics and experimetd prof. In LS capling, the main qaatumnnhes areL, S, M_{L} an M_{S}. Sincethespindbes not eist in peturding Haniltorian so cnehavethesdetion nle $\Delta S=0$. Asfor the coeof Hycrogen tom, theparity mot dange Thepaity isgivenbythevdueof I (oddorever) of jumping detron most dange by urity, i.e $\Delta\left(\sum l_{i}\right)= \pm 1$, where $\Delta\left(\sum l_{i}\right)$ is the dange in the smof indvidal anglar nomettumquatumunters for the dedrons For tod arditd argiar nornetum, in addion to the slection rue $\Delta \mathrm{L}= \pm 1$. As awhde for andomthesdectionnles for ather quatumnunhers are $\Delta L=0, \pm 1 ; \Delta J=0, \pm 1$ but tranitions $j=0 \rightarrow 0$ is not allowed $\Delta M_{j}=0, \pm 1$ at $M_{\mathrm{j}}=0 \rightarrow 0$ isnotalloneduhen $\Delta \mathrm{J}=0$.

15102SdestionRulesforij-Capling

Thesdectionnueswhenjj- coplingpatainsmay bededredfromgered anguar monetum Although L and S are no langer treted a good quatum number bitJ, M_{j} and indvided j aegood In rost cormmentypeof speetra, trasitions bewwenthelevestakedææorly whencrededronnwkesthejumpt atine Thearditd quatumnnber of jumpingdectronmet dangeby urity, i.e $\Delta \mathrm{L}= \pm 1$. Thus, the ime quatumnunber of juming detron mat dange by urityorby0, i.e $\Delta j=0, \pm 1$, btfordl dher eetronsmetrotchange i.e $\Delta j=0$. Asawhde thecthe quatumnumberschanges a $\Delta \mathrm{J}=0,+1 ; \mathrm{j}=0 \rightarrow 0$ isnt allowed $\Delta \mathrm{M}_{\mathrm{j}}=\mathrm{Q} \pm 1$ bt $\mathrm{M}_{\mathrm{j}}=0 \rightarrow 0$ isnd allowedwhen $\Delta \mathrm{J}=0$.

1511 IllustrdiveExampe

Examplel Findthevalues ${ }^{\prime}$, Landj for thereresegtion of eetronstes.
${ }^{1}{ }^{1}{ }_{5},{ }^{3} \mathrm{P}_{2},{ }^{2} \mathrm{D}_{32}$ and ${ }^{5} \mathrm{~F}_{5}$.
Sd. (i) ${ }^{1} \mathrm{~S}_{0}: 2 \mathrm{St}+\mathrm{F} \Rightarrow \mathrm{S}=\mathrm{S} \Rightarrow \mathrm{L}=0 \Rightarrow \mathrm{~J}=0$.

$$
\begin{aligned}
& \text { (ii) }{ }^{3} P_{2}: 2 s+1=3 \Rightarrow s-1 ; P \Rightarrow L=7 ; J=2 \\
& \text { (iii) }{ }^{2} D_{33}: 2 s+1=2 \Rightarrow s=1 / 2 ; D \Rightarrow L=; 32 \Rightarrow J=32 \\
& \text { (iv) }{ }^{5} F_{5}: 2 s+1-5 \Rightarrow s=2 ; F \Rightarrow L=5 \Rightarrow J=5
\end{aligned}
$$

Exaple2 Find Temvilues (stees) for the edectraic corfigurdion pol of an tamundrLS- adijj-caplingscheres
Sd. Giventht $\mathrm{l}_{1}=1 \mathrm{I}_{2}=2$ an $_{s_{1}=s_{2}}=1 / 2$.
(i) Undr LS copdingschene
$L=\left(l_{1}+I_{2}\right),\left(I_{1}+I_{2}-1\right),\left(I_{1}+I_{2}-2\right)\left|I_{1}-I_{2}\right|=32$, , which is F, D, and P
staes

$$
S=\left(s_{1}+s_{2}\right),\left(s_{1}+s_{2}-1\right),\left(s_{1}+s_{2}-2\right), \ldots, \ldots, s_{1}-s_{2}=1,0, \text { i.e }(2 S+1)=3,1
$$

Thus correspondng Tens are ${ }^{3} F,{ }^{3} \mathrm{D},{ }^{3} \mathrm{P}$ (triples) and ${ }^{1} \mathrm{~F},{ }^{1} \mathrm{D},{ }^{1} \mathrm{P}$ (singes). Therefre theJ values forech of thetride andsinge stees agiven by $\mathrm{J}=(\mathrm{L}+\mathrm{s}),(\mathrm{L}+\mathrm{S}-1), \ldots \ldots . . \mathrm{L}-\mathrm{S}$
For ${ }^{3}$ F and $\mathrm{J}=4,32$; Temsae ${ }^{3} \mathrm{~F}_{4,32}$;
For ${ }^{3}$ D and $=3.21$; Temsare ${ }^{3} D_{321}$.
$\mathrm{Fr}^{3} \mathrm{P}$ and $\mathrm{J}=2,1,0$; Tems are $^{3} \mathrm{P}_{21,0}$;
For ${ }^{1}{ }^{1}$ andl $=3$, Temis $^{1}{ }^{1}{ }_{3}$;
$\mathrm{Far}^{1} \mathrm{D}$ and $=2$ Temis ${ }^{1} D_{2}$;
$\mathrm{Far}^{1} \mathrm{P}$ add $=1$, Temis $^{1} \mathrm{P}_{1}$.
(ii) Undr jj- copdingschene

$$
\begin{aligned}
& j_{1}=\left(l_{1}+s_{1}\right),\left(l_{1}-s_{1}-1\right), \ldots \ldots \mid l_{1}-s_{1}=3 / 2,1 / 2 \\
& j_{2}=\left(l_{2}+s_{2}\right),\left(l_{2}-s_{2}-1\right), \ldots \ldots\left|l_{2}-s_{2}\right|=5 / 2,3 / 2
\end{aligned}
$$

Each of j_{1} vduecontines witherchof the j_{2} veluegivefarTens, represeated by (3/2,5/2), (3/2,3/2), (1/25/2), and ($1 / 23 / 2$). J values for æch of the continatiorsisgivenby

$$
J=\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right),\left(j_{1}+j_{2}-2\right) \ldots \ldots \ldots, j_{1}-j_{2} \mid .
$$

$\operatorname{Fr}(3 / 2,5 / 2) ; J=4,3,2$ 1; Temsae $(3 / 2,5 / 2)_{4,321}$.
For $(3 / 2,3 / 2) ; \mathrm{J}=3,2,1,0$, Temsae $(3 / 2,3 / 2)_{3,2,1.0}$.
For $(1 / 2,5 / 2) ; J=3,2$ Temsae $(1 / 2,5 / 2)_{32}$.
For $(1 / 2,3 / 2)$; $J=2,1 ;$ Temsae $(1 / 2,3 / 2)_{21}$.
Example3 A thodedrondominanexitedstehesonededronind staeand oreinf- state capled accordng to LS schere Show thet thereare 20 posidde Tems(stes), widhaeeithersingeortiples Witethem
Sd. Given $l_{1}=2, l_{2}=3$ and $s_{1}=s_{2}=1 / 2$.
Fromthese wehaveL $=5,4,3,2,1$ corespondngtoH, G, F, DandP states and $\mathrm{S}=1,0$. Undar LS capdingschere, negefdlowingj values

L 5 J	Star	JLI S Stax
ᄃ $]$ 6,5,4	${ }^{3} \mathrm{H}_{654}$	ᄃ $\mathrm{C}^{1} \mathrm{H}_{5}$
415,4 =	${ }^{3} G_{543}$	$4 \mathrm{C}^{1} \mathrm{G}_{4}$
三 $14,3,2$	${ }^{3} \mathrm{~F}_{432}$	$\equiv C{ }^{1} F_{3}$
[1 3,2,	${ }^{3} \mathrm{D}_{321}$	$2 C^{1} \mathrm{D}_{2}$
] $12.1, \mathrm{C}$	${ }^{3} \mathrm{P}_{2,10}$] ${ }^{1}{ }^{1} P_{1}$

Example4 Whitethecomplegrand staterminLSnodion i.e ${ }^{25+1} \mathrm{~L}$, for thedenertsinthefirstrowof theperiod ctade, i.e Li throughNe

Sd.

Li: $\mathrm{Is}^{2} 2$; $\mathrm{L}=0 ; \mathrm{S}=\mathrm{I} / 2 ; \mathrm{J}=1 / 2 \quad \therefore{ }^{2} \mathrm{~S}_{/ 2}$
Be $1 s^{2} z^{2} ; L=0, S=0, J=0 \therefore{ }^{1} S_{0}$
B: $\quad \mathrm{ls}^{2} 2^{2} 2 \mathrm{p} ; \mathrm{L}=1 ; \mathrm{S}=1 / 2 ; \mathrm{J}=3 / 2,1 / 2 \therefore{ }^{2} \mathrm{P}_{1 / 2}$
C: $1 s^{2} 2 s^{2} 2 p^{2}$; theposideterms ${ }^{3}{ }^{3} P,{ }^{1} D,{ }^{1} s$ andby Hunds nue thelowestlyingmotbethetripa, simethep shal islessthenhaff full, i.e ${ }^{3}{ }_{0}$.
N: $1 s^{2} 2 s^{2} 2 p^{3}$; theposidetems ae ${ }^{4} S,{ }^{2} D,{ }^{2} P$. Thequate will lielonet Since $L=0$, beasel $=$ Oandthwsthereisaly i.e ${ }^{4} \mathrm{~S}_{32}$.
O. $1 s^{2} 2 s^{2} 2 p^{4}$; thepossibletemsare ${ }^{3} P,{ }^{1} D,{ }^{1} s$ (sareacabon), sobyHunds nue, Simethepshal is morethenhalf full andthehighetJ lieslowes, i.e ${ }^{3} \mathrm{P}_{2}$
F: $1 s^{2} 2 s^{2} 2 p^{5}$; Possidestas arethesareaborn excedt thehighest will lie lonet, i.e ${ }^{2} P_{3 / 2}$
Ne $1 s^{2} 2 s^{2} 2 p^{6}$; Closed shall corfigurtion so the grand state is the sare a hdium ${ }^{1} S_{0}$.
Exampe5 (a) Whiteall temsforthededroncorfigurdion $n_{n n^{\prime}}$ p inboththeLS andj-caplingnddion
(b) Make a daramsimila to Figre 3 for the jj-capling stes showing the ffeds of sain-arbit inteation and exdange and detrostdic repulion Putal temsinproperadr.
Sd.(a) LS capling Given $\mathrm{S}=0,1 ; \mathrm{L}=0,12$
Posiblestes ${ }^{3} \mathrm{D}_{321} ;{ }^{3} \mathrm{P}_{210} ;{ }^{3} \mathrm{~S}_{1} ;{ }^{1} \mathrm{D}_{2} ;{ }^{1} \mathrm{P}_{1} ;{ }^{1} \mathrm{~S}_{0}$
jj-capling $j_{1}=\frac{31}{2},{ }_{2}^{2} ; j_{2}=\frac{31}{2},{ }_{2}^{\prime} ; j=32,0$
Possidestas

$$
\left.\left(\frac{11}{22}\right) ;\right)_{0}\left(\frac{11}{2} \frac{1}{2}\right)_{1} ;\left(\frac{13}{22}\right)_{2} ;\left(\frac{13}{22}\right)_{1} ;\left(\frac{31}{2} \frac{1}{2}\right)_{2} ;\left(\frac{31}{2} \frac{1}{2}\right)_{1} ;\left(\frac{33}{2} \frac{3}{2}\right)_{3} ;\left(\frac{33}{2} \frac{3}{2}\right)_{2} ;\left(\frac{33}{22}\right)_{1} ;\left(\frac{33}{22}\right)_{0}
$$

(b)

1512Seff LeaningExaris

Q1 Whatstes aisefronthetems(a) ${ }^{3} \mathrm{~S}$, (b) ${ }^{4} \mathrm{P}$, (c) ${ }^{5} \mathrm{D} \operatorname{and}(\mathrm{d})^{2} \mathrm{~F}$?

Q2 What tems arisefromtheexited corfigurdias (a) $1 s^{2} 2 s^{2} 2 p^{1} 4 f^{1}$, add (b) $1 s^{2} 2 s^{2} 37^{1} 4 f^{2}$ of cabonatom?
Q3 Compretheterms aisefromtwo noneqivdet pedecronswith thosetht: aisefromtnoequive etpdedrons

1513Sumay

Stating with the speetra of two valece eletrons क cere study and extended the idka for many dedron systens for undastanding the complicated (comple) speetra Proceedng in seaperce, wehave studed wall the RusselSanda's (LS) andjj- capling and daived thespeetrd tems, neney, S, P, D, F... for thenewengyl leds sgreqtedfter thesditingof aigind levds, which coar atter thevariastypes of posideinterations Effets of LSandjj- capding havebenstudedfor eqivied and noneqivdet detronssytem Futher, the Seletion rues have been folloned for posside irterations and this speetrad terms A brif dbat thenles, renely, Hund's rue Landés Interve ruehave benatinedforcompleexdandion of expeinetd moltiples of finestucture Substativeeramdeshavedsobeen warkedatfor better undastanding

1514Garany

MWtiple (i) A spedrd linehaing norethenonecomponet, represertingsigt vaidions in the enegy stes daacteistic of an atom (ii) Any grap of sabtomic patides that aresimila in most properties, lathevedfferet dectric darges, sch a thenuders, whichformadadet, or thepians, wich forma tridet
Spadrd TemItisanddrevideddescripionof thearyla rmemetumqantum numbesinmili detronsystem
Fine Sruture The pesence of gaps of dosly spoced lines in spedra corespondngtosigtly dfferetenegyleads
HyparineStudure It isthedfferet effedsleqdingtosmall shiftsandsditing intheenegy levds of tons, molealesadions
Capling Itisanindrectinteradionbetweentwo nuder spinswhichaisesfrom hyperfineinterationsbedweenthenude andlood detrons

Peererion A draneinthearieldion of therddiond axis of a roddingbodyor thesow meveret of the axis of aspiming booly aound andher axis deto a torqeadingtodn ngethedreetion of thefirstaxis

1515Exeris

Q1 FindtheLStemsthtaisefronthefollowingconfigrdions
(a) nap
(b) fad
(c) $(\mathrm{rp})^{2} \mathrm{~ns}$

Q2 Witeall termsfor thedectroncorfigurdion $n p^{2}$ inbothLS adjj-capding nddion (b) MakeadagamshowingthetrasitionfromLS tojj-capling Ptall temsin inguerarda.
Q3 Dedrethespedrd Termsaisingfromthecorfigurdion 3prdinthecmeof jj-copling Which of thetemsis likdy tobethelowestinenegy?
Q4 Calalate al spedrad terms for thre eqivatet p dectrons in unexited ritrogentom

ReferencesendSuggeted Remding

12 Brasden and oedan Phyics of Atons andMdeeles (2009), Bejamin Ormings
13. Raj Kumæ, AtomicandMdealarSpeetra Lææs, KedamithRamNathRub
14. SL Gupa V Kumar, RC Shama Elemets of Speetroscapy, Pragit Prdatran
15. RajamJ. B., Atomic Physics(2007), SChend\&Co, NevDdhi.

16 S.N. Thekur andD.K. Rai, Atom, Læer andSpedroscopy, PH LeemingPt Ltd
17. Fenkes. H. andYanoodJ. Atomic PhysicsVd II (1991) ,OxfordUnivesity Press
18 RitaKakka, Atomic andmdealar speetroscopy, CantridgeUniverity Press (2015).
19. htup//Lsessaber.acuk/ruhtead/327/sjj.pp
20. $\mathrm{htp} / / \mathrm{mw}$.
$21 \mathrm{htp} / / / \mathrm{d} y$ gicsnistgw/Pubs/AtSped/
$22 \mathrm{htp} / / \mathrm{hdd} . \mathrm{ccin}^{1} / \mathrm{carse} /$

UNT-JE Spatraof Alleli and AlklineEathElent

Sructureof theUnit

160 Ojedives
161 Thespimingdedron
162 Intersityrdiofordables
163 IllustraviveExamdes
164 Seff LeamingExerisel
165 Vetormodl forThovdencededrontom
166 InterationengyyinLSardJJ capling
167 IllustrdiveExamdes
168 Self LearingExerisell
169 Summay
1610 Gossary
1611 ArsmastoSdf LeamingExerises
1612 Exerise
1613 ArbnastoExercise
Refernces andSuggetedReedings

160 Objedive

Inthiscrader, wewill concertratenthefinestrutureof theonedetrontons The case of this fine stucture is the inteation between the arditd agular monertumand the spin angla merettum The chaper will dso reien the arignforthisinterationandtheeffect of thecaudingbeweenarditd andspinan thespeetral lines

161TheSpirningEletra

in spetroscopy, inestuulueis thespitinga thendnspetta ilinesa an atominto two or more componets Each componet repereats a sigtly dfferet vevelengh Indkdi medssun ssodumandpotasium, therearetwo componets of firestucture whicharecalleddaldes Foreg theyelowD-line of Sodum consiss two dose lines, the wardength of which ae 5890 and $5996 \mathrm{~A}^{\circ}$.
In the speetrd lines of dfferet series, the neture of finestuxture is dfferet Experimetd findnos reved that emission speetra of the akdi tons can be adyzedintosocdledfardief seieswiththepealiaitiesmgivenbedow.
1 All thelines of shapseries consist of duides, sppardionbedneenthedade componetsreminconstataffarotheseries etend
2 Smilaty, erch line of the pincipa series is aso a dables, honever the separdion bedween the dable componets dereeses rapidy as the seies etenctotohiger members
3 Third seies initially consist of triplds (three componets) fdlowed by apparetdaides, sppadionbedveentheater componetsreninconsatas farathessiesetends Seriesistermedædffuøeseries
4. Farth seies, temed a Fundenetd series, lies in far iffrared regon and consists of vey doælyingdables
In gered, for ligter dons the fine stucture sditing of spedra lines is swal whichincees withthein remeintheatomicnunber.

Eydantionoffinestudure

Finestuctreis prodreedwhenanatomenits ligttinmakingthetrasitionfrom aneenegy statoto andhe. Thespit lines, which are colled thefinestucture of theminlines, aisefromtheinteration of thearbitd notion of andetronvith thequatummeehaicd "spin" of thit deetron Andedron canbethaigt of a an detricelly darged spiming top, and herceit belaves a a tiny bor maget Thespirning deetron interats with themageic fidd prod red by thedetron's raddion dbat the domic nudeas to geredethefinestucture Dueto the sainarbit inteation thearditd angla nometuml is capled to the spin angla
nenertums Thequatumnimer \mathbf{j}, which is aso known ∞ ' 'imer quatum nunter' can take vdues beween Its to Its As s can takealy $1 / 2$ value, erch enagy lead gas spit into tho, onecarespondingto $j=+1 / 2$ andandhe $j=-1 / 2$ Thecomplethdtion of thelevdswill beagivenbedow.

Led	1	S	Mutiplidity $(2 s+1)$	$\mathrm{j}(\# \pm$)	Full nodion
S	0	1/2	2	1/2	${ }^{5} / 1 /$
P	1	$1 / 2$	2	32,1/2	${ }^{4} \mathrm{P}_{32}{ }^{4} \mathrm{P}_{312}$
D	2	$1 / 2$	2	52,32	${ }^{4} \mathrm{D}_{52}{ }^{2}{ }^{2} \mathrm{D}_{32}$
F	3	$1 / 2$	2	72,52	${ }^{4} \mathrm{~F}_{72,}{ }^{2} \mathrm{~F}_{52}$

Thecomponet corespondngtosialle j valueisstddeandhencelies depper in the dadlet This is dee to the fat thet, in the stdde stat, the sain magndic monet μ of thededronhesthesanedretion of themannic fidd \mathbf{B}, whichis prodred by thearbiting dedrons This is dso the samedreetion x that of the aditd anglar nonertul. Since μ_{s} and spinanglar nometums hes aposite dredion, I isasoqppostetos Herceinthenrerestdestate, jtakesthevduel-s

Calaldion of Levd sditingdetoSpinObbitirtradion

Theexpessionforspin-arditinterationeregy canbewitten玉[Rf: Unit 14]

$$
\begin{equation*}
\Delta E_{l, s}=\frac{e h^{2}}{16 \pi^{2} m^{2} c^{2}}[j(j+1)-l(l+1)-s(s+1)] \frac{\overline{1} \frac{1 V(r)}{d r}}{d r} \tag{1}
\end{equation*}
$$

Forl=0 thespinarditinteationenegy $\Delta E_{l, s}=0$. Fordhe valuesfl, $\Delta E_{l, s}$ asmesthovdues onepositiveandandhe neegive
Accordngto Hatreethery, in andldi tom, theqpicd dectroninashell nis considredtobenwinginapetetid fidd

$$
V(r)=-\frac{1}{4 \pi \epsilon_{0}} \frac{Z_{n} e}{r}
$$

where Z_{n} is isconsatandequdsto $Z(r) . Z(r)$ isgivenby

$$
\begin{aligned}
& Z(r) \rightarrow Z \text { as } r \rightarrow 0 \\
& Z(r) \rightarrow 1 \text { as } r \rightarrow \infty
\end{aligned}
$$

$Z_{n} e$ istheeffedivenuderdargeforshall n
Subsituting the expression for the paterid in the expession of spinarbit inteationenegy andafter sodving eq (i) canbewittenas

$$
\Delta E_{l, s}=\frac{Z e^{2} h^{2}}{4 \pi \varepsilon_{0}\left(16 \pi^{2} m^{2} c^{2}\right)}[j(j+1)-l(l+1)-s(s+1)] \frac{\overline{1}}{r^{3}}
$$

wheretheavergevdueof $\frac{1}{r^{3}}$ isgivena,

$$
\frac{\overline{1}}{r^{3}}=\frac{Z^{3}}{a_{0}^{3} n^{3} l^{3}\left(l+\frac{1}{2}\right)(l+1)}
$$

$a_{0}=4 \pi \varepsilon_{0} \frac{h^{2}}{4 \pi^{2} m e^{2}}$ is theradus of thesmallest Bdr ardit of theHydogen tomUsingthees, thefiral expresionfor theenegy redreesto

$$
\Delta E_{l, s}=\frac{R_{\infty} \alpha^{2} Z_{n}^{4} h c}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}[j(j+1)-l(l+1)-s(s+1)]
$$

where, $R_{\infty}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}$ isknownæRydbergcontat, and $\alpha=\frac{e^{2}}{2 \varepsilon_{0} h c}=\frac{1}{137}$ is knownæfinestucturecontatandisdmensioless
Thetermsiftdetospin-arditinterationis

$$
\begin{aligned}
& \Delta T_{l, s}=-\frac{\Delta E_{l, s}}{h c} \\
& =\frac{R_{\infty} \alpha^{2} Z_{n}^{4}}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}[j(j+1)-l(l+1)-s(s+1)]
\end{aligned}
$$

Now, frasingedetronsytem $S=\frac{1}{2}$

$$
j=l \pm \frac{1}{2}
$$

Subsituing these values of j in the expression for enegy, the tem shift carespondngto $j=l+\frac{1}{2}$ and $j=l-\frac{1}{2}$ canbegivena,

$$
\begin{aligned}
& \Delta T_{l, s}^{\prime}=\frac{R_{\infty} \alpha^{2} Z_{n}^{4}}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)} l \\
& \Delta T_{l, s}^{\prime \prime}=\frac{R_{\infty} \alpha^{2} Z_{n}^{4}}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}(l+1)
\end{aligned}
$$

Thus de to the sainardit interation each ledd gits sdit into two lexds corespondngtotwovdues of j . Thespardionbedweenthesetwoleds is

$$
\Delta T=\Delta T_{l, S}^{\prime \prime}-\Delta T_{l, S}^{\prime}
$$

Subsititingthevdues of R_{∞} and $\alpha=\frac{1}{137}$ wegt,

$$
\Delta T=5.84 \frac{(Z-\sigma)^{4}}{n^{3} l(l+1)} \mathrm{cm}^{-1}
$$

Thisformagivesthedade sspartion, whichisrenakddy goodinageemert with experimetd vaidion This shons thet (i) Theleed sditing for an akdi tominces with the incere in damic number (ii) For the sarel, thelend sqiting dereses with inceesing n and (iii) For the saren it dereeses with incersing

162IntesityRatiofor Daldes

Thelineinteritiesindabes speetrashowthet
(1) The strongest line in any dade arises fromtrasition in whichj and I dangeinorevay.
(2) Whenthreismorethenonesurnline, thelineindvingthelargerj vdueis strongest
Foreg inthe pinipleseries dade shown above, thelineaising from the trasition ${ }^{2} \mathrm{P}_{32}{ }^{-2} \mathrm{~S}_{12}$ is stronge then ${ }^{2} \mathrm{P}_{12}-\mathrm{S}_{12}$. The reem is that in the first trasition j danges by land danges by-1 whileinthe secand trasitionj dangesby0andl dangesby-1

Theirtensityrdioisthendfinedw,

$$
\frac{I_{b}}{I_{a}}=\frac{2\left(\frac{3}{2}\right)+1}{2\left(\frac{1}{2}\right)+1}=\frac{4}{2}=2: 1
$$

Thesarehdofforthementers of pincipa series
Letuconsidg andhereande Thedffiseseries companddable:

Thelines aandcstatfrom ${ }^{2} D_{32}$ whilethelinebstatsfrom ${ }^{2} D_{52^{2}}$. Therfare,

$$
\begin{equation*}
\frac{I_{b}}{I_{a}+I_{c}}=\frac{2\left(\frac{5}{2}\right)+1}{2\left(\frac{3}{2}\right)+1}=\frac{6}{4}=\frac{3}{2} \tag{i}
\end{equation*}
$$

Linecendson ${ }^{2} P_{12}$ whilelinesaandbendan ${ }^{2} P_{32}$. Thus

$$
\begin{equation*}
\frac{I_{c}}{I_{a}+I_{b}}=\frac{2\left(\frac{1}{2}\right)+1}{2\left(\frac{3}{2}\right)+1}=\frac{2}{4}=\frac{1}{2} \tag{ii}
\end{equation*}
$$

Sdving(i) and(ii) wegł,

$$
\begin{aligned}
& a: b: c=\frac{1}{9}: 1: \frac{5}{9} \\
& a: b: c=1: 9: 5
\end{aligned}
$$

If thelineaisnotred vedfromlineb,then weshall seetwolineshavingintensity rdio

$$
(1+9): 5=2: 1
$$

163IllutraiveExample

Examplel: Thefirst merter of the pinipessies of sodumes a wandengh of $5993 \mathrm{~A}^{0}$. First exited stateof sodumlies 3.18 eV abvethegand ste Find the length of the firt mernor of the shap series Given e-1 $0 \times 10^{19} \mathrm{C}$, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{1}$
Sd. Thefirst menter of theprinipal seies caresponds to thetranition 3035 Theenegy corespandngtothistrasition (wavdengh $-5993 \mathrm{~A}^{\circ}$) is

$$
\begin{aligned}
E_{1}(30-35) & =\mathrm{c} / \lambda \\
& =3.3 / 3 \times 10^{19} \\
& =211 \mathrm{eV}
\end{aligned}
$$

Theenegy corespondng to the first exited stete 4s of Sodumredive to the gandste3sis

$$
E_{2}(4-35)=318 \mathrm{eV}
$$

The first nember of shap saies corresponds to the trasition from4s 30 The enegy corespondngtothistrasitionis

$$
\begin{aligned}
E(4-30) & =E_{2}(4-35)-E_{1}(30-35) \\
& =318 \mathrm{e} V-211 \mathrm{eV} \\
& =107 \mathrm{eV}
\end{aligned}
$$

Corespondnguardenghis

$\lambda=1 \mathrm{CE}=1168 A^{\circ}$

164 Saf LemmingExais-I

Q1 White obwn the nomad eetronc cortigurdion of Heium and lithum tons Deaminethestdestowtichthesecorfigurdionsgiverise
Q2 Calalate the wavdengh of the line coresponding to 2025 trasition in LithiumThezoled lies 185eV higer thenthezslead.
Q3 Defineittensityraioof daddes

165 Vedor Modl forTuc-ValenceEledronAton

Alleline Eath tons like Beyllium Magnesum, Znc, Cadrium, Merary, CaddumanddhesingrapIIA andIIB of theperiod ctddecantantwovdence dectras andgiverisetoseries of singeandtripet speetrd lines Theardysisof these spedra by Russel and Sandes in 195 wes animpatat daddquert in thetheoreice undastanding of tomic speetroscopy. The a met topic deals with thedoserved speetrd fectures andfinilly the vedtor nodd descipion of theatom theterergedat of therestudes
In the vetor tammode the arbitd anglar nonetumof each detron is represeted by \mathbf{I}, and the sain angla monetum by \mathbf{s} Under varying irountances, the vedtor I ands contine to formresilat vectar interms of whichthedoservedpropeties canbeeydaned
In alkdineerth medds, the vetor tomnodd consists of vetors $I_{1}, d_{2}, S_{1}, s_{2}$ and their realtat J. Theformaion of J can be undastood in tems of L-S and j-j copling

L-SCapling

Thiscapingocarsintheligter atons Inthevetor mod of L-Scaping the anglar nometum vetor of indvidel eletrons I_{1}, I_{2} peess radidy. The corespondngquatumnumber L canthentikethevdues from $\|_{1}-l_{2}$ to $\|_{1}+l_{2}$. Thevariastemsaccordngthevdues of L=0,1, . . retermedæS,P,D,...
Similaly thespin angla mometuns $\mathbf{S}_{1}, \mathbf{S}_{2}$ contiones to formaresilartangla nornertumS it can tzke values between $\mid s_{-} s_{2}$ to $\mid S_{1}+s_{2}$. Sinces s_{1}, s_{2} can have
valus $1 / 2$ S 0 , 1 Themeltipidity 25 Hinesvdues 1 and3. Thusthetwo valence deetransystemleastosinge andtripestaes
As a reslt of spinarbit interation, L and Scaples witheach cher to formthe tod anglar nometumnetarl. Thevdueof I isgivenby, J=L+S Thequatum numberJ thustaesvaluesfram|L-S|to|L+S|.
Thisshons thet the spin ardit interationbreaksechled whichischaraterized by an L value in a nunber of fine studure daradeized by a J-value The collectionof finestudurelendsisknownaa'moltiplet.

Eg Cddiumatom(Ca)
Thegandstdecorfigurdion of Cais $1 s^{2} z^{2} 2 \alpha^{6} 35^{2} 3 \beta^{6} 45^{2}$
Forthethoqdically adivededranswehave, $\mathrm{l}_{1}=0, \mathrm{l}_{2}=0$ and $\mathrm{s}_{1}-72, \mathrm{~s}_{2}-7 / 2$
Thus. L=O(Stern)
$\mathrm{S}=0,1$
$J=1$
Thetemsare ${ }^{1} S_{0}$ and $^{3} S_{1}$. Sincethetwovdencedeetronsin $4 s^{2}$ aeeqivdet, the
term ${ }^{3} \mathrm{~S}_{1}$ is exduded by Pali's prinipe Hencethenormal tomgives riseto a sing \ddagger Sterssi.e ${ }^{1} S_{0}$ aly.

j-j Capling

Inligt tans, theinterations bedwenthearditd anguar momertaof indvid. dedrans is stranger then the spinardit capling between the sain and arditd anglar numeta These cees ae described by "L-S capling'. Hovever, for heavie demerts withlage nuder chage, thespin-abit inteations becomeas strangatheirterations betweenindvidd spinsarabitd anglar mometa In those cases the sain and abitd angla momerta of indvidel dectrons terd to copletoformindvide dedronangla momera
Inj-j copding theabitd angla nomertuml, and sains of exheledronare first copled toformatod agular monetumj, for thet dedron Thesesinge dedrontod angla nomertarethencontinedinto atdd angla monetum J, for thegap of eletrons. This is in cortrat to LS capling wheethetdd arbitd anglarmonertumL andtad spinS, of thesytemarecdalłedfirstand thencontinedtothetded angiar monertum, of thenhdesstem

16f IntaradionEnargyinLSandJJ Capdinc

Detothespinardititeration thetomictermconsists of dffereteregies

Each of themis sigtly dfferet and coresponds to dfferetJ values Thus the meltipdesplitinginreemes rapidy withinreeseinatomicnumbrZ Aswedreadyknow, theinterationeregy for asingededrontamisgivenby,

$$
\begin{aligned}
-\Delta T_{l, s} & =\frac{R_{\infty} \alpha^{2} Z^{4}}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}[j(j+1)-l(l+1)-s(s+1)] \\
& =a \frac{j^{* 2}-l^{* 2}-s^{* 2}}{2}
\end{aligned}
$$

Wher $a=\frac{R_{\infty} \alpha^{2} Z^{4}}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}, j^{* 2}=j(j+1), l^{* 2}=l(l+1)$,

$$
s^{* 2}=s(s+1)
$$

Incereof two qdicd detrons, therearefor angiar nometum i.e $I_{1}^{*}, I_{2}^{*}, s_{1}^{*}$, \mathbf{s}_{2}^{*}. Theposideinterationsae,
(1) I_{1}^{*} withl ${ }_{2}^{*}$
(2) \mathbf{s}_{1}^{*} with s_{2}^{*}
(3) \mathbf{I}_{1}^{*} with \mathbf{s}^{*}
(4) \mathbf{l}_{2}^{*} withs s_{2}^{*}
(5) I_{1}^{*} with s_{2}^{*}
(6) \mathbf{l}_{2}^{*} withs. ${ }_{1}^{*}$

Theinterations (1) and (2) doninstever (3) and(4). Interations (5) and (6) are nedigide
Usingeqdion(1), theenegies corespondngtointerations (1), (2), (3), and(4) canbewittencs

$$
\begin{aligned}
& \Delta T_{1}=a_{1} l_{1}^{*} l_{2}^{*} \cos \left(l_{1}^{*}, l_{2}^{*}\right) \\
& \Delta T_{2}=a_{2} s_{1}^{*} s_{2}^{*} \cos \left(s_{1}^{*}, s_{2}^{*}\right) \\
& \Delta T_{3}=a_{3} l_{1}^{*} s_{1}^{*} \cos \left(l_{1}^{*}, s_{1}^{*}\right) \\
& \Delta T_{4}=a_{4} l_{2}^{*} s_{2}^{*} \cos \left(l_{2}^{*}, s_{2}^{*}\right)
\end{aligned}
$$

InLScapding I_{1}^{*} adl ${ }_{2}^{*}$ preess radidy aoundther realtatL*. Using Coine lav, necanwite

$$
\begin{aligned}
& L_{*}^{2}=l_{1}^{* 2}+l_{2}^{* 2}+2 l_{1}^{*} l_{2}^{*} \cos \left(l_{1}^{*}, l_{2}^{*}\right) \\
& \Delta T_{1}=\frac{1}{2} a_{1}\left(L_{*}^{2}-l_{1}^{* 2}-l_{2}^{* 2}\right)
\end{aligned}
$$

Similalys ${ }_{1}^{*}$ ands ${ }_{2}^{*}$ preessrapidyacoundtheir resltatS*.

$$
S_{*}^{2}=s_{1}^{* 2}+s_{2}^{* 2}+2 s_{1}^{*} s_{2}^{*} \cos \left(s_{1}^{*}, s_{2}^{*}\right)
$$

Thisgives,

$$
\Delta T_{2}=\frac{1}{2} a_{1}\left(S_{*}^{2}-s_{1}^{* 2}-s_{2}^{* 2}\right)
$$

To calaltetheinterationenagy betweenlı I_{1}^{*} ands s_{1}^{*} and between I_{2}^{*} and \mathbf{s}_{2}^{*} the averagevdues of cosinemstbecdalaed Theaveragevduesaregivenby,

$$
\begin{aligned}
& \overline{\cos \left(l_{1}^{*}, s_{1}^{*}\right)}=\cos \left(l_{1}^{*}, L^{*}\right) \cos \left(L^{*}, S^{*}\right) \cos \left(S^{*}, s_{1}^{*}\right) \\
& \overline{\cos \left(l_{2}^{*}, s_{2}^{*}\right)}=\cos \left(l_{2}^{*}, L^{*}\right) \cos \left(L^{*}, S^{*}\right) \cos \left(S^{*}, s_{2}^{*}\right)
\end{aligned}
$$

Subsituting theaveragevdues of thecosines ineqution(ii), negt

$$
\begin{aligned}
\Delta T_{3}+\Delta T_{4} & =\left[a_{3} l_{1}^{*} s_{1}^{*} \cos \left(l_{1}^{*}, L^{*}\right) \cos \left(S^{*}, s_{1}^{*}\right)\right. \\
& \left.+a_{4} l_{2}^{*} s_{2}^{*} \cos \left(l_{2}^{*}, L^{*}\right) \cos \left(S^{*}, s_{2}^{*}\right)\right] \cos \left(L^{*}, S^{*}\right)
\end{aligned}
$$

Usingcosinelawandattersimplifiction, wegt

$$
\begin{aligned}
& =\left[a_{3} \frac{l_{1}^{* 2}+L^{* 2}-l_{2}^{* 2}}{2 L^{* 2}} \frac{S^{* 2}+s_{1}^{* 2}-s_{2}^{* 2}}{2 S^{* 2}}\right. \\
& \left.+a_{4} \frac{l_{2}^{* 2}+L^{* 2}-l_{1}^{* 2}}{2 L^{* 2}} \frac{S^{* 2}+s_{2}^{* 2}-s_{1}^{* 2}}{2 S^{* 2}}\right] \frac{J^{* 2}-L^{* 2}-S^{* 2}}{2}
\end{aligned}
$$

Thisfterfuthersimpifictioncanbewittenw,

$$
\Delta T_{3}+\Delta T_{4}=\frac{1}{2} A\left(J^{* 2}-L^{* 2}-S^{* 2}\right)
$$

where $A=a_{3} \alpha_{3}+a_{4} \alpha_{4}$

$$
\text { and } \alpha_{3}=\frac{l_{1}^{* 2}+L^{* 2}-l_{2}^{* 2}}{2 L^{* 2}} \frac{S^{* 2}+s_{1}^{* 2}-s_{2}^{* 2}}{2 S^{* 2}}
$$

$$
\alpha_{4}=\frac{l_{2}^{* 2}+L^{* 2}-l_{1}^{* 2}}{2 L^{* 2}} \frac{S^{* 2}+s_{2}^{* 2}-s_{1}^{* 2}}{2 S^{* 2}}
$$

Wecannowwiteatyfinestudtretermbytheforma,

$$
T=T_{0}-\Delta T_{1}-\Delta T_{2}-\Delta T_{3}-\Delta T_{4}
$$

where T_{0} is ahypotheice termwidnaccantsfor thecenter of gavity of etire detroncorfigrtion

167 IllutraiveExample

Example2 Coridr acabonacom whosedectronsaeintrecarigration (15) $(3)^{2} 2 \mathrm{P} 30 \mathrm{Lit}$ all eppeted tems on the bris of the LS (Russel-Sands) caplingschente
Sd. (1s) $)^{2}$ capdes to LE , $\mathrm{Se}=$ (Pali Exdsion Pirinde) $(2)^{2}$ copdes to $\mathrm{L}=\mathrm{S}=\mathrm{S}$ (Pali Exduion Pinide) The2pard 3 odetercriblath We therfare can farm the fallowing tems ${ }^{4} D_{2}{ }^{3} \mathrm{D}_{23},{ }^{12} P_{1}, 3 P_{012}{ }^{12} S_{0}{ }^{3} \mathrm{~S}_{1}$
Exempe3Scardumhesagandstecorigurdion $1 s^{2} 2^{2} 24^{6} 33^{2} 33^{6} 4^{2} 301$

 ad30454pecrifigrdiors
Witedoneerhteminstadadnddion
So. LScaping L $=\mathrm{S} \mathrm{S}=1 / 2$
Posildeterms ${ }^{2} D_{52}{ }^{2} \mathrm{O}_{32}$

168 Seff LemingExacis-II

Q1 Theatomicnunber of Cabonis6
(i) Staeits dedraric carfigrdion
(ii) Cdalłtthespedroscopictemsforthiscorfigurdion
(iii) If one of the $2 p$ deetrons gets exited to the M-shell, wht other spetroscopicterms will beposide?
Q2 Wite down the detroric corfigurdion of N^{+}and dedre the speetrd tans
Q3 Odtanthetemsfor thegoundsteteof neatrd axygenatom

16C Summay

 ndddy hydogen and hdium The componets of any ane such grap are daradeized by idaticd values of thepinupal quatumnunber n butdfferet values of the arimotha quatumunber I and the anglar nometimquatum runtrerj.
In tons having severd electrans, this fine sturture becomes the miliple sturture resling framspinarbit couping. This gives spitting of thetems and thespeetrd linesthatare"fine" for theligtesterertsbuthtareverylage, of thearder of andetrondt, for theheaydererts
Careul examindianof thespeetraof alkdi nedds showthteernmenter of sore of theseries is dosedduldes For example, sodumydlowline, carespandingto 3p-3strasition, isadosedudetwithsepardianof 6AWhilepdassium(K) hesa dublesepardion of $3 A^{\circ}$ andson Futhe inesiggions showthat aly theStems aresinge, whiledl thedher tems P, D, F ec aredudes Sudndude sturture in enegy is doserved for al the dons possessing a singe valence dedrani.e, intheater mostshell. Usullythedade sparingissiall compared tothetermdfference(for NathemainD lineis cesterel at5893A; $\mathrm{D}_{2}=5890 \mathrm{~A}^{0}$ $\operatorname{andD}_{1}=58964^{9}$) andhenceitiscdledfinesturture

161C Gosary

Grandsta Irested lowetintandeuda regy.
Linewidth Thewidh of aspedtrd line
Qattum Nember : Accordng to qertum neeraics the dstribtion of
 tam
n- Pincipal QuartumNunber (shell number): The average dstance of the dedronfromthenudesinapatialar arditd; canhaveintegrd velues of 1,2,3, andsofath

- Anglar ManertumQuartumNunbar: (slashdl of aneshal); Its vdue refletsthearditd shepe it coreldeswithn (lmp1); whichrevedsOfor thes, 1 forp, 2ford, 3forf.

1611 ArbverstoSaf LemingExacise

ArevestoSif LemingExacisel

Ansl: ${ }^{4} \mathrm{He} 1 \mathrm{~s}^{2}, \mathrm{~S}_{0}$
姜: $\mathrm{s}^{2}, \mathrm{z}^{2} \mathrm{~S}^{2} \mathrm{~S}_{12}$
Ans2 $619 A^{\circ}$
Anc3 Serection162
Ampestosif LemmingExacisell

AnE3 ${ }^{1} S_{0}^{2} D_{2}{ }^{3} P_{0}^{3} P_{1} P_{1} P_{2}$

162Exeris

Q1 Whetistresginccceaquatumier)?
Q2 What isequd to?
Q3 Whetaetreposidevausoff?
Q4 DisingishbedventS(RS) adij capling

16IE AraverstoExercis

Arsi In ligter deterts sinnabit couding is small, while in herier denerts itis lage or aprecidde Herce trenevquatumunterJ becones impatat This quatumnumber gives the tedd anyla nonetim
An $2 \mathrm{j} \neq+\mathrm{s}$

Ars4 Russel-Sandessisknown RScapling Accardngtottisschene, detroric realsians ae stronge then sid -abtit capling in ligter denets spin-aritcouding issmal and herce RScapdingis vaid

Speeifically, itisvdidforfirstransitionsseies(3dederets). But in the cæe of heavie denets, spin-arbit capling is mare poneful than electron repulions Hence jj capding is nore importat then RS capling In RS capling carfigrdion is spit into tems by detron repulsion and these ae futher spit into staes by spin-ardit capling But jj capling is eadty the revese of RS capding Thus injij capding corfigrtionissdit into levdsbyspin -ardit capling and not tems These leves are spit futher by dectron realsions

ReferencesandSuggeted Resding:

1 A. Beisgr, Concept of Modem Physics (1987), McGrav Hill Co. Ltod New Daki
2 J. B. Rajam,Atomic Physics(2007), SChand\&Co, NewDdhi
3 J.H. FenkesandJ. YanoodAtomic Physics Vd II (1991) Offord University Press
4 B.H. Brasdan and CJ. Joackin Physics of Atons and Mdeales $2^{\text {d }}$ Ed (2009), PeasonEduction, NewDdh.
5. CN Bannell, and E. Mceah, Fundanertals of Mdeedar\&Speetroscopy.
McGravHHill Edrction(Inda) PutLinited, 1994

6 Atom,Læer AndSpeetroscapyByS. N. Thakur, D. K. Ra

UNT-J]
 Zegran EffextandPaschan-BadkEffed

Sructureof theUnit

17.0 Ojedives

17.1 Introdution
17.2 Experimetd Set-upforstudyingZeemmeffect
17.3 Exdantionof norval ZermanEfect
17.4 ZemmenffectinHydogen
17.5 IllugrdiveExamples
17.6 Sedf-LeamingExecisel
17.7 Exdandiono AncmalasZemmEffect
17.8 SodumZemmeffeet
17.9 Pasher-BakEffed
17.10 TrasitionfromWeaktoStrangFidd
17.11 ZeemenEffectinSomeTrasitions(eramdes)
17.12 IllubrdiveExamples
17.13 Seff-LearingExerisell
17.14 Summay
17.15 Gossary
17.16 ArbnastoSdf-LeamingExerises
17.17 Exerise
17.18 ArsnestoExerise

Refernces adSUygetedReedngs

7,00biedive

Todescribeandomwehareto giveauniqest of dscreteenegy tdes When thet tam gas exdted through heding ar sare dher wey, the tom nakes trasitions beveen these quatized enegy stdes When atom (deetron) cares bak to goundsteit enits aphoton(ligtt). If werecordtheenilted phtonona screen wege aspednmwichshonsthequatizedntureof enegylends When weapdy magnicfiddtoit, theseeregyleds can sift fromaigina
ste ThiseffectisknownæZefnme Effect
Dtch physidist Pieer Zeenm studed this effet for spiting of spedrd lines into severd commenets inthepreace of astdic magndic fied In 1896, Zeenm doserved thet when a sodumsarce wes paced in an eternd magneic fied, the yellow D lines were spit into severd componets Farday had peformedthesameepreinertsomethity yeasealia, bithedfailedto doserve an effet beeaseof lowredution of his speetrogad Spiting of speetral lines wes predided by Faraby on the beris of dasicd theory by Laretz and first
 andheshared1902Ndbd PizeinPhysicswithHendikLaretz

7.1Introdidior

When welock taligt sarcewith linespedum, which is paced inan eternd magnic fied, the speetrd lines enitted by the atons of thesarcewill sdit into a number of podaized componets If wept themagnic fidd thenthe sditing will be propational to the strengh of apdied magetic fied Due to Zeern Effect sore degenate enegy leds will spit into seard nor degenerteengy leds with dfferet energes and detothis effet wegł few revtrasitionswich canbeseenanewspedrd lines inthetomic speetrm

We look t the singe speetrd line rigt anges to the magndic fidd drectionthanitwill spitintothreplanepdaizedcomponets un-sifitedceatrd linein which dectric vedor is vibrding pardle to themagneic fidd (called π componet) andtwo the lines eqully dsdacedanbothsides with dedric vetor vibrting perpandala to themagnic fied (celled σ commenets). This effet in knouna'rormy' ZeftanEffectanditiscalleda'normal tipł!.

If wemurethefinestucturecomponets of amoltipdespedra line we ge cander Zeermn pattem For examde de to Zemme ffet D_{1} and D_{2} componets of sodumydlowdadetspitinfar andsx lines respetively. This ffeet is known a 'axomalas' Zemmen efeet Zeenan spiting is smaler in compaisontofinestucturesditing

172Exparinetal Sel-upforstudyingZeenanEffed

To nake expeinertd sctup for stubling Zemm Effet, we need rig resd ving poner and lageligt-gthering poner. Schendic dayamof constatdevidionpismspeetroneter arangenetisgiveninfigre2

Collimator

Fig 2Sdnanaic dagam of constant-daidion prism spatronter
 arangrest
Here(infigre2), T is a neen dschagetube (line sarce) paced between the ples of andectronanat (If we wart tolock tandher speetrumlikecachium lamp, sodumec, then wehave to ure coresponding lamp)C is positive lens whichisdsoknownescondarer lens Lersshaddbeadustedinthepositionthat theligt coning fromthecapillay pat of thetubecanbefoused anthesitof the collin\#tor of the speetroneter. A high resd ving qdicd daice shald be kept between the collintar and constat davidion pism In dowe sthp, we kett a Lumme-Gdrakepte(L-Gpatexahigh resdingqdicd davice A tdescope isfitted with a mironeter eqpieceto meetheligt energingfromthepism Itereges atherigtangestoitsinitid dredion
Forthedbovesthp, wehavetofdlowtherestess
 lensC, L-Gpłeandmicrmeer eypiee Inthisstecdlinłor sit will be fairly wice qpered Intelecope, we can see inæes of plepiees and the neentube Thepdepieæead theneentubearesoad uted thet theinægeof
the polepieer appeas certral in the fied of vien, and the neen tube is symmericd beveenthepolepiees
(ii) PutheforsinglersC inbeweenthededronronetandsitof thecdlinatar, surhthat it's apeture is fully illuminted Theinage of the apetureshald fill thefidd of vien. Themiromeer eqeieestald beket in position and foased anthe coosswire Now, an looking thraighit, a brigt speetumof neenligtissen

Fig E. Viev at eqpiere(i)Bfare swithing on detranagt(ii) Aftr svitichingondedraragit.
(iii) MarttheL-Gpateonitsstandwhichisketinpositiononthespeetrogach Look thragh the eypieer, erch speetrd lineshons a few ardas We can adut the pate in varias dredions uing screns. To git brigt and shap fringesytem weharetofarly rodethesrens
(iv) Recogizethesinge yelowline ($\lambda=5852 \AA$) of the speetrumand se the crosswire on afensuccessiveardas (fringes). Wehaveto tokemironted reedng
(v) Now, switch on the dectronaget and adust the arret anthescelewhere we can git themagnic fidd dat 4000 Gass Each crder will spit into theecomponets one, whichisnotdsdacedfromtheaigind lineand ther tho will be symmetrically dsdaced By patting the arosswire on each (dspaced and not dspaced line) we can the these reedng throigh nicromete.
(i) Chengethevalue of arest toget thespeetrumananthe magetic fied and
repert theprocess Foreandermegdicfiddis 700Gassand10k Gass Now, weheweto pefornthesameproessforsinge tredline ($\lambda=0266 \AA$) of theneenspeetrm

173Explanelionof Namal ZearanEfied

All lines detotranition beweenthesing $\pm(S=0)$ stes of andomor thenomal Zeerne Effect canbeeydainedfromthedzsicd dedrantheary. It canbedsoeydainedfromthequatumtheary withtheignaraceof dedronspin

In quatumthery, an tom with detrons mare then ane possesses an arditd anglarmometum withanabitd mandicnomett $\vec{\mu}_{L}$. A raioknown
 anglar nomethor apatide) canbegivenby

$$
\left|\frac{\overrightarrow{u_{L}}}{\vec{L}}\right|=\frac{e}{2 m}
$$

Hereeis the charge of an dedron $\left(1.6 \times 10^{-19} \mathrm{C}\right)$ and mis the rimss of ddron Magnic momatandanyla monetumof andectronheveqpositeindretion becasetheddronisa negaiv ${ }^{\text {dy }}$ draged patide

When wept an atomin aneternd magetic fidd \vec{B} (say dangZ-axis), thentheargiar nomentumof vetor \vec{L} will precessaoundthefiedddretionwith quatizedcomponets Thesecomponetscanbegivenby

$$
L_{z}=\frac{h}{2 \pi}=\hbar
$$

Fig4 Diretiarsof ${\overrightarrow{\bar{H}_{l}}}$ and \vec{t}_{t}, whentomisketinnzegdicfidd \vec{B}. wheretheM ismagnicarbitd quetumnumberwichconhewevdues $M=L, L-1, \ldots,-L$,

So, todd number of vaus of M is $(2+1)$. Thispreeessionisknowna'Lamar
 leudsanderchdarateizedbyaM vdue AccordngtoLamu'stherem, theanglar volocity of preessionisgivenby

$$
\omega=\left|\frac{\overrightarrow{\mu_{L}}}{\vec{L}}\right| B=\frac{e}{2 m} B .
$$

Interationenegy of such reeession canbecalaladbymltiplyingtheangia velocity andtheproedion of anglar monetum dangmandicfidd Inthis ceseitisz-componet of \vec{L} becasenægnticfiddisdangzaxis Sa, interation enegy is $\quad \Delta E=\omega L_{z}=\frac{e}{2 m} B M_{L} \frac{h}{2 \pi}$

$$
\Rightarrow \Delta \mathrm{E}=\frac{\mathrm{eh}}{4 \pi \mathrm{~m}} B M_{L}
$$

Interationenergy wafundionof wavenumberis

$$
-\Delta T=\frac{\Delta E}{h c}=\frac{e B}{4 \pi m M} M_{L}
$$

Since nagetic fidd Bis informor sarefor all levesfor agivenatom so, we convite

$$
-\Delta T=\frac{\Delta E}{h c}=\frac{e B}{4 \pi m \cdot} M_{L}
$$

WhereL' iscalled'Lơetzurit. So, foreachled M_{L}, dangeinenegy fromits aigind ledd is Δ T and it is propaiond to themagnic fiddB. HereL' is the haven unter sppadion beveen any tho coneentive Zerman leuds for any valuef L

Fig5 Trasition ${ }^{1} D_{2}-{ }^{-1} P_{1}(L=2$ tol $=1$ transitian $)$

Now, consider transition ${ }^{1} D_{2}-{ }^{1} P_{1}$. $\quad{ }^{1} D_{2}$ caresponds $L=2$ and $S=0,{ }^{1} P_{1}$ corespondto $\mathrm{L}=1 \mathrm{adS}=0$ states So , insimde wards we can say trasition fromL $=2$ to $\mathrm{L}=1$ trasitions In pesenceof weak nagndicfidd thesewill spit into $(2 L+1)$ levds So, reppedively it will spitinto 5 and 3equidstatenegy levds CorespondingM veluesae2, 1, 0,-1,-2, for $=2$ ard1, $0,-1$ for $L=1$

Thereareolly fenqdicd trasitions are poside Thesetrasitionnles aeknown ssdetionnles Thesenles for magnicquatumnumer (M) can bedrivedbyquatummeekrics Forthisprocesssdectionnuesare

$$
\Delta M_{L}= \begin{cases} \pm 1, & \text { for } \sigma-\text { component } \\ 0, & \text { for } \pi-\text { component }\end{cases}
$$

Fromthisnle, wege rinetrasitionshtZeenan spitingissamefor transitions corespondng to ΔM corespond in wave number. So, in this cæe wegt aly threecomponet linewtichisanomal triplepattem Fromsdetionnies, wegt onecomponet in the position of thefidd line, known $\pi \pi$-componet and two symmerically dsdaxed σ-componets Sepration betveen conseative Zeemen leuds is equal to the vavenumber separdion between corseative componets Wavenumberspardionisgivenby
$\Delta v=L^{\prime}=\frac{e B}{4 \pi m c}$
Puttinge $=16 \times 10^{90} \mathrm{C}, \mathrm{m}=9.1 \times 10^{31} \mathrm{kgandc}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$,
heġt $\Delta v=467 \mathrm{~B} / \mathrm{m}$
whereBisinTesa(NA-m).
Other then spection ries, quatum mederics give us the informion of polaizdionnes dso. Trasition $\Delta M=0$ reslts in speetrd lineplaized with the deetric vedor pardle to magnic fied (π-componet). While trasition $\Delta \mathrm{M}=+1$ gives linesplaizedwithdectric vetor perpendalatonageticfidd (σ-componet).

Bdtho-componets tog the harethesare intensity ather-componet twe Thisinterity rdio of thecamponets canbedaivedfromthecarespondarce pincide Thus, thenomd ZemmenEfectisfuly exdained

D.4 ZeananEffectinHyoroger

Whenaneternd magnic fidd is apdied shapspeetrd lines likethen $3 \rightarrow 2$ traitionof hydogensplitintomiltipedosdy spacedlines Thisspitingcomes
fromthe irteration between the magneic fidd and arditd anglar nometum wsoided withnagndic dpdemenet Indbsaceof thenagntic fied enegy leads in hydogen atom depend aly yon prinide qatimnunber n So, enittedigtwill bewith samewardengh

Fig6 ZesnansplitinginHychocen
Herestectionnules aesarea in previassetion Alloned values of dangein mageicquatumnhers $\Delta \mathrm{M}$ ae\# $\#$ and

75IIlustraliveExample

Exampl: Cdalathenunher of enegy levds coresponding to enegy led $\mathrm{n}=3 \times \mathrm{E}_{3}=-\mathrm{Ed}$. .
Sd. For hydogen tom, enegy eigendues dapand anly on piniplequatum nunber n For any value of pinide quatumnunber there arel nunber of arditd anglar mometum ($L=0,1,2, \ldots n-1$). For every vdueof L, thereare Z +1 dfferetmagnicquatumstes So

For $n=3$ Thre are 3 values of $L=0,1,2$ and there corresponding magneicquatumnimesare $\{0\},\{-1,0, \#\},\{-2,-1,0,1,2\}$ respetively.

So, there ae $1+3+5=9$ degenerte staes In dbsence of eternd magneicfidd al stes aresaneenegylatdfferetquatumunbes

Example 2 Cadale the value of the Bdr nageon for enegy dfference between $m=0$ and +1 corponets of $2 P$ staeof taric Hydogendaced in $2 T$ magnicfidd
Sd. Bdrragkeonis $\mu_{B}=\frac{e \hbar}{2 m}$

$$
=\frac{\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(1.05 \times 10^{-34} \mathrm{~J}-s\right)}{2\left(9.11 \times 10^{-31} \mathrm{Kg}\right)}=9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}
$$

Sothegditingeregy $\Delta E=\mu_{B} B \Delta M_{L}=1.16 \times 10^{-0.4 . e V}$

7.6Sdi-LemingExeras-I

Q1 Gvedetroricstuxtreof neen (Usestadadnddions).
Q2 A hydogen atomis paxed in a 21 magneic fidd Considering nomal Zeernenfeetforspitingof $n=2 a n d n=3$ ledds
(a)Wht is the sepprdion in enegy between adacert ML leids for the sameL?
(b) Hownmydfferetwandenghswill bethrefor 3Dto2Ptransitions, if allonedvdues of dangeinM arealy $0, \pm$?
Q3 Antamenitsaphtonwith wadengh600mwithtrasitionfromL $=1$ stae to $L=0$ stae Deamine the shifts in the ergy leads and in the weverngth realting fromtheirteation of themagntic fied 2T and the tantrardid magnicmomet

1.7Explanelianof AnorilasZeenznEfied

When we look at the speetral lines, fromthe trasition between componats of moltiple levds (doody spaced spedrd lines), wegł complex Zeerm patem
 "spin".
Ancrialas Zeemen Effect wes dscevered by Thomas Prestonin DUdinin 1897. It can be doserved in tans with nanzeo sain or dans with odd number of dedrons
It is heppering beease of L-S capding which is dso krown as sain-orbit inteation Capling of spin and angla monetumgives us tod angla nonetum Accordingto vedor nodd of tomaditd a anlar memetumvedor and spin angla nomettum peesses nore radidy dat tod anguar monetumj. If weapdy magnic fied B thenj preesses dbat mandic fied vetor t the Lamorfrequacy.
When an tomis plxed in a werk magdic fidd, wich does not decoule \vec{L} ands, alongtheZ-axis, themandic numetof theatomasocized withthetdd
anglarmonetumcases thevedorj to preessssonly aoundthemagndic fidd Thenotion is quatized surh that theproetion of \vec{j} dang thefied dreetion J_{z} tokesdscreevaluesgivenby $M\left(\begin{array}{l}(1 \pi)\end{array}\right)$, where

$$
M=J, J-1, J-2, .,-J .
$$

 eadlyatipardld to;
Tdd values of M will be2J +1 Deto preession of \vec{J} aound \vec{B} wegła swall dange in enegy of tomand its dsorte criettions lreak erch (fine stucture) J-ledd into (2J +1) Zeermenlevds ThespprdionbedweentheZermen levdsdapendsonthestrengh of thenagntic of theatom
 simpert cæe of a singe valencedectron tam Since tamhes sing evdence detron, so thet valencededron is doneresponsidefor the angla nomertum and themandic mert of the tom desically thegromancic raio is $\frac{e}{2 m}$. Sincethis is therdio of orbitd magnic momet $\left|\overrightarrow{\mu_{L}}\right|$ and anglar nomertum .

Similaly, forstudyinganonalasZeermeffet, werequrerdio of spinnmegdic monert $\left|\overrightarrow{\mu_{s}}\right|$ and spin angla manetum $\vec{s} \mid$. This raio is carrimed with quatumeeharicsatwiceof that of \vec{L}. Beeaseof thisinequlity of theserdios,

Since tod angur monertum is inveriat, $\vec{L}, \vec{s}, \overrightarrow{\mu_{L}}, \overrightarrow{\mu_{s}}$ and $\vec{\mu}$ precess aound \vec{j}. Inthis preession componet of magetic nomert vetor perpendalar tod angla rometum will have cortinul dange in dreetion which gives averge to zeo. Oly pardle componet remins a contat of magituden ${ }_{1}$. Mageic nomett domisdsodetopadle componet. Thus

$$
\begin{aligned}
\mu_{J} & =\text { component of } \overrightarrow{\mu_{L}} \text { along } \overrightarrow{\mathrm{J}}+\text { component of } \overrightarrow{\mu_{S}} \text { along } \vec{J} \\
& =\left|\overrightarrow{\mu_{L}}\right| \cos (\vec{L}, \vec{J})+\left|\overrightarrow{\mu_{S}}\right| \cos (\vec{S}, \vec{J}) \\
& =\frac{e}{2 m}|\vec{L}| \cos (\vec{L}, \vec{J})+\frac{2 e}{2 m}|\vec{S}| \cos (\vec{S}, \vec{J})
\end{aligned}
$$

BUt $|\vec{L}|=\sqrt{L(L+1)} \frac{h}{2 \pi}$
and $|\vec{S}|=\sqrt{S(S+1)} \frac{h}{2 \pi}$
So,

$$
\mu_{J}=\frac{e}{2 m}[\sqrt{L(L+1)} \cos (\vec{L}, \vec{J})+\sqrt{S(S+1)} \cos (\vec{S}, \vec{J})] \frac{h}{2 \pi}
$$

Vetas \vec{L}, \vec{s} and \vec{j} nakeandtureanged triange, so using triange property, we havebycoinelaw

$$
\cos (\vec{L}, \vec{J})=\frac{J(J+1)+L(L+1)-S(S+1)}{2 \sqrt{J(J+1)} \sqrt{L(L+1)}}
$$

and

$$
\cos (\vec{S}, \vec{J})=\frac{J(J+1)+S(S+1)-L(L+1)}{2 \sqrt{J(J+1)} \sqrt{S(S+1)}}
$$

So,

$$
\begin{aligned}
\mu_{J}= & \frac{e}{2 m}\left[\frac{J(J+1)+L(L+1)-S(S+1)}{2 \sqrt{J(J+1)}}+\frac{J(J+1)+S(S+1)-L(L+1)}{2 \sqrt{J(J+1)}}\right] \hbar \\
= & \frac{e}{2 m}\left[\frac{J(J+1)+L(L+1)-S(S+1)}{2 J(J+1)}\right. \\
& \left.\quad+\frac{J(J+1)+S(S+1)-L(L+1)}{J(J+1)}\right] \sqrt{J(J+1)} \hbar
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e}{2 m}\left[1+\frac{J(J+1)+L(L+1)-S(S+1)}{2 J(J+1)}\right. \\
& \left.+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}\right] \sqrt{J(J+1)} \hbar
\end{aligned}
$$

Thequarity insidethebrakes wesfirst described by Alfred Landein 1921 It is revedater himandknowna'Landegfata', thet is

$$
g=\frac{e}{2 m}\left[1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}\right] \sqrt{J(J+1)} \frac{h}{2 \pi}
$$

Redivespprdionof Zemmnledsfordffererterms canbedreetly exdaned with gfator. The epression for gfator for a molti-dedron tamundr L-S capdingissareaeydanedinpreviassetions
The expession for the todd magnic momet of the tom now becones

$$
\mu_{J}=g \frac{e}{2 m} \sqrt{J(J+1)} \frac{h}{2 \pi}=g \frac{e}{2 m}|\vec{J}| .
$$

Let us now calalte the magnic interation enegy. From the previas expession, wegł

$$
\frac{\mu_{J}}{|\vec{j}|}=g \frac{e}{2 m} .
$$

So, raio of todd magnic numettothetdd anglar nomertuminsters canbe deemined by g, wheretheanglar mometumis patly arditd and patly spins (for $S=0$ andsoJ $=L, g=1$ for $L=0$ andsoJ $=S, g=2$).

From Lamor's theoren, angla velocity (or angla frequany) of preessionof \bar{J} aoundthemagnic fidd \vec{B} is

$$
\omega=\frac{\mu_{J}}{\vec{J}} B=g \frac{e}{2 m} B .
$$

Theenegy of preessionisequl toprodit of theprojedionof \vec{j} dang \vec{B} and the anglar vdocity. In ar cæe magedic fidd is dangZ-axis, so proetionof tod anglar nometumang magnic fild is the z-componet of todd anglar nonetumThtis:

$$
J_{Z}=M_{J} \frac{h}{2 \pi} .
$$

Thus $\Delta E=\omega J_{Z}=g \frac{e}{2 m} B M_{J} \frac{h}{2 \pi}$

$$
\Rightarrow \Delta E=g M_{J} \frac{e h}{2 \pi m} B .
$$

Inteadioneregy, interms of wavenumber is

$$
-\Delta T=\frac{\Delta E}{h c}=g M_{J} \frac{e B}{4 \pi m c} .
$$

Here $\frac{\mathrm{eB}}{4 \pi \mathrm{mc}}$ istheLaretzuritL'. Thus

$$
-\Delta T=g M, L^{\prime} .
$$

This istheexpessiontheZeenansift of asingevalaneedetronsytem Thisis dso for the weak-fidd magneic interationeregy. Theepressionfor the tons haingthoor morevedencededransunder L-Scaplingissareæanedetron system For conededronsytem, wecansetht erch J-leid sdits into (2J +1) equd eregy spaced Zeerian leids corespondng to the posside values of M. TheZeerminsditingdapenosonthevdueof gfordfferet leds sor wecansay it is dfferet for dfferetJ-leds. This mens that theredive seqpadions of the Zeermenlevds of oretermand thoseof andher canbed\#emined by thegfadtor dane

Let us corsider the Zeernn sditing of sodumof theresorencelines D_{1} andD_{2}. Therelinesaisefromthetrasitions

$$
2 P_{\frac{1}{2}} \rightarrow 2 S_{\frac{1}{2}} \text { and } 2 P_{\frac{3}{2}} \rightarrow 2 S_{\frac{1}{2}}
$$

Weknowthat

$$
g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
$$

So, theZemmenlen's, gfatars and theZernensifts for theindvingtems in theretrasitionsareasfdlows

Tem9	No. of Zeftan levds (2 4)		$\begin{gathered} M_{J} \\ (\#, \ldots .,) \end{gathered}$	Shitin Larentunit $g M_{J}$
$\begin{gathered} 2 S_{\frac{1}{2}} \\ \left(L=0, S=\frac{1}{2}, J=\frac{1}{2}\right) \end{gathered}$	2	2	$\frac{4}{3}$	± 1
$\begin{gathered} 2 P_{\frac{1}{2}} \\ \left(L=1, S=\frac{1}{2}, J=\frac{1}{2}\right) \end{gathered}$	2	$\frac{2}{3}$	$\frac{4}{3}$	$\pm \frac{1}{3}$

$$
\begin{array}{c|c|c|c|c|}
\hline 2 P_{\frac{3}{2}} \\
\left(L=1, S=\frac{1}{2} J=\frac{3}{2}\right) & 4 & \frac{4}{3} & \pm \frac{3}{2}, \pm \frac{1}{2} & \pm 2, \pm \frac{2}{3} \\
\hline
\end{array}
$$

Thesditing of thesetemshesbeendspdayedinfigreballow.

Fig8 'ransitions from $2 P_{\frac{1}{2}} \rightarrow 2 S_{\frac{1}{2}}$ and $2 P_{\frac{3}{2}} \rightarrow 2 S_{\frac{1}{2}}$.
Apdyingthesdetionnles

$$
\Delta M_{J}=0, \pm 1\left(\operatorname{bt} M_{J}=0 \leftrightarrow M_{J}=0 \text { if } \Delta J=0\right)
$$

Weddainthat the D_{1} linewill spit infor Zeenan componets and the D_{2} line spits insix componets Thecomponets corespondngto $\Delta M_{J}=0$ will plaize witheledric vedor papendala tothefidd(σ-componets).

Theintenities of theZeftancomponetsgivenbyfdlowingules
(i) Thesumof al thetrasitionstatingfromany initid Zermanlerd isequ to the sum of all trasitions stating from ary the lead haing the same
pinaplequatumumber nandzimothal quatumumber values
(ii) Thesmof all trasitions ariving tay Zemmenled is equl to thesum all trasitions ariving at any the lead haing the same pincipe and azimathal values

7.8 ZøøranEffetinScolun

Sodumligt corsists bigt dabe whicis resporible for thebrigt yellow ligt Thiscanbeusedtodenoritdecered influerces Fromtiswecansudy spditingof theerisisionlines of daric spedra Weg\& dableffromthetraition from $3 P$ to 35 levds Thee ar same a in hydogen tom Since pincipa

 eandeof thedpenderceof domic eragy/ledsonanylarmenettum The3S dedrun is effedively less siddedthenthe 3 detion so the 35 led is isme tigtly bard Herecalde shons thesmalle depencarceof theatomic errgy leudsonthetad anyla nonnutim Beabeof magnticeregy of thedeation sgin inthepeescreof theirtend magetic fiddcasedby abtidd notion theP lead sditi intotnosdes with teda angla menertimJ $=32 \mathrm{adj}=1 / 2 \mathrm{Th}$ is
 theee lexds will spitit futher by the magntic inteaction It depends on the ereges onthez-componet of thetad anyla nonemim. This spititinggives theZemmenfedforsodum

TS Pashr-BadEEfed

PachnenBak Effet is thesditing of tomicerrgy levd sinthepresence of strang magneic fied To doserve this effet magneic fidd shald be sufficietly lage to dsupt thecapling of orditd angla nonertumand sain anglarmantum
Exterla magneic fied intheZemmeffet is week incormaisontotheirteral fidch deto spin angla monertumand arditd notion of vience detrons of tom Howere thestrength of etemal magnic fied is notsfficiet to dsupt spinardit capling If we inceese the strengh of etand magnic fidd, sppadions between miltiple fine studure componets inceme For nore magneic fidd it will incememoreand yp to thespardion beconegeter then
finestucturecomponets TheanowausZeenanpattenthendenges againlike a namal Zeem pettem This is the condtion when spin-arbit copling is dsyuted by edernd magetic fied This proeess can be exdaned in the followingwas.

Fig9 Catoondiagamforshowingreppativediretion of $\underset{i}{ }$ ands andtheir componats
When we apdy eternd magneic fidd stronger then the intend fidd, the magnic couding between tod anglar nomertumand exanal mageic fidd exceed the capling of spinarbit. The preession of \vec{J} dat \vec{B} becorefater then \vec{L} and \vec{s} precession doat \vec{j}. When we apdy thesecondtions then $\vec{L}-\vec{s}$ caplingwill patidly break downwtichimpliesthat \vec{j} isnot fixed in magritude any more If weinrememandic fidd \vec{B} norethen \vec{L} and \vec{s} stat pecessing indeperdattly doat \vec{B}. In this stae their quatized componets aldng fied drection (here we took it in Z -axis) will be L_{2} adds s_{z}. Magritudes of these componets will be $M_{L} \hbar$ and $M_{s} \hbar$ respectively andmageic quatumnumbers M_{L} and M_{S} will havedsoreteveluesafdlons.

$$
M_{L}=L, L-1, L-2, \ldots .,-L
$$

and $M_{s}=S, S-1, S-2, \ldots,-S$
ByLamr'stherem, thearglar viocities of any preessionaregivenby the poditof magnic fied and corespondngraio of magnic monertswiththe anglarmenta Sofor \vec{L} and \vec{s}

$$
\omega_{L}=\frac{e}{2 m} B \quad \text { and } \quad \omega_{S}=2 \frac{e}{2 m} B
$$

Sincetheeregy of any preessionis equal to theprodit of theprgeetion of the corespondng angla nometumvetor dang the magneic fied dretion and agularvecity. That is

$$
\begin{aligned}
\Delta \mathrm{E}_{\mathrm{L}} & =\omega_{L} L_{Z}=\frac{e}{2 m} B M_{L} \frac{h}{2 \pi} \\
\text { and } \Delta \mathrm{E}_{\mathrm{S}} & =\omega_{S} S_{Z}=2 \frac{e}{2 m} B M_{S} \frac{h}{2 \pi}
\end{aligned}
$$

Main enegy shift $\Delta \mathrm{E}$ fromurpeturbed enegy lerd is the sum of these two inteationenegies So ,

$$
\begin{aligned}
\Delta E & =\Delta E_{L}+\Delta E_{S} \\
& =\left(M_{L}+2 M_{S}\right) \frac{e B}{4 \pi m c},
\end{aligned}
$$

OrinLoretzuitof $\frac{e B}{4 m c}$,

$$
-\Delta T=\left(M_{L}+2 M_{S}\right) L^{\prime}
$$

This expession isfor stong mandic fied interadion enegy, wherewe ignore spinarbit interation at all. It shons that eech free ledd will shift into $(2 L+1)(2 S+1)$ mageic leveds Becase $2 L+1$) values cones from M_{L} and $(2 S+1)$ fromms.
As aspeeficeeande instrangmagneicfied le lisconside thetrasitions

$$
2 \mathrm{P} \rightarrow 2 \mathrm{~S}
$$

This trarition is responible for the D_{1} and D_{2} lines of sodum $2 P_{\frac{1}{2}} \rightarrow 2 S_{1}$. In presence of strang magndic fied, these ledds and magneic sifts for moltiple temsaregiveninfdlowingtdde

Ter	$\begin{aligned} & \text { No of stranc-fidd } \\ & \text { leds } \\ & (2 L+1)(2 S+1) \end{aligned}$	M_{L}	M_{S}	Shift in Laretz $\operatorname{unt}\left(M_{L}+2 M_{S}\right)$
${ }^{2} \mathrm{P}\left(L=1, S=\frac{1}{2}\right)$	ϵ	1.	1/2-1/	2.1
		0	1/2-1/2	1,-1
		-1	1/2-1/2	0,2
${ }^{2} \mathrm{~S}\left(L=0, S=\frac{1}{2}\right)$	2	C	1/2-1/	1,-1

Thestrongfieddsditing of thetems andhawebeenshowninfigrebellow.

Fig 10.Strong field splitting of the terms ${ }^{2} P$ and ${ }^{2} S$
Sdectionnuesinpresenceof astrongfiddfor dowetrasitionsare
$\Delta \mathrm{M}_{\mathrm{L}}=0$ (Componetsplaizedpardle tothefidd)
$\Delta \mathrm{M}_{\mathrm{L}}= \pm 1$ (Componestsplaizedperpendala tothefidd)
$\Delta \mathrm{M}_{\mathrm{S}}=0$.
Whentheresdetionnues areapdied weg\& ap\&temsamearanomi Zeman tridet
Spit-Orbit Comedion In pratice, theresidal spin-ardit capding danges the rediveenegies of thecomponets of dfferet tems Detothis we can adda swall terma $M_{L} M_{s}$ in the expession for the mageic interation enegy. Now interationenegyinLoretztermwill beane

$$
-\Delta T=\left(M_{L}+2 M_{S}\right) L^{\prime}+a M_{L} M_{S} .
$$

Thisimpliesthterch of two σ-componets of nama Zementride will sditin rarowdadet, tiple andso on Inthis 2 P $\rightarrow 2$ s trasition eech σ-componet will sdit into a dadd with a sqpardion jutt twothrob that of the fiedffree cade

Fig 11. Strong-Field Pattern with Spin-Orbit Coupling
Experimetally, thePacher-Back effecthesbeendoservedforvery rarow moltiples ally. For examde Li dadde haing a fiddfree sppardion of $0.34 \mathrm{~cm}^{-1}$. Sinceadraily availademmagicfidd foreande43Tesamagnic fidd can prodrea mandic spiting of dat $2 \mathrm{~cm}^{-1}$ and Pascher-Bak Effect courswhenthemannic spiting exceeds thefinestucture(fiddffree) sditing Sa , for Li dade it is lager then the finestucture spiting Becare of this PascherBack effect can earily be doserved For sodum rescrance dudet $\left(17 \mathrm{~cm}^{-1}\right)$ finestucture sditing is math highe. SO, to dbserve this effect in sodum, wereedandanamally lagefidd

Herewehavedredy considaredthecreswhentheetend fiddiseither very week (Zeften ffeet) ar vey strong (Pachen-Back effed) as compreed to theirteral fidd in the tom For intermedtefidds (compardde with irterna fied) conplicatedpattensaredtaned

D.10Trasitiors fromWakkioStrangFidc

The number of nageic levds into which a given stete is sdit deent dependanthenroneic fiddstrengh Thisnunber iscelledthe'quatummégt'.

Inawerkfidd aled withagivenimer qaetumnumber will sditinto (2J + 1) leds where cientaions of J in eterad magnic fidd is $(2 J+1$). In cæeof antamwith orevance dedron J canherealy two values $L+\frac{1}{2}$ and $L-\frac{1}{2}$, sothtleed will spitinto

$$
\left\{2\left(L+\frac{1}{2}\right)+1\right\}+\left\{2\left(L-\frac{1}{2}\right)+1\right\}=4 L+2
$$

levds Inastrongfied L damehes $(2 L+1)$ cietdians andfor each of there S hes $(2 S+1)$, givingdtogether

$$
(2 L+1)(2 S+1)=4 L+2
$$

$[$ SinceS $=1 / 4$
leuds, sanearinaweakfidd

Fig12Transition of thenagneicleds correspondngtothestases ${ }^{2} \mathrm{~S}_{2} \mathrm{P}_{2 / 2} \mathrm{P}_{2}$ and ${ }^{2} \mathrm{P}_{32}$. In a werk fidd, we drataize erch of the magndic lends by the quatum
 numbers Now, wehavetolook theleledsJ andM, which reered apatialar levd withM andM ${ }_{5}$ whenthefiddisinceesed Here, thingstobencted that the sumof theprgiedions of the angiar monetumvetars an magetic fidd does not dange In presence of weak fidd this projetion is M and in presenceof a strongmagnicfidditisM $+M_{s}$. Hencethefirstruleof trasitionis

$$
M_{J}=M_{L}+M_{S}
$$

Thisisinafficiettocordatedl weak andstrongfiddlends Simeethere aecess when threarenorethen creled with the sare valueof M. Hence net resticionisthat therewill notbeanytwoledswiththesmeM crossech tha.

1.11ZearanEfeatinSaneTrasitions(examples)

(i) $\mathbb{F}_{3}-\mathbb{1}_{2}$: It is a singe-singe trasition It will give a nomad Zefnan triple

Fig 13.Splitting of ${ }^{1} \mathrm{~F}_{3}-{ }^{1} \mathrm{D}_{2}$, single-singlet transition.
Theterns ${ }^{1} F$ and 3 D corespondto $L=3 \mathrm{andL}=2$ respeetively. In presenceof a weak nagndic fidd it will break into $(\lambda+1)=7$ and 5 Zemmen componets respetivdy. The M_{L} vaues darateizing theZeenanleudsare3, 2, 1, 0, -1, -2, -3and2, 1, 0, -1,-2 respeetively.
Since for singet tems ($\mathrm{S}=0$, J $=\mathrm{L}$) the Lardegfator is 1 Thesppardion between conseative Zeerian lexds is the sare for both terms equal to ore Laretzurit Thesditing of thetemsisshowninfigre.
Thesdecionnues $\Delta M_{L}=0, \pm 1$. Fromtheren Uesweg $\ddagger 15$ trasitions Since the Zeernen sditing is same for both terms so, al trasitions coresponding to sare
ΔM_{L} caindceinwavenunher. HencewedtainalytreeZenen canponet lines, them-componet corespondngto $\Delta M_{L}=0$ andtho π-componets corespandngto $\Delta M_{L}= \pm 1$. Thisisnomal Zeenentriple
(ii) $2 D_{\frac{3}{2}}-2 P_{\frac{1}{2}}$: It is a daddeduldetrarition So, theZeemmpettem waid beanomas Thewed-fied interationenegy of aonedetronatomisgiven by

$$
\Delta T=g M_{J} L^{\prime},
$$

whereL' istheLaretzurit TheLandegfatoris

$$
g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
$$

TheZermenlevds, gfatars and theZermensiftsfor thegiventems $2 P_{\frac{1}{2}}$ and $2 D_{\frac{3}{2}}$ aeafdlans

Ter	Na. of Zeftan leuds (3 +1)	g	$\begin{gathered} M_{J} \\ (+, \ldots,-J) \end{gathered}$	ShiftinL' unitg M
$\begin{gathered} 2 P_{\frac{1}{2}} \\ \left(L=1, S=\frac{1}{2}, J=\frac{1}{2}\right) \end{gathered}$	2	$\frac{2}{3}$	$\frac{1}{2},-\frac{1}{2}$	$\frac{1}{3},-\frac{1}{3}$
$\begin{gathered} 2 D_{\frac{3}{2}}^{2} \\ \left(L=2, S=\frac{1}{2}, J=\frac{3}{2}\right) \end{gathered}$	4	$\frac{4}{5}$	2	$\frac{6}{5}, \frac{2}{5},-\frac{2}{5},-\frac{6}{5}$

Thesditing of thesetemshesbeendsdayedinfigrel4:
Thesdedionnleis $\Delta M_{J}=0, \pm 1$.
Threareinall sixallowedtrasitions,hencesixZemmncomponets Trasitions corespondngto $\Delta M_{J}=0$ given-componets pazized pardle to themagneic fiedd and trasitions caresponding to $\Delta M_{J}= \pm 1$ give σ-componets plaized perpandala tothefiddashownintheenegyled dagam

Fig14Zentansiftsfor thegiventerm $2_{\frac{1}{2}}$ and $2 D_{\frac{3}{2}}$, dadde-dad \ddagger transition (iii) $2 D_{\frac{5}{2}}-2 P_{\frac{3}{2}}$: It is agin a coudde-dablet trasition so that the Zeemen pttenvouldbearontas
TheZerman leads, gfatars and theZeeman shift for thegiventems $2 P_{\frac{3}{2}}$ and $2 D_{\frac{5}{2}}$ reafdlons.

Terr	No. of Zernan ledds $(2+1)$	g	$\begin{gathered} \mathrm{M}_{\mathrm{J}} \\ (\#, \ldots-\mathrm{J}) \end{gathered}$	ShiftinL'unit gM
$\begin{gathered} 2 P_{\frac{3}{2}} \\ \left(L=1, S=\frac{1}{2}, J=\frac{3}{2}\right) \end{gathered}$	4	4	$\frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2}$	$\frac{6}{3}, \frac{2}{3},-\frac{2}{3},-\frac{6}{3}$
$\begin{gathered} 2 D_{\frac{5}{2}} \\ \left(L=2, S=\frac{1}{2}, J=\frac{5}{2}\right) \end{gathered}$	ϵ	$\frac{6}{5}$	$\frac{5}{2}, \frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2},-\frac{5}{2}$	$\frac{15}{5}, \frac{9}{5}, \frac{3}{5},-\frac{9}{5},-\frac{15}{5}$

Thesditing of thesetermshesbeendsdayedinfigregivenbalow.

Fig15Dadedabetranition ${ }^{2} \mathrm{D}_{52}-2 \mathrm{P}_{32}$. TheconpleteZeem patten of 12 conponets
Thesdedionnueinqpertionis $\Delta M_{J}=0, \pm 1$.
There are for allowed trasitions correspondng to $\Delta M_{J}=0$ which give π-componetswhilethedl far trasitionseech corespondingto $\Delta M_{J}= \pm 1$ give o-componets
(iv) Pincipal Saies Tripla ${ }^{\mathbf{3}} \mathbf{P}-{ }^{2} \mathbf{S} \mathbf{~} \mathbf{~} 3 P_{0,1,2}-3 S_{1}$: The finestucture trasitionsare

$$
3 P_{0}-3 S_{1} ; 3 P_{1}-3 S_{1} ; 3 P_{2}-3 S_{1}
$$

Thegfator and Zeemen shits for the unpeturbed ledds $3 P_{0}, 3 P_{1}, 3 P_{2} \operatorname{add} 3 S_{1}$ aeafdlons

Urpeturbedled	No. of Zemian leves (2 +1)		$M_{j}(+, \ldots-j)$	SiftinLaretzuit $g M_{J}$
$\begin{gathered} 3 P_{0} \\ (\mathrm{~L}=1, \mathrm{~S}=1, \mathrm{~J}=0) \end{gathered}$	1	$\frac{0}{0}$	0	0
$\begin{gathered} 3 P_{1} \\ (\mathrm{~L}=1, \mathrm{~S}=1, \mathrm{~J}=1) \end{gathered}$	3	$\frac{3}{2}$	1,0,-1	$\frac{3}{2}, 0,-\frac{3}{2}$
$\begin{gathered} 3 P_{2} \\ (\mathrm{~L}=1, \mathrm{~S}=1, \mathrm{~J}=2) \end{gathered}$	5	$\frac{3}{2}$	2, 1, 0, -1,-2	$\frac{6}{2}, \frac{3}{2}, 0,-\frac{3}{2},-\frac{6}{2}$
$\begin{gathered} 3 S_{1} \\ (\mathrm{~L}=0, \mathrm{~S}=1, \mathrm{~J}=1) \end{gathered}$	3	2	1, 0, -1	2,0,-2

Themagneicsditingof leddsisshowninfigurebellow.

Fromssectionules $\Delta M_{J}=0, \pm 1\left(\mathrm{bt} \Delta M_{J}=0 \leftrightarrow M_{J}=0\right.$ if $\left.\Delta J=0\right)$ wegt, thee Zeeran componets in the trasition $3 P_{0}-3 S_{1}$; sx in $3 P_{1}-3 S_{1}$ and rine in ${ }^{3} P_{2}-{ }^{3} S_{1}$. The Zeqman trasition $M_{J}=0 \rightarrow M_{J}=0$ in $3 P_{1}-3 S_{1}$ is fardidan Since, at the same tire $A J=0$. This trasition is indcaed by a deted line in figre)

Enegy-lead dagamfor theZeeman patters aeshown infigre While thequilitdivestritureof exhpattendependsoly yntwourpeturbedleadsfor thevdues of J. Theenegy seppraionsdapendangardhenceandhe propeties likecaplingaondtionsandonotherquatumumes

All thetreepattems inthistrasitionaesymmetricd withregadto wave nunber, intersity add pdaizdion of thecomponets Them-componets forma certrd grap and plaized with dedric vedor pardld to magnic fidd The σ-componets formtwo symmenicdly dspaxed gaps and the componets ae eqidstat in each and dectric vedor perpendala to thefidd Thesurf the intersities of the π-componetsareequd tothatof the σ-componets
(v) $3 P_{1}-3 D_{2}$: It is a tripletriple trasition It waild give an anomas Zeerm pattem in a 'weck exterd magtic fidd The Zermen shifts of the variasfams anu perturbedled aegivenby

$$
-\Delta T=g M_{J} L^{\prime},
$$

whereL' istheLaretzuritandgisgivenby

$$
g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
$$

TheZeemmleuds, gfatars and thesiftsfromthegivenurpaturbedleads $3 D_{2}$ $\operatorname{add}_{3} P_{1}$ aegiveninfdlowingtdde

Unpeturbedlead	$\begin{gathered} \text { No of Zeqmitn } \\ \text { levds } \\ (2+1) \end{gathered}$	C	$M_{J}(+J, \ldots,-J)$	ShitinLaretzunit g_{J}
$\left(\mathrm{L}=2, \begin{array}{c} 3 D_{1} \\ \mathrm{~S}=1, \mathrm{~J} \end{array}=2\right)$	5	$\frac{7}{6}$	2,1,0-1,-2	$\frac{14}{6}, \frac{7}{6}, 0,-\frac{7}{6},-\frac{14}{6}$
$\begin{gathered} 3 P_{2} \\ (\mathrm{~L}=1, \mathrm{~S}=1, \mathrm{~J}=\mathrm{l}) \end{gathered}$	ミ	$\frac{3}{2}$	1,0,1	$\frac{3}{2}, 0,-\frac{3}{2}$

Fig1.Tripletripetrasition ${ }^{3} P_{1}-{ }^{-} \mathrm{D}_{2}$
Fromsdectionnules $\Delta M_{J}=0, \pm 1\left(M_{J}=0 \leftrightarrow M_{J}=0\right.$ if $\left.\Delta J=0\right)$ wegł 9dlowed trasitions $\Delta M_{J}= \pm 1$ ech givethree σ componets Thecomdet patten with Zeenansditingof thelerds $3^{3} D_{2}$ add ${ }^{3} P_{1}$ isfigre
(i) $3 D_{3}-3 P_{2}$: This is dso a tripettipt trasition This uald give an ancralasZeenmpatemina‘werk eternd magnicfied

Zeqmanleuds, gfadarsandthestiftsfromtheurpeturbedleds $3 D_{2}$ add $3 P_{2}$ aegiveninfdlowingtdde

Unpaturbed led	Na of Zeeman levds $(2+1)$	C	$\begin{gathered} M_{J} \\ (+J, \ldots,-J) \end{gathered}$	ZeenanShiftinLa̛erz Unit $g M_{J}$
$\left(\begin{array}{c} 3 D_{3} \\ \binom{L=S=1,}{J=3} \end{array}\right.$	7	$\frac{4}{3}$	3,2,1,0-1,-2,	$\frac{12}{3}, \frac{8}{3}, \frac{4}{3}, 0,-\frac{4}{3},-\frac{8}{3},-\frac{12}{4}$

$$
\left(\begin{array}{c}
3 P_{2} \\
\binom{L, S=1,}{J=2}
\end{array} \quad \underline{5}\left|\frac{3}{2}\right| \quad 2,1,0,-1,-\frac{2}{2} \quad \frac{6}{2}, \frac{3}{2}, 0,-\frac{3}{2},-\frac{6}{2}\right.
$$

Thesdititing of theeeleadsarestowninfigreballow.
Framselectionnues $\Delta M_{J}=0, \pm 1\left(M_{J}=0 \leftrightarrow M_{J}=0\right.$ if $\left.\Delta J=0\right)$ wegt, 15dlawed transitians. Fromthe vule $\Delta M_{J}= \pm 1$ wegt, five σ-componets. The comple pattemisshawnintheeregy-leid dagram

Fig189ditingof ${ }^{3} D_{3}-{ }^{3} P_{2}$ leds

7.12IlluaraiveExanple

Example3 CalaltethedstacebedveenZeenm camponats of aspedral line of wavengh 4500 Å. If asemplef acetaindemertiskept inamagndicfidd GvenFluxdasity 0.3 Teda, $\mathrm{em}=176 \times 10^{11} \mathrm{Ckg} \mathrm{c}=3 \times 10^{\circ} \mathrm{m} / \mathrm{s}$

Sd. The wavenunher separdion between the componets of a narid Zepran tripdtisgivenby

$$
\Delta v=\frac{e B}{4 \pi m c}=\left(\frac{e}{m}\right) \frac{B}{4 \pi c}
$$

Puttingthegivenvalus, negt

$$
\begin{aligned}
\Delta v & =\frac{\left(1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}\right) 0.3 \mathrm{~N} / \mathrm{A}-\mathrm{m}}{4 \times 3.14 \times\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
& =14.0 \mathrm{~m}^{-1}
\end{aligned}
$$

Now, $\quad v \lambda=1$
の $\quad v \Delta \lambda+\lambda \Delta v=0$
or $\quad|\Delta \lambda|=\frac{\lambda \Delta v}{v}=\lambda^{2} \Delta v$

$$
\begin{aligned}
& =\left(4500 \times 10^{-10} \mathrm{~m}\right)^{2}\left(14.0 \mathrm{~m}^{-1}\right) \\
& =283.5 \times 10^{-14} \mathrm{~m} \\
& =0.02835 \AA
\end{aligned}
$$

Exampe4 EvalutetheLandegfator in the 2335 corfigurdionfor the $3 P_{1}$ of the domand ure the result to predd the spliting of the levd. Atomis in an eternd mandicfiddof 0.1Teda
Sd. Forthes P_{1} levd, nehave

$$
\text { So } \begin{aligned}
L & =1, S=1, J=1, \\
g & =1+\frac{J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)} \\
& =1+\frac{1(1+1)-1(1+1)+1(1+1)}{2 \times 1(1+1)} \\
& =1+\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

ForJ $=1$, theposidevaues of M arel, 0 , -1 andsothelead issditintothee componets Thewavenumber shit of thecomponetsisgivenby

$$
\Delta T=g M_{J} \frac{e B}{4 \pi m c}
$$

The Zeerm leid coresponding to $M_{j}=0$ remains undifted while those corespondingto $M_{j}= \pm 1$ aediftedby

$$
\Delta T= \pm g \frac{e B}{4 \pi m c}
$$

$$
\begin{aligned}
& = \pm \frac{3}{2} \frac{\left(1.6 \times 10^{-19}\right)(0.1 \mathrm{~N} / \mathrm{A}-\mathrm{m})}{4 \times 3.14 \times\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
& = \pm 7.0 \mathrm{~m}^{-1} \\
& = \pm 0.07 \mathrm{~cm}^{-1}
\end{aligned}
$$

7.13Sdf-LemingExacis-II

 levdsof sodumatom
Q2 SupposethesodumD, lineenitted in a magnic fidd is doseved to be sditinto 4 componets What isthemagnic fiddB? (Givenvelusare Wadenghdfferce $=0022 \mathrm{~m}, \mathrm{D}_{1}$ lineist 5985 m)
Q3 Cadatethen unter of eregyleds conespondingtoeregyled $\mathrm{n}=2 \alpha$ $\mathrm{E}_{3}=\mathrm{E}_{\mathrm{J}} / 4$
Q4 Calalde the runter of trasitions bedveen \mathbb{D}_{2} and \mathbb{P}_{1} stese de to nomal Zemmenfeet

D.14Sumay

 ins rngots Suchfiddscan beof theadd of 01T Tedar high: Zeemmeffetis uilized innmyl Iæer coding apdicdionssuchæa magntopticd trap and the Zemm Sowe. Zemm Effet is dso ueff tonemandic fiddstrengh and cietcions in Tdanak dæma It can dso meternature fiom Zentancemponets

1.15Gloway

Mutipe: Agapof spedral lines
LScupling: Capling of anglar nometumand spinanglar monertumof an dedron
Bdrnagnton: A physicd consat(itcanbedfferetforspinandangiar).
Sdetionnles: Constrans of theposibletrasitions of fromonequatumste toandher.
Zemrnenagy : Pdatid enagy of nagneized patides in etama nægeic fidd
gfador: Dimensiolessquatityformandicmometandgromagnicraia

7.16AnanastoSeff-LeamingExarcise

AnswastosdflefmingExadisel
Ansl: $1 S^{2} 25^{2} 2^{p 6}$
Ans2 (a) land $9.274 \times 10^{24} J / T$ (b) 9
Ans3 Wavdenghsift $=0.034 \mathrm{~m}$

AramastoSdf-LermingExacise II

Ansl: 18T
Ans2 0.51 T=5100Gass
Ans3 6
Ans4 9(will givearly 3speetrd lines)

7.17Exacis

Q1 Desonbeanerperineta se-uptostoyZeminnEffet
Q2 What do you undastand by arontas Zeernn Effet ? Disass the Zefranpatenof theresorace $\left(D_{1}, D_{2}\right)$ linesforsodum
Q3 Distingishbeweennomid Zeenm ancralasZeem anandPachenBack effets DeteminetheLandeg viluesfor thevaiaslevds of moltiples
Q4 Calalaesditing of tem4D/2inarditraymandicfidd
Q5 Incrededrontom,deemineZernantrasitionlinefor $D_{32}-2 P_{32}$.
Q6 Inorededrontom dtemineZemmentrasitionlinein $2 \mathrm{D}_{52}-2_{32}$.
Q7 Cadategfatorfor 3Ptem
Q8 Witedbunthenumbe of Zerianleads(2) +1) for $2 P_{32}$ tem
Q9 Witedbunthevalues of L, Sandj for 2_{52} tem
Q10 Whataretheposildevdues of M for $2 P_{32}$.
1.18AnsmastoExercis

Ans1: Seesection 17.2
Ans2 Sessetion17.7and17.8

Ans3 Seesetion 17.9
Ansf: 0
Ans5 10
AnsG 12
Ans7: $3_{012}: g=00,32,32$
Anse 4
Ans9 $\mathrm{L}=2, \mathrm{~S}=1 / 2 \mathrm{z}=5 / 2$
Ans10 ± 24 \# $/ 2$

RefarencesandSuggesedReaing:

1 Nobal Letures Physic, Vd. 1, Eserie, Anstedam, 1087.
2 R. Esbarg and R Resick, QuatumPhysics of Atons, Mdeales, Solids, Nude andPatides Znded, Wley, NevYak, 1983
3 W. A. Hilton AmJ. Phys 30, 74(1902).
4 Fegrman Ridard P., Leigton, Robat B., Sand, Mathen (1965). The FeymmLeturesonPhysics3. Addson-Weseg. ISBN 0201021153

UNT-18 TheStarkEffetand HypafineStruturecf Spadral Line

Strutureof theUnit

180 Ojetives
181 Introdution
182 StakEffet of Hydogentom
183 Weak-FiddStakEffetinHycrogen
184 Strong-FiddStakEffectinHydogen
185 Hypafinestnutureof spedrad lines
186 Istopeeffeds
187 IllustriveExamdes
188 Seff-LearningExacise-I
189 Nuderspinandhypefinesditing
1810 Intersityrdioanddłemindionof Nuders sain
1811 BackGadgniteffetinhypafinestucture
1812 IllustriveExamdes
1813 Sdf-LearingExerise-II
1814 Summay
1815 Gossay
1816 AnsmestoSdf-LemringExerises
1817 Exerise
1818 ArsnestoExerise
Referces andSuggetedReednos

180 Ogjedives

In 1913, GemmphysidstJdames Stak studed Hydogenatomenissionin detric fidd of a conderse. In peesence of eternd dedric fidd (of thearde of $\left.10^{5} \mathrm{~V} / \mathrm{m}\right)$, he doserved the shifting and a sditing of the speetrd lines of the Balmer seies of hycogen (enission spedra). Coseavade arout of spiting ar sifting is known a Stak shift It is dso known a Stak spiting In pevias dader, we have dreedy studed Zeerne Effect where a spedrd linespit into severd componets detoeternd magneicfidd, sinilaly Stak effet is lectric ardogeof Zeqmeffect

181Introdidior

TheStrak Effet is a realt of interation of etema detric fiedd with deetric nouretof theatominterationenegy canbedfinedas $W=-\vec{p} . \vec{E}$
where \vec{p} isthededric dplemonetof dedronintom Eedric dplemomert cores in pidure beeaseof dargedstribition and it canbecdalded with the dargedstribution Herewewill sudy tho appets of theStak Effect theliner ffect and thequedtic effet Herewe will seethet the liner effect is deto a dplemenert whichis indreed by theeternd deatic fied For simplidity fine and hypafine stucture ffect will be negeted Wecan exdain and study the moleale fommion from tons, broadsing of spedrd lines and dedectic constarswiththestody of Stak Effet

182 SarkEffet Cf HydognAton

InStak Effed, if wetikedoservaionsfromdfferet positions then wegi some dfferet realts In patialar and for simdidity we lock a peperdalar and pardld totheapdieddedricfidd Whenwelock ttperpendalatodedricfidd thenwegettwoplanepdaizedlinescrcomponets Onecomponet is padld to dedricfidd vetar, called π - componet andandhe is perpendala todedric fidd vedtr, calledo - compreat. If wedbsevepardle todedricfidd thenwe g\& aly one unplaized componet, krown a σ - componet. Few initid dosevilionsof StakEffectarea
(i) In gered, all hydogen lines are in symmetricd pattens at the patten maily deqperds ontheprinipal quatumnunber n Number of Stak lines andwidh of potteminceseswithn
(ii) Wevenumber shifts aresarefor all hydogen lines It is integd moltiples of auritutichispropriond tothestrengh of thedetricfied
(iii) Pdaizaionpropeties of Staklines aesareaZeqmanlines Orly, the π componetshonsmoresift thanthe σ-corponet
(iv) Ordaing of Stak componets is in the increesing ards of pinipa quatumunbernळ $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{\text {. }}$.
(v) For lower energy stees symmetriced sditing is propationd to the fied interity and for higher stees Stak componets show uridrectiond dsparerents propationd tothesqureof thefiddstrengh Thisiscalled secondarder StakEffet

183Wezk-fiddStarkEffectinHycrogr

Since orbitd anglarmenetum \vec{I} andspinangla nonethm \vec{s} of thedetron of ahycogenatomheremageicinteation When weapdy aneternd dectric fied \vec{F}, then it will interat with todd angula monetump \vec{j}. If fidd interation enegy with dedron's todd angla monertum is less than the magndic interationenegy betweenarditd monetumand spin monertumthentheStak sditing will bemuch smaller cormpred with the firestucturespiting. Such a fiedisknownæuezk-fied

Fig19Schenaticdagramofl-scapding

We ge \vec{j} by the capding of \vec{i} and \vec{s}. Therefore ${ }_{j}$ preesses and \vec{F} with proetion mh 2 2π,

$$
m_{j}=+j, j-1, j-2, \ldots,-j .
$$

So, unlike the Zeeran levds, the Stak leads +mand-marise fromagiven unpaturbedlevd whichharesareengy.

Sdectionnles for wek-fidd Stak ffect aethesarea thosefor theZeman effet, that is

$$
\begin{aligned}
& \Delta m_{j}=0 \text { gives } \pi \text { componets } \\
& \Delta m_{j}= \pm 1 \text { gives } \sigma \text { componets }
\end{aligned}
$$

Fdlowingtheresdectionnles, ech of thefinestucturecomponetsl, II, III, IV, $\mathrm{VinH}{ }_{\mathrm{s}}$ shaildshowasymmeticd Stak patten Theweck-fieddStak pattentes never beendoserved

Fig20 Enegyleds of H-atorfor thetransitionsn=3andn=2

184Sranc-FiddStakEEfedinHycrogr

When weapdy andedric fied \vec{F} anhycrogen whichles theirteration enegy with detron's anglar momet \vec{j}, such that it is geter then the magnic interationenegy betweendedron'sarbitd moretimi andspinnomertum \vec{s}. Therfore, the Stak sditing of theenegy leads deto the dedric fidd will be lager thenthefinestuduresditing Thisisknownathe'strong fiddforwtich first-ader Stak effet in hycoogen hes actully been doserved In such srong fidd mageic couding between \vec{i} and \vec{s} is lreekcown and \vec{i} gi quatized It precesses indapendartly a and the apdied dectric fidd \vec{p}. Thespin is hoverr notatedonby \vec{F}.
In 1916, Geman physidss Kal Schwarzhild and RusianAnwican physidss Pal Sophus Epstein indqpendartly exdained the doservaion of first-ordr Stak Effetinhyotogenandthey eddanedthesareforiarizedhdiumby quatizinga hycrogerlike tom in an dedric fied At that time eledron sain wes not dscovered For this exdantion, they useel Bdr-Sormerfed quatum theary, whichisknowneddquatumtheary. Thiswestoken anatstandngtriumhfor the dd quatumtheary becase the realts given by this theary were very little atredbyquammechaicd treaturt
Let an dectron is noving in a Keder ellipse If we will apdy honogeneas dedric fidd \vec{F} dongzaxisthenit will behavedffer then magneic fidd If we avacgethecester of gaity of thededronfor theKeder motionthenit will not
 torqeontheorbitd dplewhich cases a precession of thearditd that thez axis Hovere, in presenceof mageic fied theorditd angla mometum \vec{I} is not a contar and thearditd qaetimnunber I is molangr a "good" quatum number. Theprjection of \vec{I} dang detric fidd (zaxis) is I_{z}, given by $m h / 2 \pi$, wherem is the detric quatumnumber. I_{z} is sill a contart of notion and m reainsitsstrid meering Enegy vauein pardblic coordntes deperds anfiddfreeenegy of atom E_{0}, Bdrr radusa, pinidequatumnumbernadtwonew pardolic quatumnumbers n_{1} and n_{2}. These parbdic quatum numbers are dfinedas

$$
m_{l}=n-n_{2}-n_{1}-1
$$

Since allowedveluesare

$$
\begin{aligned}
& n=1,2,3, \ldots \infty \\
& m_{l}=0, \pm 1, \pm 2, \ldots . \pm(n-1) \\
& n_{1}=0,1,2,3, \ldots . n-1 \\
& n_{2}=0,1,2,3, \ldots . n-1
\end{aligned}
$$

n_{1} limits the edectron's notion to the region bedween the two pardbdids of readuion ξ and $\xi_{\text {nax }}$; whilen linitsit totheregianintasected by thetwo pars of prabdaids, the edetron hes three priodc motions, ane aund thefied \vec{F} givenby mandoneedhdangthe ξ and η cordintes givenby n_{1} and $n_{\text {. }}$. Since thelat tho priods are not neessaily thesare, the ardit is no dosed and the eledranintirecoverevey poirtintheintasededregion

185 IllustraiveExampe

Examplel Provethat theStak-sift for thegound stete $(\mathrm{n}=1)$ of hydogen is zeo.
Sd. Siftisgivenbythe

$$
-\Delta T=\frac{\Delta E}{h c}=\frac{3 a_{0} e}{2 Z h c} F n\left(n_{2}-n_{1}\right)
$$

$$
\begin{aligned}
-\Delta T & =\frac{3 \times 0.53 \times 10^{-10} \mathrm{~m} \times 1.6 \times 10^{-19}}{2 \times 6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8} \mathrm{~ms}^{-1}} F n\left(n_{2}-n_{1}\right) \\
& =6.4 \times 10^{-5} \mathrm{Fn}\left(n_{2}-n_{1}\right) \mathrm{cm}^{-1}
\end{aligned}
$$

(HerefiddF isexpessedinVdt/m)
Allowed values of n, n_{2} and n_{1} canbege fromm $=n-n_{2}-n_{1}$ - 1 Herem $=0$, $\mathrm{n}=1 \mathrm{So}, \mathrm{n}_{2}-\mathrm{n}_{1}=0$. Thisimpliesthat theStak-siftforgrandstaeof hytogen iszero.
Example2 Exdudng nuder sqin, wite down the corfigraion of $n=2$ in hydogenatom

Sd. Foragivenj thereare 3 +1degenertesuderdscanbewitter

```
\(2 S^{1} / 2 \Rightarrow \mid S^{1} / 2+1 / 2,12 S^{1 / 2}-1 / 3\)
\(2 P^{1 / 2} \Rightarrow P^{1 / 2}+1 / 2, P^{1 / 2}-1 / 3\)
\(2 P_{32} \Rightarrow\left|P_{32}+32,\left|P_{32}+1 / 2,\right| P_{322},-1 / 2,2 P 32,-32\right.\)
```

When agial nonetumand spin will not caple (srong fidd) then theee levdswill spitagivenbalow.

$$
\begin{aligned}
& 1251 / 2 \pm 1 / 2=12 S, 0, \otimes 1^{1 / 2} / 2 \\
& |2 P 1 / 2 \pm 1 / 2=(1 / \sqrt{3})| P P, 0 \otimes \otimes 1 / 2-\sqrt{(23)} \mid P P, \pm 1) \otimes F 1 / 2 \\
& |2 P 32, \pm 1 / 2=\sqrt{ }(23)| 2 P, 0 \otimes \pm 1 / 24+(1 / \sqrt{3}) \mid 2 P, \pm 1) \otimes F 1 / 2 \\
& \mid 2 P 32, \pm 32=[2 P, \pm 1] \otimes 1 \pm 1 / 2
\end{aligned}
$$

$18 €$ HyparineStructurecf Spatral Line

When we inceese the resdution of instrumets by teding tigh resdution instumets to doseve the Stak Effect, we git futher spiting into more componets Ordar of this spiting is very moch smadler then ordmery spiting meltiple Thisfuther spitingisknown as'hperfinestucture' and it is cased bypropaties of theatomicnudes

To study hypafinestudreeperimedtly, we meed a ligt sarcewtich gives edrendy shaplines Inhyperinestucture, therearetwotypes of nider effets First is the presence of istapic speeies in the given sample or study demet Istapeprodres spedrad lines a sigtly dfferet wavernbes rediveto erch dher. Secondtypeof effet coners fromdraged nudes possesses ∞ spinangla norertumand the asoized magnic d plemanet. Hypefinespiting of the speetral terms cones from the interation between internd magnic fied (prodreedby arditd notion of deetran) of domandspinnagnic dpolemonert of thenudes

1871stupeEffect

Many denertshavedfferercatertsof isdopic tons Sice dffere tistopes of andenethevesarenunber andsanearangenet of edranuderdectrans Butisdopeshavedffertmmessesfromeach dher. SinceRydbegconstatforan tamdepenos onthenider mass, throghthered reednassof theatomDifferet isctopes havesigtly dfferet values of Rydarg constat. Correspondngy, the sametrasitionsindfferetisdapes giverisetosigtly dfferer warnumers Inhydogenatomvaridionin Rydarg constat canbedoserved eesily. First far menters of Balmerseries, $\mathrm{H}_{4}, \mathrm{H}_{3}, \mathrm{H}_{4}$ andH H_{5} (eadh) hes avery weak comparion on the shat-wavdengh side at dstances of 179, 133, 119 and $112 \AA$ respedively. Thesesifts aree withthetherericd vaus if the comparions are atributed ${ }^{2}$ deto presenceof anistopeof n mss 2 (dataium) a adit wesinthis wey that theeistenceof heay hydogen wesfirstestdished Hydogenisdopestift is thesimdest cere Many caes of isdopesift aendes simple Innanyeathsand heaier tons, istapeshittcones detother dfferent radi with mases not de to their nuses orly. These calaliaion can be undastoodpredy withCduntianirteradion

188Sdf-LemingExacis- I

Q1 Witedbwnthedegerertesdesinn=3slospare
Q2 Witedounthefirstader stak sditingof theleid $\mathrm{n}=3$ for hydogen
Q3 Apatideof chageqandmesm whichismainginacnedmeniond
hamrric potetid of frequancy ω, issigjectedtoaneak detric fieddE in z-dretion
a Findexpressionforenegy.
b. Calalate the eregy to first norzeo corredion and compre it with dowerest

189|llustraiveExample

ExampelCdaltetheshittort ${ }_{\beta}$ line(4861.33Å).
Sd. Forthistrasition, wehavefromBanme'sformola

$$
\begin{aligned}
& \frac{1}{\lambda_{H}}=R_{H}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right) \\
& \frac{1}{\lambda_{D}}=R_{D}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
& \frac{\lambda_{D}}{\lambda_{H}}=\frac{R_{H}}{R_{D}} \\
& \frac{\lambda_{D}-\lambda_{H}}{\lambda_{H}}=\frac{R_{H}-R_{D}}{R_{D}} \\
& \begin{aligned}
\Delta \lambda & =\lambda_{D}-\lambda_{H}=-\lambda_{H}\left(\frac{R_{D}-R_{H}}{R_{D}}\right) \\
& =-4861.33 \AA\left(\frac{109707.4 \mathrm{~cm}^{-1}-109677.6 \mathrm{~cm}^{-1}}{109707.4 \mathrm{~cm}^{-1}}\right) \\
& =-1.32 \AA
\end{aligned}
\end{aligned}
$$

Example 2 An dam with nuder spin is I $=3$, have 2 leads which are designtions D_{32} and $2 P_{12}$. Find the eppeted number of componets in the hyperfinestuctureof thecorespondingspedrd line
Sd . Forthestede D_{32}, wehave

$$
\mathrm{J}=32,1=3
$$

Theallowedvalues of thehyperfinestucturequatumunterF are

$$
\begin{aligned}
& F=\#+J+1-1, \ldots, \|-1 \mid \\
& =92,7 / 2,52,32
\end{aligned}
$$

This, forthistdethereareforhypafinestuxtureleds.

Forthestae P_{12}, wehave

$$
\begin{gathered}
J=1 / 21=3 \\
\text { Sa, } \quad F=72,52
\end{gathered}
$$

Thisstahescly2hyparinestudureleds

$$
\Delta \mathrm{E}=0, \pm 1
$$

Henceallowedtrasitions fromtheleds of onestdetothoseof thedtherae

$$
92 \rightarrow 7 / 2,7 / 2 \rightarrow 7 / 2,7 / 2 \rightarrow 5 / 2,5 / 2 \rightarrow 7 / 2,5 / 2 \rightarrow 5 / 2 \text { and } 32 \rightarrow 5 / 2
$$

(dl aefrom $D_{32} \rightarrow 2 P_{12}$)
So, todd trasitionsare6

1810Nuder Spinand HyparineSpliting

Istopeeffeethesits linitdions Innany case thisfailsto exdainthehypafine stucture Hypafine compreats ae often getere then the number of isctapes Sinilaly, scmederets showhyperinestucture eventhosearealy istapein that denert. For eample bismoth eists ∞ a singe istope, bit shons six hyperine cormonets in its line wavdengh $4 / 22 \AA$ À. Similaly, the number of componets of dfferet lines is frearetly quitedfferet for one and thesare denert
In 1924, Pali gave an exdandion doat hyperfinestucture Accordng to him when it asumed that the danic nudes possesses an intringic soin angla nonertum \vec{i} andutichiswsoitedanagneic dpdemonet $\vec{\mu}_{l}$. Sarearinthe ceeof saimingdecton, themagitudeof thender angla mometumis

$$
|\vec{I}|=\sqrt{I I+1)} \frac{h}{2 \pi}
$$

Wherel is nuder spin quatumnumer. It hes dfferet for dfferet nabses number nude. Itisdsodfferetfordffere tistapes of samedemert
Since \vec{L}, \vec{s} and $\vec{\jmath}$ have quatized componets dang an axis in space So the componet of \hat{I} dangthezaxisis

$$
\begin{aligned}
& I_{z}=M_{l} \frac{h}{2 \pi} \\
& \text { wheeM }=1,|-1,|-2, \ldots,-l
\end{aligned}
$$

Neder proten prodres a magneic momett $\vec{\mu}_{l}$ when it is in rotion This is propationd tothearglarmemetumandwich wecanbewittenes

$$
\overrightarrow{\mu_{l}}=g_{l}\left(\frac{e}{2 m_{p}}\right) \vec{l}
$$

Hereeandm arerespedively the chageandmass of proten Thequatity g is colledthe' n iderg gfata'. Themagitudeof thenidermandicnomertis

$$
\begin{aligned}
\mu_{l} & =g_{l}\left(\frac{e}{2 m_{p}}\right) \sqrt{I(I+1)} \frac{h}{2 \pi} \\
& =g_{l} \sqrt{I(I+1)} \frac{e h}{4 \pi m_{p}}
\end{aligned}
$$

Here $\frac{\text { eh }}{2 \pi m_{p}}$ formsanturd uitfor themenemt of nuder magnicnomert and is called the ' n der mageton'⿲. It is $1 / 1836$ times the Botr mageton (becaæemass of potanis 1836 timesthermess of detron). Thus,

$$
\mu_{l}=g_{l} \sqrt{I(I+1)} \mu_{N}
$$

Thecomponet of μ dangz-axisis
$\mu_{l_{z}}=g_{l} M_{l} \mu_{N}$
whereM $=1, I-1,-2 \ldots,-1$.
Sincethenæximunviueof M isl, thenæximomdoservddecomponet of μ is glin, andisconmanly calledthe' n nder mageic nomet'. It is raghly 100 timessmalle thandectronnagnicmoret

Atonic Vetor Mods: Let us now constudt the vector rodd with nuder spin tekeninto accart. Thetdd anglar nometumof thewhdeamis thesum theeangla monerta thededronalitd angla monetume, thedectronson arglar monetums andthenuder spin angla noremtumi. Thit is, thetod anglarmonetumis

$$
\vec{F}=\vec{L}+\vec{s}+\vec{l}=\vec{J}+\vec{I}
$$

As a reslt of interationbedweendectronardit andsann \vec{L} and \vec{s} preeess radidy aand their resltat \vec{j}. Furthe, the interation between the nuder magndic monert and themegneic fidd prolreed by thearbitd and sin mations of the tamic letrons caplesit with \vec{j} and cases therevedars to preess ana nd their
resltat \vec{F}. Thispreessionishonever, abat 1000 timessonerthenthat of \vec{L} and \vec{s} doat \vec{j} becase nuder magneic nomert is so merh sniller then dedron

ThehyperfinestudurequertumumberF cantaethevdues

$$
F=+1, J+1-1, J+2, \ldots, \|-1 \mid
$$

 I - J interation, ead finestucture J-lead splits into 2 H (if $\mathrm{I} \geq \mathrm{J}$) or $2+1$ (if $\leq \mathrm{J}$) hyperfinestudurelevds, eachcrarataizedbyanF value

InteradianEnagy. The $\vec{l}-\vec{\jmath}$ itteadionenegy canbestowntobegivenby

$$
E_{I, J,}=\frac{1}{2} A^{\prime}[F(F+1)-I(I+1)-J(J+1)],
$$

whereA' is aconstat. Thevaiashyperfinestuxtureleads of agiventermof a given tomhave the samel and same], bt dffer in F. Herce the seqpadion between two hyperinestuctureleds canbeddained by sibstitting first $\mathrm{F}+\mathrm{H}$, thenF, inthedboveeqtionandtdingthedffernces Thisgives

$$
\begin{aligned}
& \Delta E^{\prime}=\frac{1}{2} A^{\prime}[(F+1)(F+2)-F(F+1)] \\
& \Delta E^{\prime}=A^{\prime}(F+1)
\end{aligned}
$$

Thus, the eregy irteval between conseative hyperinestucture leds F and Fiti is propationd to thelagr of theF values (Landes sinteval rul). Theardar of hyperfinestucturelerds insoreof themeltiples is nomal (smallest lead deqpest) wileindhas it is inveted(lagestland deqeest).
ThesdectionnueforFfordedricdpletrasitionsissimila tothetfor):

$$
\Delta F=0, \pm 1 \mathrm{ht} \mathrm{~F}=0 \leftarrow\lrcorner \mathrm{F}=0
$$

1811 Intasity Ratioand Detaminationcf Nuder Spir

Whenthehyparinestruturecomponetsaedoseved detothesditing of aly oneof thetems, a aremert of theintenity rdio of thedoserved componets leads to the deeminntion of nuders sain This is besed on the 'sumnue', accordngto whichthes mof theirterities of theall thetrasitionstatingfrom ar endngon thesareled is propriond to thestdisical weigt2F+1 of tht
lead. This sitution arises in the hyperfine stucture of the resorance lines of sodum In this cese the ratio of the intensities of the two doserved hyperfine stucture componets is equl to therdio of the weigts ($2 \mathrm{~F}+\mathrm{H}$) of thehypefine sunctre levels of thetem $2 S_{2}$, wherel is unkown TheF values of thetwo hyperinestudurelends of theterm $2 \mathrm{~S}_{/ 2}(\mathrm{l}=1 / 2$ naid bel $+1 / 2$ and $-1 / 2$. Hence

$$
\text { Intensity ratio }=\frac{2\left(I+\frac{1}{2}\right)+1}{2\left(I-\frac{1}{2}\right)+1}=\frac{I+1}{I}
$$

Thus, if intersity raioisknown, wecancadaltenuder spanl.
When I les been datared thegfator and themageic momet of thenudas canbesdvedfromthemagitudeof thehyperfinestucturespiting by uing the thererica formlæ
Whenthehyparinestudurecomponests aredoseved detothesditingof both theterms ainBi line4722 \AA, thendso anandysis of thehypafinestucurecan dsoleadtothed\#emindion of nuderspain

Fig22 Hyperfinestucturefor Bi

When all the hypafine componets are fully resdved (like Bi) then contat havenulberdfferencesccarbetween pars of componets

$$
c-b=e-d
$$

and

$$
d-b=e-c
$$

Thesedfferences corespandtoleid dfferences inthelover and the upper stae respedively, Wearangetheweverunbes of thehypefinecomponetinasqure aray such hat dangeachrowanddangeach cdumthey inceme(or dereme) reglaly andthedfferences beweenthemintwo sucessiveronsandsuccessive columsisconstat. Then all thecommenets inany row corespond to theserre upper hyparinestrutureled, whileall thosein any colum corespond to the sare lower hyperinestucture lead. This will endde us to constut hyperine stuctreenegy for theupper adthelonerstes

1812BadkGarknit EffectinHyperfineStucture

When weapdy strongmandic fied \vec{B} so the velocity of preession of \vec{F} dat the fidd dreetion becrnes geater then that of \vec{j} and \vec{l} dat \vec{F}, an effeet like Pascen-Bakk effet will ocars in the hyperfinestucture petten This effet is celled 'Bakk-Gansmit effert. Since, weak capding of $\vec{\jmath}$ add \vec{i}, the BakkGanknit effet coars t fidds morh lower then those t which PascherBak effetsetsinfinesturture
Morepreisdy, mageicfiedwhichisweekforfinestudureisastrongfiddfor hyperfinestudure Inthistypeof fiddthecaplingbewneen andï breasdown andeach preesses independetly aand \vec{B} withquatized componets dang the fieddrection Thesecormanetstakevausj] and $M_{l} \frac{h}{2 \pi}$ respeetively. where

$$
M=, J-1, J-2, \ldots,-J
$$

and $\quad M=, I-1,1-2, . .,-1$
Thetdd interationenegy of theatomconsiss of
(i) theenegy of interationbekveen \vec{J} and \vec{B}
(ii) theenegy of interationbetveen $\vec{i} \operatorname{add} \vec{B}$.

By Lamor'stherem, thearglar veloities of peressionof \vec{j} and \vec{l} aegivenby B times the corespondng raios between the magnic nomert and angla monetumThats,

$$
\omega_{J}=B g_{J} \frac{e}{2 m}
$$

and

$$
\omega_{l}=B g_{l} \frac{e}{2 m_{p}}=B g_{l} \frac{e}{2 m} \frac{m}{m_{p}}
$$

1813Sef-LeaningExacis- II

Q1 Find the expeted number of componets in thehyperfinestucture of the spedrd line corespond to nuder spin $1=3$ and designtions DD_{32} and $2 P_{12}$.
Q2 What isthedegeneray of thefinestuxtrecomponets of 3D $_{3}$.

1814Summay

 Similaly, Stak effet gives undastanding of dedric effet for same It exdans thebshaico of moleales deto presenceof aneternd detric fidd Itisdsoan apdicaion of quatumneedaricd aproaches Evenit canbedserved insemidasicd gaund Hypafinespiting is very merhuefu in atrqhysic, nuder tedndogy andquatumoompting

1815Goman

MHtipld: A grapof spedral lines
Dipdenomert: Matherdicd podit of thespprtion of theenos of ad ple andthemagitudeof thedages (insimdestag).
Balmerssies: Spedrd enissionlines of thehydogenatom
Eledric fidd: A vedor fied that asocites to each poirt in sparetheCailonto farce
Nuder nagitan: Magneic diple momets of heavy patides such as nudemsandatonicrude.

1816Anaves toSdi-LamingExariss

AmastoSifLemingExacisel

Arsl:Then=3led corniss 9 stdes

$$
\begin{aligned}
& \text { B }, 0,0, \beta, 1,-1,1,1,1, \\
& \text { B, 1, 1, , }, 2,-2,1,3,2-1, \\
& \text { B, 2, , } 3,2,1 \text { and } 3,2,2
\end{aligned}
$$

Here evay ste represts $\mid \mathrm{I}, \mathrm{m}, \mathrm{n}$ is pingide qartumnunter, I is aimuthe quatumunber admismageic q etimunter fter giditing

Anc2 First ard Stak Effec godit then $=3$ into 5 ableds with dfferet degentay.

Degreacy
1
2
3
2
1

Staes
13, 0,2
$\beta,-1,2,13,1,2$
$\beta,-2,1, \beta, 0,2,3,2,2$
$|3,-1,1| 3,1,1$,
($3,0,1)$

Ans3 Theirteradionbetweentheossillatingdrageandtheeterna detricfidd gives risetoatem $H_{b}=\mathrm{CFX}$,

$$
H=H_{0}+H_{P}=-\frac{h}{4 m \pi} \frac{d^{2}}{d X^{2}}+\frac{1}{2} m \omega^{2} X^{2}+q E X
$$

(a) Letustckeavaiddedhagey $=X+\infty \equiv / m)^{2}$

$$
H=\frac{h^{2}}{8 m \pi^{2}} \frac{d^{2}}{d y^{2}}+\frac{1}{2} m \omega^{2} y^{2}-\frac{q^{2} E^{2}}{2 m \omega^{2}}
$$

This is Hamiltorian of a hamric osollatar from which a contart, $\mathrm{q}^{2} \mathrm{E}^{2} \omega^{2} 2 / 2$ missudrated Sa, eatenegy eigendueis

$$
E_{n}=\left(n+\frac{1}{2}\right) \frac{h \omega}{2 \pi}-\frac{q^{2} E^{2}}{2 m \omega^{2}}
$$

(b) Since, if we apdy weak detric fied we can calale tems corespondingto H_{3} कpeturletion
Firstarder corretioniszeroandsecondardercoretionis

$$
E_{n}^{(2)}=-\frac{q^{2} E^{2}}{2 m \omega^{2}}
$$

Tdd enegy $=$ ga indsteenegy + perturbederegy

$$
E_{n}=\left(n+\frac{1}{2}\right) \frac{h \omega}{2 \pi}-\frac{q^{2} E^{2}}{2 m \omega^{2}}
$$

Thisareeswithpreviasrealt

AravastoSdf-LamingExacise II

Ansl: Fortheste D_{32}, wehave
$J=32.1=3$
AllowedhyparinestucturequatumninerFare
F= $=\mathrm{H}, \mathrm{J}+\mathrm{H}-1, \ldots,|\mathrm{~J}-\mathrm{I}|$
Forstale ${ }^{1 / 2}$, weg
$\mathrm{J}=1 / 2 \mathrm{l}=3$
$\mathrm{So}, \mathrm{F}=72,52$
Ans2 $\mathrm{J}=3 \mathrm{I}=32$
Theallowed vaues of hypafinestridurequatumnumberFae

$$
\begin{aligned}
& \mathrm{F}=\mathrm{H}, \mathrm{~J}+\mathrm{H}-1, \ldots,|\mathrm{~J}-\mathrm{I}| \\
& =\frac{9}{2}, \frac{7}{2}, \frac{3}{2}, \frac{3}{2} .
\end{aligned}
$$

Thus there are 4 hyperfinestucture componets whose desigetiors which ae

$$
\frac{9}{2} D_{3}, \frac{3_{2}^{3}}{2} D_{3}, \frac{3}{2} D_{3}, \frac{3}{2} D_{3}
$$

1817Exacis

Q1 Whatdyouundestandabatnuder spinandhypefinesditing?
Q2 WhtisStakEffet?
Q3 DisassweakfiddStakeffet

Q4 DisassstrongfiddStakEffet
Q5 Exdaintrasitions of Stak effetcomponetsinhyotogen
Q6 Exdainasimdevaytodłermineniderspin
Q7 Howcannemeareistopesinanderert?
Q8 WhatisBakGandriiteffet?
Q9 WhtisthedfferencebeweenGardniteffetand Pastanbarkeffet?
Q10 Gvesomearesutichhesapdicdionforhypafinestucture
1818AnsMas toExaris
Ans1: Seesection1810
Ans2 Sersetion181
Ans3 Sersetion182
Arb4 Seesetion 183
Ans5 Seesection183and184
Ans6 Seesetion186
Ans: Seesection187
Ans8 Seesection1812
Ans9 Seesection1812
Ans10 Seesection1814

ReferencesandSuggested Resding:

1 HW. Krota, Mdeelar Rodion Speetra, Dover, Naw Yak (pudished in 1992)

2 H. Friedich Theoreical Atomic Physics Springer-Velag Belin (pulished in1990)
3 TheModanTheries (1800-1950). ArwicanInstituteof Physics
4 HardAA. Enge, Introdutionto Nuder Physics AddsonWesey (pidished in1966)
5. NaredneZatili, QatiumMestarics ConceqdsandApdicdions

UNT-] IntroduciantoMdealar Spatrc

Stuctureof theUnit

19.0 Ojectives

191 Introdution
19.2 IntrodutiontoMdeala Spedroscapy
19.3 Sepadion of Electroric and Nuder Moian The Bam-Oppememer Approxindion
19.4 Types of MdealarEnagy Staes andAssoitedSpeetra
19.5 Types of Mdeala Speetra(Cratateisicsof bandspeetra)
19.6 Regias of Mdealar Speetrum
19.7 Sigra-to-NaseRdioandReedvingPoner
19.8 Withof Speetrd Line

199 Intersity of Speedrd Line
910 SeffeemingExerise
19.11 Summay
19.12 Gossay
19.13 Exerase

Refernces andSuggetedRedings

1900dective

Thedgedive of this deader is to make familia the reades with the berics of noleala spedroscapy i.e interation of radtion withthemdeales of matte. Theevistence of vaias enegy lerds of moleales inthesdids, thespartion between these enegy leves and the regions of eistence of spedra in the dedramegic spedrumill bepresented Thebaic idearegading thefetures of molealar speedrardatedtoinstumetdionwill dsobeprested

191Irtrodutior

Intins eneper themesteares n neena spetroscopy andineenegy leids of themdedes areeydained Thearignof enegylends of thendeales intheorytds, thesepadionbetweenvariasengy leids and theregians of the speetru(Far IR, NR and UV-Viside) accompenying the trasition between theseenegy leids aredsassed Somefectures of nolealar spetra in view of insturetdian likesiga-to-naserdio, width of speetrd lime, resdving powe, ec aeexdaned

192IItrodictiontoMdeular Spetroscopy

The interation of Eletronzgndic radaions with matter is called ∞ speetroscopy. The deetronagndic raditions at as a probe to datain the informaion abat the atons and moeales which are very sral enaigh to see Theinteration of radaionwithm\#ter caninfluencethem\#ter or/andraddions This interation of radidionwithmatter provides theinformaiondant thenatter i.e its consiturts like atons ar moleales, tinding beweentheatans, stucture and shape of thendeales ec. Themdeala spetra aredfferet to as that of tomic spetra Thetomic speetra containdscreespeetrd linesandhencecdled as line spetra The molealar spetra are camplicaed as compared to tamic speetra These speetra contan a nunber of lines separted by snall sparing fariningaband Dutothis reesonthendeala spetraarecdledasbandspetra Theintenity of line variesfromoneedgeto anther edbeof aband

DidtoricMdeale

193 Sqpardion of Eletraric and Nuder Mdiar : The Bar-Oppasheiner Approintior

Theeregyleds in mealesardffertacampredto andomInndeales nuder nation dso cantribtes to enegy leves (radiond and vibrtionleds). Theallonederagy ledscanbedtainedbysdvingtheSdrodngrequtionas

$$
H_{p}=\mathrm{E} p
$$

Intherrodeales, thenude add dedrons areintrading Thededrons arevery ligt patides acompredto nude. Therfarethemotionof detrons and nude aeconsidreedtobespprtedto goodaproximation Thissppadion of dedraric and nuder mations is called a Bom-Opperheiner aproxindion So by using thisaproximationtheSdrodngerEqutioncanbesd vedinthosteps.
1 Thewareequionissd vedfor dectroric motionby considzingnude areto fixed
2 After thisthe weve equition is sol vedfor themation of nude and theigen velues of eletroric nave eqution are considred to be pat of petertid enegy.
TheHanilturianforamoealeconsistingofj nude andi eedronsisgivenby

$$
H=-\sum_{j=1}^{m} \frac{h^{2}}{8 \Pi^{2} m_{j}} \nabla_{j}^{2}+\sum_{i=1}^{n} \frac{h^{2}}{8 \Pi^{2} m} \nabla_{i}^{2}+V_{n e}+V_{e e}
$$

Wherefirstermof L.H.S. istheqpertorforkindiceregyfornude, seandtem is the qeardor for kineic enegy qperdor for eletrons, third temis paterid eragy fundionfornuder-nder interaions, farthtermistheptertid enegy fundion for the nuder-dectron interation and thelat termis deto potertid enegyfundionfor detroneledroninterations

By considaringthenude inafixed position, thekindicenegy of nude is taken あzeo and V_{m} is treted a contat. So the Hamiltorian for the edetron will be

$$
H_{e}=-\sum_{i=1}^{n} \frac{h^{2}}{8 \Pi^{2} m} \nabla_{i}^{2}+V_{n e}+V_{e e}
$$

TheNuderHenviltarianisgivenby

$$
H_{n}=-\sum_{j=1}^{m} \frac{h^{2}}{8 \Pi^{2} m_{j}} \nabla_{j}^{2}+V_{n n}
$$

Sothetod Haniltarianisgivenby

$$
H=H_{n}+H_{e}
$$

Nowaccordng to Bon-Oppertiener, the wavefundion of themdealecanbe wittenæ prodrt of detroric andnuder wavefuncions

Let φ is the varefuntion of the roleale and φ_{e} and φ_{n} are the naveundionsof detronsandthenude so,

$$
\varphi=\mathcal{P}_{\mathrm{e}} \varphi_{\mathrm{n}}
$$

LeEisthetad eigenvalueof thetad eigenfundionthen

$$
\begin{aligned}
& \mathrm{H} \varphi \neq \varphi \\
& \mathrm{H}\left(\varphi_{\mathrm{e}} \varphi_{\mathrm{n}}\right) \equiv \mathrm{E}\left(\varphi_{\mathrm{e}} \varphi_{\mathrm{n}}\right) \\
& \quad\left[-\sum_{j} \frac{h^{2}}{8 \Pi^{2} M_{j}} \nabla_{j}^{2}-\sum_{i} \frac{h^{2}}{8 \Pi^{2} m} \nabla_{i}^{2}\right] \Psi_{e} \Psi_{n}+\left(V_{m n}+V_{n e}+V_{e c}\right) \Psi_{e} \Psi_{n}=E \Psi_{e} \Psi_{n}
\end{aligned}
$$

Using

$$
\begin{aligned}
& \nabla_{j}^{2} \Psi_{e} \Psi_{n}=\Psi_{e} \nabla_{j}^{2} \Psi_{n} \\
& \nabla_{i}^{2} \Psi_{e} \Psi_{n}=\Psi_{n} \nabla_{i} \Psi_{e} \\
& {\left[-\frac{h^{2}}{8 \Pi^{2} M_{1}} \nabla_{1}^{2}-\frac{h^{2}}{8 \Pi^{2} M_{2}} \nabla_{2}^{2}+V(r)\right] \Psi=E \Psi} \\
& \left(H_{e}+E_{e}\right)=-\left[\sum_{j} \frac{h^{2}}{8 \Pi^{2} M_{j}} \nabla_{j}^{2}+E_{e}+V_{n n}\right] \\
& -\Psi_{e} \sum_{j} \frac{h^{2}}{8 \Pi^{2} M_{j}} \nabla_{j}^{2} \Psi_{n}-\Psi_{n}\left[\sum_{i} \frac{h^{2}}{8 \Pi^{2} m} \nabla_{i}^{2}+V_{n e}+V_{e e}\right] \Psi_{e}+V_{n n} \Psi_{e} \Psi_{n}=E \Psi_{e} \Psi_{n}
\end{aligned}
$$

Inthedboveeqtion

$$
H_{e} \Psi_{e}=\left[\sum_{i} \frac{h^{2}}{8 \Pi^{2} m} \nabla_{i}^{2}+V_{n e}+V_{e e}\right] \Psi_{e}
$$

If theeigenvalues of thedectroric wavefundionis E_{e} then

$$
H_{e} \Psi_{e}=E \Psi_{e}
$$

So,

$$
\begin{aligned}
& -\Psi_{e} \sum_{j} \frac{h^{2}}{8 \Pi^{2} M_{j}} \nabla_{j}^{2} \Psi_{n}+E_{e} \Psi_{n} \Psi_{e}+V_{n n} \Psi_{e} \Psi_{n}=E \Psi_{e} \Psi_{n} \\
& \left(H_{n}+E_{e}\right) \Psi_{n}=E \Psi_{n} \\
& \Psi=\Psi_{e} \Psi_{v} \Psi_{r} \Psi_{t} \\
& E=E_{e}+E_{v}+E_{r}+E_{t} \\
& \frac{d^{2} f}{d r^{2}}+\frac{8 \Pi^{2} \mu}{h^{2}}\left[E-V(r)-\frac{J(J+1) h^{2}}{8 \Pi^{2} \mu r^{2}}\right] \mathrm{f}=0 \\
& V^{\prime}(r)=V(r)+\frac{J(J+1) h^{2}}{8 \Pi^{2} \mu r^{2}} \\
& R(r)=\frac{1}{r} f(r) \\
& -\left[\sum_{j} \frac{h^{2}}{8 \Pi^{2} M_{j}} \nabla_{j}^{2}+E_{e}+V_{n n}\right] \Psi_{n}=E \Psi_{n} \\
& \left(H_{n}+E_{e}\right) \Psi_{n}=E \Psi_{n}
\end{aligned}
$$

 क pat of patetid eregy for nuder notion So, the effetiveHariltrianfor moleala wavefundionis

$$
\left(H_{e}+E_{e}\right)=-\left[\sum_{j} \frac{h^{2}}{8 \Pi^{2} M_{j}} \nabla_{j}^{2}+E_{e}+V_{n n}\right]
$$

First theeqdionissdvedfor agivendedraic steof themdealefor arange of values of internder coardntes It will give velues of φ_{e} and E_{e} क a fundion of nuder coordntes After dataining E_{e} the doveSdrodngor wave fundion φ_{n} andėgen valueÉ aedłermined Differetsets of navefundion φ_{n} andeigen vaueÉ aedtainedfor ech detroric stateof themeale Finally,

194 Typesof Mdealar EnergystatesandespoiakedSpatre

Bontupeenener aproximonsaeaun monso neeearonsina moleale can be treated separdely fromthose of nude and thet the dectraric notiancanbesd ved by assumingthenude to befixed Thedectraicenegy E_{e} and nuder-nuder interation enegy then at ∞ an effective potetial for the notionof thenude.

Thenuder notioninamedealeisfuther dvidedintovibrtion, rodtion, addrandtiond mations Inthe aproxinationthedetroric, vibrtion radion and trandtion netions ae considgred to be indpendat The Haniltorian of molealesiswittenas

$$
H=H_{e}+H_{v}+H_{r}+H_{t}
$$

where

$$
\begin{aligned}
H_{e} \Psi_{e} & =E_{e} \Psi_{e} \\
H_{v} \Psi_{v} & =E_{v} \Psi_{v} \\
H_{r} \Psi_{r} & =E_{r} \Psi_{r} \\
H_{t} \Psi_{t} & =E_{t} \Psi_{t}
\end{aligned}
$$

Thetdd wavefundionis wittena

$$
\Psi=\Psi_{e} \Psi_{v} \Psi_{r} \Psi_{t}
$$

andthetad enegyisgivenby

$$
E=E_{e}+E_{v}+E_{r}+E_{t}
$$

For simplidty we here considr a datoric moleale The Sdrodnger nareequionfornuder motion of thedatanic modealeisa

$$
\left[-\frac{h^{2}}{8 \Pi^{2} M_{1}} \nabla_{1}^{2}-\frac{h^{2}}{8 \Pi^{2} M_{2}} \nabla_{2}^{2}+V(r)\right] \Psi=E \Psi
$$

where $\mathrm{V}(\mathrm{r}$) is the effetive poterid engy cartributed fromthenudas nudesinteradionandlectrariceregy stae, Ψ istheeigenfundionandE is the eigen value Thedoweeqdion canbetranfarmed into pola coadintes The radd patof thisequitionisgivenby

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{8 \Pi^{2} \mu}{h^{2}}\left[E-V(r)-\frac{J(J+1) h^{2}}{8 \Pi^{2} \mu r^{2}}\right] R=0
$$

wheej isthetad anglarmontumof themolealeardj $=0,1,2,3,4$......
Leusnowconsidar

$$
R(r)=\frac{1}{r} f(r)
$$

Thenthedboveeqtiongtconvetedirto

$$
\frac{d^{2} f}{d r^{2}}+\frac{8 \Pi^{2} \mu}{h^{2}}\left[E-V(r)-\frac{J(J+1) h^{2}}{8 \Pi^{2} \mu r^{2}}\right] \mathrm{f}=0
$$

Le $\quad V^{\prime}(r)=V(r)+\frac{J(J+1) h^{2}}{8 \Pi^{2} \mu r^{2}}$
Here E_{e} is the igen value of the dectroric naverundion V_{m} is the paterid engy de to nudernudes interations and the tem $\frac{J(J+1) h^{2}}{8 \Pi^{2} \mu r^{2}}$ is de to certrifugl paterid enegyaisingdetosypeposition of rodiond mationanthe vibriionsof patides Thevaidion of petetid $\mathrm{V}(\mathrm{r})$ is $\mathrm{s}_{\text {shownbal }}$

If thenuder vibrtionsaresmall osilldiarssoV(r) canbeeypandedbyTay|o's spieses

$$
\begin{aligned}
& V(r)=V\left(r_{e}\right)+\left(\mathrm{r}-\mathrm{r}_{e}\right)\left[\frac{\delta V(r)}{\delta r}\right]_{r r_{e}}+\frac{1}{2}\left(r-r_{e}\right)^{2}\left[\frac{\delta^{2} V(r)}{\delta^{2} r}\right]_{r=r_{e}}+\ldots . . \\
& \text { If } \mathrm{V}\left(\mathrm{r}_{\mathrm{e}}\right)=\text { Oaddtr } F_{e} \frac{\delta V(r)}{\delta r}=0, \mathrm{so} \\
& V(r)=\frac{1}{2}\left(r-r_{e}\right)^{2}\left[\left[\frac{\delta^{2} V(r)}{\delta^{2} r}\right]_{r=r_{e}}\right.
\end{aligned}
$$

Theptertid enegy is a pardbolic fundionner $r={ }_{\mathrm{f}}$ for snall dsdacenert The moleale in this cese can be treated a hamric osilldion Here $r=F_{e}$ is the equilibiuminte-nudersspardionandtthisthepterid engyismirimom If nuder-nuder interation is igncred then $\mathrm{V}\left(\mathrm{r}_{\text {min }}=\bar{E}_{e}\right.$ When tho atons ar brougt neare to formastddendeale, thededraric enegy dereemes radidy while the eregy of repulion ineses For catain internder sepprdion the tod partid enegy ismirimemi.e forr- $r_{\mathrm{e}} \mathrm{V}(\mathrm{r}) \neq \mathrm{Min}$ Itiscalledseadilibium internuder position The tho rude vibrde dat their equilibrium position dangtheirte-nuder axis anditdsordtes datthecertreof nass SO , wecan condudenowthefdlowingfromtheptertid eregy $\mathrm{V}(\mathrm{r}$):
1 Theenegy t minimomof $V(r)$ is colleds detraric enegy E_{e} if thende arefixed
2 The enegy of nuder vibrions tant the nuder position r_{e} under the pateriad funtion $V(r)$ is called a vibrtion enegy E_{v} and is given by quertumumberv.
3 Theeregy of rddion of thendealeE, isgivenby q artumnmerJ. Sothetadd enegy of themdealeisgivenby

$$
\mathrm{E}=\mathrm{E}_{e}+E_{v}+E_{r}
$$

Intermsof vaven inber

$$
\frac{E}{h c}=\frac{E_{e}}{h c}+\frac{E_{v}}{h c}+\frac{E_{r}}{h c}
$$

σr

$$
\bar{v}=\bar{v}_{e}+\bar{G}(v)+\overline{\mathrm{F}}(v, \mathrm{~J})
$$

where
$\bar{v}_{e}=$ Electraicterm
$\bar{G}(v)=$ Vibrdionterm
$\overline{\mathrm{F}}(v, \mathrm{~J})=$ Rddiantem
As a restt a maleale hes number of quatized elecroric leads The trasitionbedwenthodedraric ledds resits inaradaionsthat fall intheUVViside region Wttin each detroric lead a number of vibrtion enegy ledds evist The spacing batween these leds derreses with increaing vibrtion quatumnuber (v). A trasitionbetweenvibrtionlevds restlts intheernission of raddions that fall in the neer Ifrared region Also ecch vibrtion levd is asoided with a number of rodiciond leads. The spading bewwen theseleuds incees with inceese in roddiond quatumnumber. A trasition between two raddiond leds gives riseto enission of raddions that fall in thefa Infrared region

TrasitionsInMdealar EnagyLeds

A speetral lineinech bandarises detockangeintheenerges $\mathrm{E}_{e} \mathrm{E}_{v}$ and E_{1}

$$
\bar{v}=\frac{E^{\prime}-E^{\prime \prime}}{h c}
$$

$$
\begin{aligned}
& \bar{v}=\frac{E_{e}^{\prime}-E_{e}^{\prime \prime}}{h c}+\frac{E_{v}^{\prime}-E_{v}^{\prime \prime}}{h c}+\frac{E_{r}^{\prime}-E_{r}^{\prime \prime}}{h c} \\
& \bar{v}=\bar{v}_{e}+\bar{v}_{v}+\bar{v}_{r}
\end{aligned}
$$

Here $\bar{v}_{e}>\bar{v}_{v}>\bar{v}_{r}$.
Sonowsummizethefdlowing
1 Foragivenband \bar{v}_{e} and \vec{v}_{v} arecontatwhile \bar{v}_{r} dangesfromlinetoline The positionintheband $\bar{v}_{v}=$ Oiscalled कciignof band
2 Forasystemof banos \bar{v}_{c} isconstatwhile \bar{v}_{v} danges frombandtoband The poitioninthesstem $\vec{v}_{v}=$ Oand $\vec{v}_{v}=$ Oiscalledsytemarign
3 Thedectrariclandsytemliesin UV-Visideregion
4 The vibrdion-rddion band aises de to trasition between tho vilraiond leuds of the same detroric stae The lines of the band realt from the trasition bewween roddiond leads of onevilariond ledd to the radtiond levds of dher vibrdiona levds Suchbandlies innear Infraredregion
5. For a given detroric and vibrdiona lead \equiv same, the trasition between tworddiond levdsgiveniseto prerddiond bands Theselinesfall inFar Infraredregon

195 Types cf Mdealar Spedrc (Cheraderisics cf Band Spadra)

Thendeala speetra unde low dspersion apper as cortinuas bands Theintenities of a band dereeme fromone edgeto dhes. With an instumert havinghighresdvingpower bandspedracefandtohaveitend snutureas

- Each band is composed of lage number of lines haing vey small separtions There is a strong werlaping of the lines in tighe wadengh regioni.e ner bandheed
- Threeistagapof banosinadfinitesequace
- Thebanosareveydosetoerchother soformingabandsystem

196Regionsof Mdealar Spastrun

Thendeales have eetroric, vibriona androdiond leals All these levds arequatized Thetrasition betweenthereenegy leds deto absantion arenission of enegy will realtinnumber of speetrd lines inthespednumof the
noleale The interations of noleales with detronagetic radaions mainly fall infollowingregions

If theengy of theexited steteis E^{\prime} and thegrandsteis $E^{\prime \prime}$ then the frequncy of thespedrd lineisa

$$
\begin{aligned}
& v=\frac{E^{\prime}-E^{\prime \prime}}{h} \mathrm{~Hz} \\
& \bar{v}=\frac{E^{\prime}-E^{\prime \prime}}{h c} \mathrm{~mm}^{1}
\end{aligned}
$$

1 U-Viside or Eledroric Speetra The dedroric trasitions in a moleale reaire enegy of the crder of $5-10 \mathrm{eV}$. The wavenumber and wardengh corespondingto $5 \mathrm{E} V$ is

$$
\begin{aligned}
\bar{v} & =\frac{5 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34} \times 3 \times 10^{8}} \\
& \approx 4.04 \times 10^{6} \mathrm{~m}^{-1} \\
\lambda & =\frac{1}{\bar{v}}=\frac{1}{4.04 \times 10^{6}} \\
& \approx 25 \times 10^{-6} \mathrm{~cm} \approx 2500 \mathrm{~A}^{\circ}
\end{aligned}
$$

ThisliesintheUN orshatwavengthvisideregion Ineachdedroric stae there are a number of poside vibrdiond stes Also in a vibrtiond ste thereisast of rodiond stes
2 Nea InfraredSpedrac Vibrdiord-rodiond spedra Thevibrtiond levds are separted from each other by an enegy gap of ards 0.1 eV . The naverunber andwavienghcorespondngto $01 \mathrm{E} V$ is

$$
\begin{aligned}
\bar{v} & =\frac{0.1 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34} \times 3 \times 10^{8}} \\
& \approx 8 \times 10^{4} \mathrm{~m}^{-1} \\
\lambda & =\frac{1}{\bar{v}}=\frac{1}{8 \times 10^{4}} \\
& \approx 12.5 \times 10^{-6} \mu \mathrm{~m} \approx 125000 A^{\circ}
\end{aligned}
$$

Thesetrasitions fall intheneer Iffrared region Theviladiond trasitions aedwass accomparied by dangein rodtiond lexds So such speetra are calledasvibriord-rodiond speetra

Energy level diagram

3 Far Ifriared Speetra or Pre rddiond Speetra The vibrdiond levds are seperted from each ther by an enegy gip of ardr 0.00 EV . The waverumber andwavelenth corespondngto $0.05 \mathrm{E} V$ is

$$
\begin{aligned}
& \bar{v}=\frac{0.005 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34} \times 3 \times 10^{8}} \approx 4040 \mathrm{~m}^{-1} \\
& \lambda=\frac{1}{\bar{v}}=\frac{1}{4040} \approx 2.47 \times 10^{-4} \mathrm{~m} \approx 2470000 \mathrm{~A}^{\circ}
\end{aligned}
$$

197Sigel-tr-NbiseRatioandResdingPang

1 Siga-to-Naise Raia In speetroneets some tectronics ampificion devices are usedto magify thesignd prodreed by thedzedor, therecorded spedtum hes a bakgrand of random flutudions cased by sprias detroric signds prodreed by thesarceor dłedor or may begrerded by amdifying davice These flututiors ae called as "noise". In arde that a spedrad lineshould apper ©such and canemily bedstingishedfrimnose theirtersity of spedral lineshaldbetlemtheeor far tinesthtt of nase
sigd. By usingcomter avargingtedriquethesigd-tonderdio canbe improved
2 ResdvingPone: Theresd vingponer is rededtoddility of thespedrometer todstingishbewwendffere tspedral linessituted doseto each dher. By dereesing the sit widt of the speetroneter the resdiving power can be improved Thesersitivedtedtor candsoerancetheresd ving powe.

198Wdihof Spatral Line

When we record the absondion or emsson speetrum then we find lwoads speetrd lines insterd of stap lines The design of the speetroneter can impovetheredving power bitthewith of the spedrd lineof any tomicor noleviar speetum cant be redreed bolow an irheret widh of that line This widh aises de to non-shap singe enegy leds of the tans or moleales Thereis awith of engy of thestainudvesinthetransion The followingfatarscartibutetothewidhof aspeetrd line
1Cdlision Broadaring Intheliqid and geses phees the tons and modeales ae in cortinuas notion and they collide with each dher. Die to these collisions adangeinthededraric, vibrdiond androdiond levs takepace casing the broadring of the spetrd lines In core of sdids the speetra are shaperacompredtoliqidorgesespleses
2 Dapple Brosdring Dieto ration of ndeales in liquid and geses pheses thereisaDopder shittinthespeetral line Detothissift thelines getbroadr.

3 Neturd Brosdaing In the dons or moleales which are to rest the energy lends are not shap as sted by Héserberg uncetainty piniple Accordng to this pinipe if the sytemerist in an enegy state for a time

$$
\Delta E . \Delta t \approx \frac{h}{2 \Pi} \approx 10^{-34} J s
$$

HerehisthePland'sconstat. Thelower enegy steeissarpwhileupper stateis notshap Sothespeetrd linehesfiritewidhas

$$
\begin{aligned}
& \Delta E=\frac{h}{2 \Pi . \Delta t} \\
& \Delta v=\frac{1}{2 \Pi . \Delta t}
\end{aligned}
$$

199Intersityof Spatra Line

Theintensity of aspeetrd linedependthefdlowingfatas
1 Trasition Prodadility. The transition prodadility is redted to fat that the tranition beween two staes is alowed or fardidan i.e the tranition probadility is nonzero or zea. The prodadility of trasition is related to drivetion of sdetionnuesforthetranitionbedveentwoleuds
2 Pquilaion of two stass The intenity of a spedrd line dapends ypon the ppoldion of that sdefromwtichthetrasitiontakespare
SupposethreareN moleales dstribted ove thostes of enegies $a \mathrm{E}_{1}$ and E_{2} suchthat $\mathrm{E}_{2}>\mathrm{E}_{1}$, thenfromstdistica meetarics

$$
N_{1}=N e^{\frac{-E_{1}}{k_{1}}}
$$

$$
\begin{aligned}
& N_{2}=N e^{\frac{-E_{2}}{k T}} \\
& \frac{N_{2}}{N_{1}}=e^{\frac{-\left(\xi_{2}-E_{1}\right.}{k T}}=e^{\frac{-S E}{k T}}
\end{aligned}
$$

3PathLengh of Sample Thesampledssabstheradaiors which reinidat onit If thepth of thesamdeis inceredthen roreandmereradtionwill be assarbed Thedbsarbarceof asamdeisgivenby
$A=\log \left(\frac{I_{0}}{I}\right)=\varepsilon c l$
$\mathrm{C}=$ Concertraion
$\varepsilon=$ Mdealardsondioncofficiet
I =Pathlengh

910Saf LamingExacis

Q1 Wymedear spedraarecaledrbandspedra
Q2 Witethetad waveundionforamolealeandeydainit
Q3 Witethearde of wavdenth of erchrejon of ndeala speedra
Q4 ExdanSignd-to-Nóserdia
Q5 Exdantheirtenity of aspedrd line Onwichfatartheirtensity of the linedapends?

1911Summay

Theunthesintroureetheconcepts ndelar enagyleuds Howthereenegy leves aisedetomtud interation betweentheatons of themereale Thetad patetid enegy fundion of the moleale is colalied and then the Sdrodnger have eqution is solved by uing Bam. Oppeshenmer aproxindion The nolealehæthretypes of enegy levdsi.e detraric, vibriond andrudiond enegy levds Thetranitions betweentheselevds giveriseto ndeala speetra i.e band spedtra In the late seetion of unit ardr of enegies induing the trasitions bedveen these levds and the coresponding rejors of their fall are dsassed Findly thereisadsassiononthewidt of speetrd lineardtheiraign awdl howthespedronter will beddeto recordthespeetral linepreisdy.

1912Gowary

Band: Grapof enegyledsseppated bysi\#l enegy gep
Spadra: Plurd of spectum
Spestronter: Insturexttoreecrdthespeetim
Haniltorian: Tdd enegyqperdorinquatummedarics
Eignvelue: Vaueof aphysicd quatity inquatummedarics
Cetrifugs: :Tonarosthecertre
Intradior Influaningbyaforce
Wcth: Inteval
Nbise: Unwatedsigna
Resdve: Keppspardion

Spurias Dupicte

1913 Exarcis

Q1 Whatisthedfferncebedweentomicandmeala speetum
Q2 Whtiscrignof bandspeetraof mdeales?
Q3 ExdantheBam-Opperhemer aproxination
Q4 Witethetod HaniltorianforaMdeale
Q5 Witetheeffediveptetid enegyfundionfor andealeandeydanit
Q6 Witethevaiasregions of ndealar speedra
Q7 Whit is the crode of eregy of quata of vaias regions of molealar speetrm
Q8 Witetheada of frequanies of dfferetregon of noleala speetra
Q9 Drantheenegylead daramof ndealarleuds
Q10 Witethecharateisics of moleala speetra
Q11 HowtheSigrd-to-Nasecanbeimpoved?
QD What istheres ving poner of spectroneter? Howtheresd ving power can beimproved?

Q13 Exdanthewidthof aspedrad line Exdanthevariasfatarsonwtichthe withof linedpenos ypon?

ReferencesandSuggesedRexing:

1 Colin N. Bansel ad Eaine M. McCar Mdeular Speetroscopy, Tata Mcgran-Fill EdrctionPiviveLimited NewDdhi, 1994.
2 J. M. Hdias ModamSpedroscopy, JdnWiley\&San, Engad 1987.
3 S.L. Gyda V. Kumarad R.C. Shama Eleverts of Spedroscopy, Progil Prakaten, Merut, 1990
4 Raj Kumar: Atomic \& Mdealar Speetra LAGR, Keedr NathRamNath, Mert, 2007.

UNT-2 MicroveneSpatroscap

Stuctureof the Unit

200 Ojectives
201 Introdrtion
20.2 Salietfetures of Rodiord Spedta

203 Mdealar Reqiremetfor Rodiona Spedra
20.4 TheMdealeaRigidRaddor: Exdantionof Rodiord Speetra
20.5 Thelntenities of Spedrd Lines
20.6 Didamic MdealeæaNon-RigdRodtor
20.7 IstapicEffect
20.8 Rodicion Speedraof Pdydaric Mdeale

209 Rodiond spedraof SymmeticTopMdeales
20.10 IllustriveExandes

2011 Saf LemingExerise
20.12 Summay
20.13 Bidiogady

2014 Exerise
Refernes andSuggetedReedngs

2000biedive

This unt is designed tole reades with the howedge of prenotiond speetra of noleales The baic fetures of the moleala speetra, enegy of rodtiond lexds of a datomic moleale a rigd and nonrigid ratar and the trasition between these enegy states will be exdaned The varias types of polytomic modeales and the rediond spedra of some simple polydomic nolealewill asobedsabsed

201Introductio

The pre raciona spetra ae shown by those raelues whan rave pemanet detric dpole monet. The saliet features of the pre radiond speetra, rodiond speetra of a rigid and narrigid datomic moeale intersity of speetrd lines and seletion rues for trasition beween rodiand levels are dsassed Thevariastypes of polytamic moleales andthespeetraof symmenic topmedealeaxpained

20: SaliatFeturesof Rdational Spatrc

1 Thespetrd lineswhichaedosevedinfar Infraredregioninthewandength range geater then 209mare de to tranitions beveen rodiand enegy leds of thendeale
2 Thedangeintheretransionsis of thearde of 0.005 E V .
3 Orly thosemolealeswhichhavepermenet dectic dpdemanet cangive riseto rddiond spedra It isthebreic reqirenertto showrddiond spedra bytheroleales
4 The homonder moleales like $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$, ec do not show radiond spedra

5. Ony theheerondear mealeslikeHF, $\mathrm{HC}, \mathrm{HBr}$, ec showtherddiona spedra

6. Therddiond speetracedsservedinabsoptionnme
7. Fromthe speetrd lines of roddiond spedra the momert of inetia of the modealeardinter-nuderdstancecanbecdalłed
8 The plar moleales irterat with dectric fied of Iffrared radaions to dosabenegyandwill showdbsantionspeetra
8. The rodtiond speetrd lines are doserved it equidstace on waver unber scde

20: Mdealar Requirenentfor Rodational Spadrc

The besic requiremet for the evission or dosondion of radations by trasitions between rodtiond enegy states is that the roleale mot have a pemment letric dplemonet. Thiscanbeexdanedonthebesisof theory of
dasicd detrodyremics Accordngtothistheery arddingndealecanleedto enission of raddions if thedplemanet of heto-nder nolealedanges All hero-nderndealeshaveapemantdedric dplemanet. Duringthe radion of the modealethis dplemonet danges peiodcally in a patialar dredionwithfrequany of roddion $v_{v o l}$ of themedeale, somper dassicd theary of eletrodynemicsit will enit theradaionof frequency $v_{\text {rot }}$. The hono-nuder roleales have no detric dpde momert and hence thee is no evission of raddions

Simila to enission the Ifriared radaions can be dbsabeed by radding moleales if they havepemanet lectricd polemonetispresat Themodeales interat with osillding detric fidd of theinidat raddion to dbsab roddion eregyandprodreabsondionlines

Supposethededricfiddof thededronmegtic navetany instat of time pushes thepositiveiors intheypraddrectionandmegtiveiorsinthedbwnerd dreetion As a realt the moleale will rodte fater. If frearncy of radaions cainides withtht of meleala roddion, theninthenet half gyde themdeale will rddefexter a comparedto previa shaf cyde As arealt themedealewill beexited to tigher redtiond stae So the absandion speetrumis arly dosevved whenthemelealehesedetricdpdenamet.

204 TheMdealeas Rigid Rotato : Explanetion of Rodaiand Spatrc

Le us considg ahteronuder datomic molealehaving masses of tho tonsæm. andm. $_{2}$. Thebondbetweentwoatonsistigdi.e nd fleside Letrbe dstacebedweentwo tans which revein constat. Le r_{1} and r_{2} bethedstance tans m and m_{2} fromthe certre of nass C of the ndeale The moleale is radding dat an axis pessing thraigh the certre of nass and peperdalar to inter-nderraxis Fromthepropety of cetreof nassa

$$
\begin{gathered}
m_{1} r_{1}=m_{2} r_{2} \\
r=r_{1}+r_{2} \\
r_{1}=r-r_{2} \\
m_{1}\left(r-r_{2}\right)=m_{2} r_{2}
\end{gathered}
$$

$$
\begin{aligned}
& m_{1} r=\left(m_{1}+m_{2}\right) r_{2} \\
& r_{2}=\frac{m_{1} r}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

Similaly $\quad r_{1}=\frac{m_{2} r}{\left(m_{1}+m_{2}\right)}$
Themomed inatiac themdealedbattheaxis of roddionisgivenby

$$
\begin{aligned}
& \qquad \begin{aligned}
I & =m_{1} r_{1}^{2}+m_{2} r_{2}^{2} \\
I & =\frac{m_{1} m_{2}^{2} r^{2}}{\left(m_{1}+m_{2}\right)^{2}}+\frac{m_{2} m_{1}^{2} r^{2}}{\left(m_{1}+m_{2}\right)^{2}} \\
I & =\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\left[m_{2}+m_{1}\right] r^{2}=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)} r^{2}=\mu r^{2} \\
\text { Where } \mu & =\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}
\end{aligned}
\end{aligned}
$$

μ iscalledaredredmassof thendeale

In arda to find the energy of rodtion of moleale we have to sdve the Sdrodinga'swaveequitiona

$$
\nabla^{2} \psi+\frac{8 \pi^{2} \mu}{h^{2}}(E-V) \psi=0
$$

Intems of sphricd plarcoordnatestheSdrodngr waveeqdionis

$$
\frac{1}{r^{2}} \frac{\delta}{\delta r}\left(r^{2} \frac{\delta \psi}{\delta r}\right)+\frac{1}{r^{2} \operatorname{Sin} \theta} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \psi}{\delta \theta}\right)+\frac{1}{r^{2} \operatorname{Sin}^{2} \theta} \frac{\delta^{2} \psi}{\delta \phi^{2}}+\frac{8 \pi^{2} \mu}{h^{2}} E \psi=0
$$

Sincer isfixedsothedfferetidionwith respeettoraretakenæzeo

$$
\frac{1}{\operatorname{Sin} \theta} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \psi}{\delta \theta}\right)+\frac{1}{\operatorname{Sin}^{2} \theta} \frac{\delta^{2} \psi}{\delta \phi^{2}}+\frac{8 \pi^{2} I}{h^{2}} E \psi=0
$$

Where $=\mu r^{2}$,I isthemometof inetiaco themdeale

Leusnowsepardethevaiddes θ and ${ }_{\phi}$ क

L $\notin \quad \psi(\theta, \phi)=\Theta(\theta) . \Phi(\phi)$

$$
\frac{1}{\operatorname{Sin} \theta} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \Theta(\theta)}{\delta \theta}\right) \Phi(\phi)+\frac{1}{\operatorname{Sin}^{2} \theta} \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}} \Theta(\theta)+\frac{8 \pi^{2} I}{h^{2}} E \Theta(\theta) \cdot \Phi(\phi)=0
$$

Dividngby $\Theta(\theta) . \Phi(\phi)$

$$
\frac{1}{\operatorname{Sin} \theta} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \Theta(\theta)}{\delta \theta}\right) \frac{1}{\Theta(\theta)}+\frac{1}{\operatorname{Sin}^{2} \theta} \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}} \frac{1}{\Phi(\phi)}+\frac{8 \pi^{2} I}{h^{2}} E=0
$$

MultidyingtheequaianbySini θ

$$
\begin{aligned}
& \frac{\operatorname{Sin} \theta}{\Theta(\theta)} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \Theta(\theta)}{\delta \theta}\right)+\frac{1}{\Phi(\phi)} \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}}+\frac{8 \pi^{2} I}{h^{2}} E \cdot \operatorname{Sin}^{2} \theta=0 \\
& \frac{\operatorname{Sin} \theta}{\Theta(\theta)} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \Theta(\theta)}{\delta \theta}\right)+\frac{8 \pi^{2} I}{h^{2}} E \cdot \operatorname{Sin}^{2} \theta=-\frac{1}{\Phi(\phi)} \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}}
\end{aligned}
$$

Letusconsidr $-\frac{1}{\Phi(\phi)} \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}}=M^{2}$

$$
\begin{align*}
& \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}}=-M^{2} \Phi(\phi) \\
& \frac{\delta^{2} \Phi(\phi)}{\delta \phi^{2}}+M^{2} \Phi(\phi)=0 \tag{A}
\end{align*}
$$

and

$$
\frac{\operatorname{Sin} \theta}{\Theta(\theta)} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \Theta(\theta)}{\delta \theta}\right)+\frac{8 \pi^{2} I}{h^{2}} E \cdot \operatorname{Sin}^{2} \theta=M^{2}
$$

Onmeltiplyingby $\frac{\Theta(\theta)}{\operatorname{Sin}^{2} \theta}$ toaboveequian

$$
\begin{align*}
& \frac{1}{\operatorname{Sin} \theta} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta \Theta(\theta)}{\delta \theta}\right)+\frac{8 \pi^{2} I}{h^{2}} E \cdot \Theta(\theta)=M^{2} \frac{\Theta(\theta)}{\operatorname{Sin}^{2} \theta} \\
& \frac{1}{\operatorname{Sin} \theta} \frac{\delta}{\delta \theta}\left(\operatorname{Sin} \theta \frac{\delta(\theta)}{\delta \theta}\right)+\left[\frac{8 \pi^{2} I}{h^{2}} E-\frac{M^{2}}{\operatorname{Sin}^{2} \theta}\right] \Theta(\theta)=0 \tag{B}
\end{align*}
$$

Thesdution of theequaion (A) is

$$
\Phi_{M}(\phi)=A e^{i M \phi}
$$

Where, $M=0, \pm 1, \pm 2, \pm 3$......etc.

Incrof tosdveequion(B), weconsidar thefdlowing

Le $\mathrm{x}=\operatorname{Cos} \theta \quad$ and $\quad P(x)=\Theta(\theta)$
Then $\operatorname{Sin}^{2} \theta=1-x^{2}$ and $\frac{\delta \Theta(\theta)}{\delta \theta}=\frac{\delta P}{\delta x} \frac{\delta x}{\delta \theta}=-\frac{\delta P}{\delta x} \sin \theta$
Leustret $\frac{d}{d \theta}(\ldots)=-\operatorname{Sin} \theta \frac{d}{d \theta}(\ldots)$ wanquertar, sotheeqution (B) becone

$$
\begin{align*}
& \frac{1}{\operatorname{Sin} \theta}\left[-\operatorname{Sin} \theta \frac{d}{d x}\left\{-\operatorname{Sin} \theta \frac{d P(x)}{d x} \operatorname{Sin}(\theta)\right\}\right]+\left[\frac{8 \pi^{2} I E}{h^{2}}-\frac{M^{2}}{\operatorname{Sin}^{2} \theta}\right] P(x)=0 \\
& {\left[\frac{d}{d x}\left(1-x^{2}\right) \frac{d P(x)}{d x}\right]+\left[\frac{8 \pi^{2} I E}{h^{2}}-\frac{M^{2}}{\left(1-x^{2}\right)}\right] P(x)=0} \\
& \left(1-x^{2}\right) \frac{d^{2} P(x)}{d x^{2}}-2 \mathrm{x} \frac{d P(x)}{d x}+\left[\frac{8 \pi^{2} I E}{h^{2}}-\frac{M^{2}}{\left(1-x^{2}\right)}\right] P(x)=0 \tag{C}
\end{align*}
$$

This eqution is idatica to associted Legandés dfferertid eqution if weredare $\frac{8 \pi^{2} I E}{h^{2}}$ by $J(J+1) \propto_{E}=\frac{h^{2} J(J+1)}{8 \pi^{2} I}$, hereJ is a positiveinteger. Sothe solutiond theabove(C) equtionwill be

$$
\Theta_{I, M}(\theta)=N \cdot \mathrm{P}_{J}^{|M|}(x)=N \cdot \mathrm{P}_{J}^{|M|}(\operatorname{Cos} \theta)
$$

Mhesvaluesw, $\mathrm{M}=\mathrm{F}, \mathrm{J}-\mathrm{J}-\mathrm{J}, \mathrm{J}-3, — —, \mathrm{~J}+1, \mathrm{~J}$.
Sa, thecomdeevavefundionisgiven

$$
\psi(\theta, \phi)=N \cdot \mathrm{P}_{J}^{|M|}(\operatorname{Cos} \theta) A \cdot e^{i M \phi}
$$

Therddiond enegy stasaegivenby

$$
E_{J}=\frac{h^{2} J(J+1)}{8 \pi^{2} I}
$$

where $\frac{h^{2} J(J+1)}{4 \pi^{2}}$ istheigenvilueof thesqueref thearylarmonetumas

$$
\hat{L}^{2} \psi=\frac{h^{2} J(J+1)}{4 \pi^{2}} \psi, J=0,1,2,3,4, \ldots, \ldots C
$$

$\operatorname{and} \frac{M h}{2 \pi}$ aetheeigenvalues Z-componets of thearglar memetumes

$$
\hat{L}_{z} \psi=\frac{M h}{2 \pi} \psi, M=0, \pm 1, \pm 2, \pm 3, \ldots \ldots ., e t c .
$$

Thearglaffrequacy of roddionisgivenby

$$
\omega_{\text {rot }}=\frac{L}{I}=\frac{h}{2 \pi I} \sqrt{J(J+1)}
$$

andthefrequancyof rodionisgivenby

$$
v_{\text {rot }}=\frac{\omega}{2 \pi}=\frac{h}{4 \pi^{2} I} \sqrt{J(J+1)}
$$

Rdationel Spatrum Theenegy of arigid rddar isgivenby

$$
E_{J}=\frac{J(J+1) h^{2}}{8 \pi^{2} I} \text {, where }=0,1,2,3,4, \ldots, \text { ec }
$$

Corespondng to dfferet values of J,there will bedfferet enegy staes of rodiorsof adatomic rodeale Intermof wavenunter

$$
\begin{aligned}
& F(J)=\frac{E}{h c}=\frac{h}{8 \pi^{2} I c} J(J+1) \\
& F(J)=B J(J+1)
\end{aligned}
$$

Where $B=\frac{h}{8 \pi^{2} I c}$, Biscalledmrodiond contart If $=0,1,2,3,4,5, \ldots \ldots . ., \pm C$, then $F()=0,2 B, \oplus B, 1 B B, 20 B, \ldots . . ., \notin$

When the trasitions take plae between an uper lend and loner lead of rddiona levds, thenthenavenunher of dbsarbedraddionwill be

$$
\begin{align*}
& \bar{v}=F\left(J^{\prime}\right)-F\left(J^{\prime \prime}\right) \\
& \bar{v}=B J^{\prime}\left(J^{\prime}+1\right)-B J^{\prime \prime}\left(J^{\prime \prime}+1\right) \tag{D}
\end{align*}
$$

Thesdectionnuleforthetrasitionstotakeplaceis

$$
\Delta \mathrm{J}= \pm 1
$$

If $J^{\prime}=J^{\prime \prime}+1$, thenfromeqution(D) wehave

$$
\bar{v}=B\left(J^{\prime \prime}+1\right)\left(J^{\prime \prime}+2\right)-B J^{\prime \prime}\left(J^{\prime \prime}+1\right), \quad \bar{v}=2 B\left(J^{\prime \prime}+1\right)
$$

Fromthedbove weseth th thedbsondion speetumof a rigid rodtor cortains a sseies of eqidstartlineshavingsepardion2B.

205 Thelrtasitiesof Spatral Line

The speetrd lines are doseved in the rodiond speetra of roleale for
 inthetrasitions But theintensity of thespeard lines energingdetotrasitions between par leadshavingdfferet vdues of J is not sare Thisis redted to the dfferet nunber of meleales in a ste, therfore the number of ndeales undrgeing tranitions fromdfferet leves will be dfferet. The intenity of speetrd lineispropationd to number of nodealeintheinitid stae Then mber of modealesinastaisgivenby

HereT istheterpertureandK istheBdtrmanconsat.

As the value of J and B inces N deres The poplaion of theleld is propationd to degenaccy of ardationd levd i.e for agivenvaueof) therewill be $(2+1)$ suderds of sameeregy. Sotheppuldion of aled isgivenby

$$
N_{J}=(2 J+1) N_{0} e^{\frac{-E_{J}}{k T}}=(2 J+1) N_{0} e^{\frac{-B h c J(J+1)}{k T}}
$$

20f DitaricMdealemaNor-RigidRotar

From the experneta imestogion of the speetra lines at rodiona speetra it is found thet the spedrd lines are eqally spoced bt the sppraion between lines dereeses an wavenumber scde es the value of rodiord quatum nunber) inces Fromthecalalion of rodiond contatitisfound thet the bond lengh inces with incere inJ, so the rigity of the rddtor is undr quetion Wenwy herecondudtht withincereinJ valutheincereeinbord lenghisdetodatic ntureof thebond upto soneeteat. Thecertifugd farce tenostoincerethebondlenghthiger valuefJ. As aresalt of dangeinbond lenghdetostredchingor compressingthemolealeperiodedly, itis ass medthe molealesmay havevibrdiond enegy. If themationissimplehamric theforce constatisgivenby

$$
k=4 \pi^{2} \bar{v}^{2} c^{2} \mu \quad \text { व } \quad \bar{v}^{2}=\frac{k}{4 \pi^{2} c^{2} \mu}
$$

By considaring the effet of non-rigdty of thebond the roddiond enegy levds аеш

$$
\begin{aligned}
& E=\frac{h^{2}}{8 \pi^{2} I} J(J+1)-\frac{h^{4}}{32 \pi^{4} I^{2} r^{2} k} J^{2}(J+1)^{2} \\
& F(J)=\frac{E}{h c}=B J(J+1)-D J^{2}(J+1)^{2}
\end{aligned}
$$

where $B=\frac{h^{2}}{8 \pi^{2} I c} \quad$ and $\quad D=\frac{h^{3}}{32 \pi^{4} I^{2} r^{2} k c} \quad$ and $\quad D=\frac{4 B^{3}}{\bar{v}^{2}}$
HereD is called as catrifugd dstation constat. So the energy of rodtional eregy leid of highJ velues is lonered ashowndbove The weverunter of the trasitionbedweentwoleds

$$
\begin{gathered}
\bar{v}=F(\mathrm{~J}+1)-\mathrm{F}(\mathrm{~J})=\mathrm{B}[(\mathrm{~J}+1)(\mathrm{J}+2)-\mathrm{J}(\mathrm{~J}+1)]-\mathrm{D}\left[(\mathrm{~J}+1)^{2}(\mathrm{~J}+2)^{2}-J^{2}(J+1)^{2}\right] \\
\bar{v}=F(\mathrm{~J}+1)-\mathrm{F}(\mathrm{~J})=2 \mathrm{~B}(\mathrm{~J}+1)-4 \mathrm{D}(\mathrm{~J}+1)^{2}
\end{gathered}
$$

The sdection rue for transtion is $\Delta I= \pm 1$. De to certifing dstations the speetrd lines arendequally spaced patialaly thigher vdueofJ.

207IsotqicEfied

It ay tominthemealeisrequedby its isdopethenthered reedmass of themoleale μ danges Dietothisdangethemenert of inetiadanges bit theirter-nuderdstacerenzinsthesame
Beforetheisdopicexchangeinthemoleale

$$
\mu=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}, \text { and } I=\mu r^{2}
$$

If mis iserdangedby itsisdopicnues $^{m^{\prime}}$ then

$$
\mu^{\prime}=\frac{m_{1}^{\prime} m_{2}}{\left(m_{1}^{\prime}+m_{2}\right)} \text {, and } I^{\prime}=\mu^{\prime} r^{2}
$$

Detoistapicerdangetherddiond eregy vaus and thefrequancyspprdion of sucessivelines in the rodiord speetrumdanges If $m^{\prime} \geqslant$ in then $^{\prime} \mu^{\prime} ¥$ and I^{\prime} \#. Sorddiond contatB dangeses

As, $B=\frac{h^{2}}{8 \pi^{2} I c}$, so detoisctopic erdangeit becone $B^{\prime}=\frac{h^{2}}{8 \pi^{2} I^{\prime} c}$, so $B^{\prime} \mathcal{B}$, and
 givenby

$$
\vec{v}=2 B^{\prime}(J+1), 50 \vec{v}<\vec{v}
$$

So the separtion of lexds for hevier istapes will besmalle a compred to cigind mass If $m_{1}^{\prime} 4$, then \vec{v} ri.e for ligter istapic exdange, the spardionbekweenleudsishiger acompredtocrignd mass
Sowecondudethtthespedral lineswill bedoser onistopicsubstitionif
 inceemeinvdueofJ.

208Rdetional Spedrad Pdyctanic Mdealk

In arde to undestand the speetra of polytamic noleale, we mot be avereof thepinipal nomertof inetia anglar mometumand ineticenegy of thepdytaricmedeale
1 Pinipal Monetof Inetia: SupposethereaeN tons in apdydomic moleale Thenthrewill be3N deyees of freedm, at of thesethreebdangto
 of inetiaof Natans datanyaxisof rodioniswittenes

$$
I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+m_{4} r_{4}^{2}+\ldots \ldots . .+m_{N} r_{N}^{2}
$$

Now there evists ane dredion of thre matully pependalar axis for which corespondng nomett of inatiacemaximmor minimem Theaxisalang these dretions pess thrain cetre of nass Thenmximemand nirimemvdues are calledæ pinipal nemetof inetia Theyarel ${ }_{a},{ }_{b}{ }_{b}$ andl ${ }_{c}$ with $I_{a} \leq I_{b} \leq I_{c}$.
2 Anglar Manetum Theanglarmemettumisgivenby

$$
\vec{L}=I \vec{\omega}
$$

Interms of inetid tensor

$$
\left(\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

Interms of pinipal meretof inetiathedbovecanbewittena

$$
\left(\begin{array}{c}
L_{a} \\
L_{b} \\
L_{c}
\end{array}\right)=\left(\begin{array}{ccc}
I_{a} & 0 & 0 \\
0 & I_{b} & 0 \\
0 & 0 & I_{c}
\end{array}\right)\left(\begin{array}{l}
\omega_{a} \\
\omega_{b} \\
\omega_{c}
\end{array}\right)
$$

3 Kindic Energy in tams of Pindipal Monet of Inetia Thekindic enegy of themdealeintems of pinipa mometof inetiaisgivenby

$$
\begin{aligned}
& K=\frac{1}{2}\left[I_{a} \omega_{a}^{2}+I_{b} \omega_{b}^{2}+I_{c} \omega_{c}^{2}\right] \\
& K=\left[\frac{L_{a}^{2}}{2 I_{a}}+\frac{L_{b}^{2}}{2 I_{b}}+\frac{L_{c}^{2}}{2 I_{c}}\right]
\end{aligned}
$$

4 Typesof Mdealesanthebasisof Pincipal Manestof instia Onthe bais of pinipa momet of inetiac themdealethemdealesaredæsifieda (a) AgymmericTqs Treemonet of inetiaaredffereti.e

$$
\mathrm{I}_{a} \neq \mathrm{I}_{b} \neq I_{c}
$$

(b) SymmicTqs Thomonerts of inetiaareequ i.e
$\mathrm{I}_{a}=\mathrm{I}_{b}<I_{c}$, forddatesymerictop
$I_{a}<I_{b}=I_{c}$, forprodasymmerictop
(d) Sphricd Tqs Theenments of inetiaareeqd i.e

$$
I_{a}=I_{b}=I_{c}=I
$$

(d) Lin\#r ar Diatonic Mdeale Thomemet of inetia areequl andoneis zeoi.e

$$
\mathrm{I}_{a}=0, \mathrm{I}_{b}=I_{c}
$$

20S Roddianal spedraof SymmericTqpMdeale

In the symmeric modede tho momets of inetia are equd and one is dfferet The examples of such moleales are $\mathrm{H}_{3} \mathrm{C}$ and NH_{3}. The rodiond eregy of thendealeisgivenby

$$
E_{r}=\frac{L_{a}^{2}}{2 I_{a}}+\frac{L_{b}^{2}}{2 I_{b}}+\frac{L_{c}^{2}}{2 I_{c}}
$$

Foraliner molealeitisassmedthathetad angla monetumisquatizedas

$$
L=\sqrt{J(J+1)} \frac{h}{2 \pi} \text {, where }=0,1,2,3,4, \ldots, \text {, dc }
$$

Therddiond eregy of surh modealesdapendypontwoqaatumnumbes) and K beasej may not be drected pependalar to top axis (l_{a} axis or uriqe
pinipa axis). K is the componet of vector J dang top axis and K is also quatized

$$
\begin{aligned}
& L_{a}=\frac{K h}{2 \pi}, K=0, \pm 1, \pm 2, \pm 3, \ldots, \text { etc. } \\
& L^{2}=L_{a}^{2}+L_{b}^{2}+L_{c}^{2} \\
& L^{2}-L_{a}^{2}=L_{b}^{2}+L_{c}^{2}=J(J+1) \frac{h^{2}}{4 \pi^{2}}-K^{2} \frac{h^{2}}{4 \pi^{2}}
\end{aligned}
$$

Sotherddiand eregyisgivenby For PrdatetypeMdeale

$$
\begin{aligned}
& E_{r}=\frac{K^{2} h^{2}}{8 \pi^{2} I_{a}}+\frac{J(J+1) h^{2}}{8 \pi^{2} I_{b}}-\frac{K^{2} h^{2}}{8 \pi^{2} I_{b}}, \boldsymbol{\infty} I_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}} \\
& E_{r}=\frac{J(J+1) h^{2}}{8 \pi^{2} I_{b}}+\left(\frac{h^{2}}{8 \pi^{2} I_{a}}-\frac{h^{2}}{8 \pi^{2} I_{b}}\right) K^{2}
\end{aligned}
$$

Thetermadueisgivenby

$$
\begin{aligned}
& F(J, K)=\frac{E_{r}}{h c}=\frac{J(J+1) h}{8 \pi^{2} I_{b} c}-\left(\frac{h}{8 \pi^{2} I_{a} c}-\frac{h}{8 \pi^{2} I_{b} c}\right) K^{2} \\
& F(J, K)=B J(J+1)+(A-B) K^{2}
\end{aligned}
$$

Whare

$$
B=\frac{h}{8 \pi^{2} I_{b} c}, A=\frac{h}{8 \pi^{2} I_{a} c}
$$

Thequatumnumbers andK cantaethevdues a

$$
\begin{aligned}
& J=0,1,2,3,4, \ldots . ., \mathrm{Ac} \\
& \mathrm{~K}=0, \pm, \pm 2, \pm, \pm 4, \ldots \mathrm{Ac}
\end{aligned}
$$

Soal vaushaingK>0aredudledeganade
Thesdectionnuesfortranitionsarew

$$
\Delta \mathrm{J}=0 \text {, \# and } \Delta \mathrm{K}=0
$$

Fordbsandianspeetrum

$$
\Delta \mathrm{J}=\nrightarrow \operatorname{add} \Delta \mathrm{K}=0
$$

For dolatetypeof thendeale

$$
I_{a}=I_{b} \triangleleft_{C}, 50
$$

$$
F(J, K)=B J(J+1)-(\mathrm{B}-C) K^{2}
$$

where

$$
C=\frac{h}{8 \pi^{2} I_{c} c}, \operatorname{and}(\mathrm{~B}-\mathrm{C}) \text { ispositivesincel }{ }_{\mathrm{b}} \triangleleft_{\mathrm{c}}
$$

Thewaven unher of theprendtiond absondionspedrd transition

$$
\begin{aligned}
& \bar{v}=F(J+1, K)-F(J, K) \\
& \overline{\mathrm{v}}=\left[B(J+1)(J+2)+(A-B) K^{2}\right]-\left[B J(J+1)+(A-B) K^{2}\right] \\
& \overline{\mathrm{v}}=2 B(J+1) \mathrm{an}^{1}
\end{aligned}
$$

prolate symmetric top
oblate symmetric top

2010illustrdiveExampe

Examplel The veverunber of first line in the rotdion speetrum of CO is $38235 \mathrm{~cm}^{1}$. Cadaltetherddiond constat, nomet of inetiaand bondlengh of the roleale (Given mass of $\mathrm{C}=199268 \times 10^{27} \mathrm{~kg}$ and mass of $\left.\mathrm{O}=265636 \times 10^{27} \mathrm{~kg}\right)$
Sd. Giventhat $\bar{v}_{0 \rightarrow 1}=3.84235 \mathrm{~cm}^{-1}=2 B$

So $B=19218 \mathrm{~cm}^{2}$

Themonetof inatiaof Condealeis

$$
I=\frac{h}{8 \pi^{2} B c}=\frac{6.626 \times 10^{-34}}{8 \times(3.14)^{2} \times 3 \times 10^{8} \times 1.92118 \times 10^{2}}=1.457 \times 10^{-46} \mathrm{kgm}^{2}
$$

Theredreed m ms of thendealeisrededtobondlenghas

$$
\begin{gathered}
\mu=\frac{m_{C} m_{o}}{m_{C}+m_{o}}=\frac{19.92168 \times 10^{-27} \times 26.56136 \times 10^{-27}}{(19.92168+26.56136) \times 10^{-27}}=11.38365 \times 10^{-27} \mathrm{~kg} \\
\text { AS } I=\mu r^{2}, \mathbf{S O} r=\sqrt{\frac{I}{\mu}}=\sqrt{\frac{1.45695 \times 10^{-46}}{11.38365 \times 10^{-27}}}=1.131 \times 10^{-10} \mathrm{~m}
\end{gathered}
$$

Example2 Wave number of $\mathrm{J} \geqslant$ to 1 trasition in HD rodealefand t $20.68 \mathrm{~cm}^{1}$. Cadalathewadenghfor thetrasitions $=14 \mathrm{toj}=15$
Sd. Thewaven unber of thetrasitionfrom \Rightarrow toJ $\ddagger+1$ is

$$
\overline{\mathrm{v}}=2 B(J+1)
$$

ForJ $=0$ toj $=1$

$$
\overline{\mathrm{v}}=2 B
$$

As $\overline{\mathrm{v}}=20.68 \mathrm{~m}^{1}$
So $B B=2068 \mathrm{~cm}^{2}$
$B=1034 \mathrm{~m}^{2}$
SothewarnunberfortherrasitionJ $=14$ to $=15$ is

$$
\begin{aligned}
& \overline{\mathrm{v}}=2 B(J+1), \text { heeJ }=14 \\
& \overline{\mathrm{v}}=2 B(14+1)=2 \times 10.34 \times 15=310.2 \mathrm{~cm}^{-1}
\end{aligned}
$$

Sothewandenghof thetrasitionis

$$
\lambda=\frac{1}{\overline{\mathrm{v}}}=\frac{1}{310.2}=3.2 \times 10^{-3} \mathrm{~cm}=32 \mu \mathrm{~m}
$$

Exampe3 Intherddiona speetraof $\mathrm{C}^{2} \mathrm{O}^{16}$ thefirstabsandionline $(\mathrm{J}=0$ to $\mathrm{J}=1$) is doserved a 1153×10^{11} aydes and for CO^{16} it is doserved at 1102×10^{11} cyders Find the vilue of nfor Cabonistope (Giventhet mass of $\mathrm{C}^{12}=12 \mathrm{amu}$ andmassof $\mathrm{O}^{16}=16 \mathrm{amu}$).
Sd. Befreisotopicerchangetherddiond constatis

$$
B=\frac{h^{2}}{8 \pi^{2} I c}, \operatorname{and}_{\overline{\mathrm{v}}}=2 B(J+1)
$$

After isdquicexdangetheroddiand constatis

$$
\begin{aligned}
& B^{\prime}=\frac{h^{2}}{8 \pi^{2} I^{\prime} c}, \operatorname{and}_{\vec{v}}=2 B^{\prime}(J+1) \\
& \frac{\overline{\mathrm{v}}}{\vec{v}}=\frac{B}{B^{\prime}}=\frac{I^{\prime}}{I}=\frac{\mu^{\prime}}{\mu}=\frac{(12+16)}{12 \times 16} \times \frac{(n \times 16)}{n+16} \\
& \frac{1.153 \times 10^{11}}{1.102 \times 10^{11}}=\frac{28}{(12 \times 16)} \times \frac{(n \times 16)}{(n+16)} \\
& \frac{1.153}{1.102}=\frac{7}{3} \times \frac{n}{n+16} \\
& \frac{3.459}{7.714}=\frac{n}{n+16} \\
& (7.714-3.459) \times n=3.459 \times 16 \\
& n=\frac{3.459 \times 16}{4.255}=\frac{55.344}{4.255}=13.0068
\end{aligned}
$$

Sotheisadpeof CarbonisC ${ }^{13}$.

2011SelfLeamingExarcis

Q1 Whyrddiand isnot dosevedfor hanonder meales?
Q2 Givetheeandes of polarmeales
Q3 Disass theprerodtiond spetraof a rigid rodtar. Showthat thespeetrd linesareeqully spacedan wevenumber scade
Q4 What is a symmic moleale? Exdain ddze and prote type of a symmeticrodeale

201 Summay

Theaimof this unit is to study theprerodiand spedra of thedatanic andsymmetrictopmeales Theprerddiand spetraof themedelieinfar Infrared reejon of detronzandic region Thepurerddiond spetra areshown by heer-nuder moleales These moledes have pemanet detric dpole namet. The hanonuder noleales do not show the pure rodiand speedra becase they do not have pamanet dectric dpole namet. Themedarismof
inteation of dpdar maleales with the detric fidd of detronmentic fied leadng to dange in the rodiond stae wes dsassed The pre redtiond speetumof dataric ndealehaveben dsassed in dedil. Theenagy leuds andsdetionnuesfor transitionshavebenexdaned Thespeetrd lines arefand to ear aly spoced an wavenumber scde Theffect of nonrigdty and isdapic exchangehesbeendsodsabsedfor adatomic medeale Theshift inthespeetrd deto these effets hes been preseted The introdition dat the radiond spedra of polydanic rodeales hes been dso introdred and the roddiond speetum of symmeric top nodeales hes been dsabsed indzail. At lat sare poddensrdatedtothecartert of theuritshavebensodved

20IE Gobay

Hanoruder: Sanetypeaf nudes
Hłaronuder: Differettypeof nudas
Pdar: Haingpositiveard negtivedarge
Osillating: Paiodcally varying
Rigid: Hardtockange
Feide: Eaytochange
Cantifuga: Anayfromcertre
Distation: Dfeds
Succerive: Coneentives
Degrorate: Saneergy

2014 Exacis

Q1 Whtisrequirenetfor andealetoshowrddiona spectum?
Q2 Howthepdar mealesinteratwithdedronagnicradaions?
Q3 Witeregion of prerddiond spedumandards of quata of enegy for trasitionbedweentwolevds
Q4 What isthearde of navelengh of prerddiond spedra?
Q5 WitetheSdrodnge's swavequtionforarigdrotar.
Q.6 Witetheformlafor popldion of ardtiond levd anditscegereracy.

Q7 Disassthedependanceof intersity of speetrd linesontheppultion of a radional leds.
Q8 Witetheformiafor enegy of redtion of arigid rotar and thesdetion ruesfortrasitionbedneentholevis
Q9 Disasstheffect of nonrigdtyontheprendaiond spedraco adatomic moleale
Q10Disass the effet of isdopic exdange on the prenddiond speetra of a datomicrodeale
Q11 Disass thevaia stypes of polytamic maleales onthebesis of pincipa nometof inetia
Q2 Disasstherddiond speetrum asymmetrictopmoleale ReferencesandSuggestedResing:
1 Cdin N. Bansell ad Eaine M. MoCadr Mdealar Speetroscopy, Tata Mcgan-Hill EdrcionPrivateLinited NawDdi, 1994.
2 J. M. Hdias MboamSpedroscopy,JdmWiley \& Sors, Engand, 1987.
3 S.L. Gupa V. Kumar and R.C. Shema Elenerts of Spectroscopy, Pragai Prakann Merut, 1990
4 Raj Kumar: Atomic \& Mdealar Spedra: LASER, Kedr Nath RamNath Meat, 2007.

UNT-2] InfracelSpatroscopy : Par-I

Stuctureof theUnit

210 Ogedives
211 Introdution
212 Salietfectures of Vibrtiond-Roddiond Speetra
213 VibrtingDiatomicMdealeaHamoric Osillatar
214 VibrdingMdealeaArhamricOsillatar
215 Vibriond FrequacyandFareContatforArramericOsillada
216 IstopicEffetinVibrtiond Speetra
217 MdealeaVibrdingRatar
218 Breakdown of Ban-Oppermemier Aproximation The Interation of RodiansandVibrtions
219 IllustriveExamples
210 Seff LearingExerise
211 Summy
212 Gossary
2113 Exercise
Refernces andSuggeted Reednos

2000jedive

Thiscrapte is anmedto providknowedgetothereades doat theppaldion of vibriond erergy lesds of maleales The dfferet nodes of vibrtions of polytanic ndeales will bedsassed Theinturmetdionfor recordng theIR spetraof themdealeswill beexdained

21.1ntroducia

theseenegy leuds at ay temperturewill bedsassed Thenorma coordnates of vibrians and vaias rodes of vibrtion of polytanic moleales are exdaned witheramdes Theinstumetdion requiredto record theIR spedra of therdealesisdsassedi.e FTIR speetroneter.

212 Salientfect resof Vibraionel-Rotaianal Spadrc

Thesdietteturesof vibriona-rodiona speetraceafdions
1 Thevibriord-rddiond spedrafdl in theNear-IfriaRed (NR) regon of detronagnic spectum(1 1 m100qn).
2 Dringthevibrdiond trasitionsbeneenvibrdiond leds of nolealethere isnodangeinthededraricstate
3 The vilraiond trasitions ae dwass ae accomparied by redtiond trasitions
4 Thevibriond-rddiond spedradoservedindsondionnode
5 Thevibrdiond-rddiond spedracedosevedfor thosendealesutichhave pemanatdedricdplenomatseg $\mathrm{HC}, \mathrm{HB}, \mathrm{H}, \mathrm{H}, \mathrm{H}_{2} \mathrm{O} \mathrm{\& c}$
6 Whenthemolealevibrdes, then theirte-nuder dstancedanges So, the dpolemert of themealedso danges Thededric dpolenomet of roleale osillates and enits the radition of frequancy which lies in the Near-IfriaRedregion
7. The osillaing deatric dpde monert dso inteads with the indadt raddionsandabsorbstherddiansof freatancy of Near-IfraRRedregion
8 Thevibrdiond-rddiond speetra of datoric moleales corsist of aninterse band called as fundermett band suraurded by weak bands celled as ovetanes

2Е VibraingDidtonicMdealeasHamuricOsillatar

L\& us considg a datomic moleale wich is vilarding and whose vibrdions aretreded as simdehameric Le r_{e} betheequilibiumlengh of the bond between tho tans of the redeale At any instat of time dring the vibrdionthebondlenghisr. Theeqtion of mationtheatons inthemdeales аеш

$$
\begin{equation*}
m_{1} \frac{d^{2} r_{1}}{d t^{2}}=-k\left(r-r_{e}\right) \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
m_{2} \frac{d^{2} r_{2}}{d t^{2}}=-k\left(r-r_{e}\right) \tag{B}
\end{equation*}
$$

wherem andm ${ }_{2}$ benwses of thetho tons, r_{1} and r_{2} betheposition of two tons fromthecentreof mwsandkistheforceconstat

Fromtheproperies of ceatreof mass wehave

$$
\begin{aligned}
& m_{1} r_{1}=m_{2} r_{2} \\
& r=r_{1}+r_{2} \\
& r_{1}=r-r_{2} \\
& m_{1}\left(r-r_{2}\right)=m_{2} r_{2} \\
& m_{1} r=\left(m_{1}+m_{2}\right) r_{2} \\
& r_{2}=\frac{m_{1} r}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

$$
\text { and } \quad r_{1}=\frac{m_{2} r}{\left(m_{1}+m_{2}\right)}
$$

So by substituing the values of r_{1} and r_{2} in eqution (A) and (B) we gt the equanas

$$
\begin{equation*}
\left(\frac{m_{1} \times m_{2}}{m_{1}+m_{2}}\right) \frac{d^{2} r}{d t^{2}}=-k\left(r-r_{e}\right) \tag{C}
\end{equation*}
$$

Since, r_{e} iscontatsowecanredacerby $\left(r-r_{e}\right.$) ineqution(C)

$$
\begin{equation*}
\left(\frac{m_{1} \times m_{2}}{m_{1}+m_{2}}\right) \frac{d^{2}\left(r-r_{e}\right)}{d t^{2}}=-k\left(r-r_{e}\right) \tag{D}
\end{equation*}
$$

Le $\left(r-r_{e}\right)=x$ and $\mu=\frac{m_{1} \times m_{2}}{m_{1}+m_{2}}$, sotheequion(D) nowbecone

$$
\mu \frac{d^{2} x}{d t^{2}}=-k x
$$

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\frac{k}{\mu} x=0 \\
& \frac{d^{2} x}{d t^{2}}+\omega^{2} x=0, \text { where } \quad \omega^{2}=\frac{k}{\mu}
\end{aligned}
$$

Thefrequacy of vibrtionisgivenby

$$
v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}} \mathrm{HZ}
$$

Internsof wavenumbers

$$
\bar{v}=\frac{1}{2 \pi c} \sqrt{\frac{k}{\mu}}=\frac{1}{\lambda} \mathrm{~cm}^{-1}
$$

Theenegy of thevibraion enegy lends isqantized Thedloned enegies for the datanic roleale can be daemined by solving the Sdrodngr's wave equaion considring the paterial to behamaric क $V=\frac{1}{2} k x_{0}{ }^{2}$. Theenergy of leidsof datamicnolealeisgivenbythefdlawingequan

$$
E_{v}=\left[v+\frac{1}{2}\right] h v=\left[v+\frac{1}{2}\right] h c \bar{v}
$$

Herev isthevibrdiond quatumnumer which cantakevaes $a v=0,1,2,3$,, etc
Intermsof termnduethedboveequaioniswittenas

$$
\begin{aligned}
& G(v)=\left[v+\frac{1}{2}\right] \bar{v}, \operatorname{for} v=0,1,2,3,4, \ldots \text { ecthevdues of } G(v) \text { aea } \\
& G(v)=\frac{\bar{v}}{2}, 3 \frac{\bar{v}}{2}, 5 \frac{\bar{v}}{2}, 7 \frac{\bar{v}}{2}, \ldots . . e t c .
\end{aligned}
$$

Sowedoserveaseries of lendswhicharequatizedandeqispaced
Suppose a trasition tokes paxe from higer vibriond enegy stae haing quatumumber v^{\prime} tolowe vibrtiond stehavingquatumnumber $v^{\prime \prime}$, thenthe frequany of raddionenittedgivenby

$$
v=\frac{\left(E_{v^{\prime}}-E_{v^{\prime}}\right)}{h} H z
$$

Intermof wavengh

$$
\bar{v}=\frac{\left(E_{v^{\prime}}-E_{v^{\prime}}\right)}{h c}=G\left(v^{\prime}\right)-\mathrm{G}\left(\mathrm{v}^{\prime \prime}\right) \mathrm{cm}^{-1}
$$

Thesdetionnuefortrasitionis $\Delta v=$ \#

24 VibrdingMdealeasArhermaricOsilldtar

For a damic noleale as predy hammic osillidor the dange in vibrdiond quatumnunher is $\Delta \mathrm{v}= \pm$, so there is ane band for ecch node of vibrdion But eppeimettaly there is strong band with oneor two wetones α r hamerics Thehamrics corespond to thefrequaies thet arenalted deto dangeinvibrdiond quatumnumber $\Delta \mathrm{V}= \pm 2, \pm$, ..Ac This theovetanes corespond to trasitions indving the dange in vibrtiond quatumnumber $\Delta V>1$ Thisthed polemonet of themdealeis not linerr with respeet to internuder dstance imdying the presace of ahamoridity in the molealar vibrtions Theovetones aenot doserved eadly t $2 \bar{v}, 3 \bar{v}, .$. but t lower value side Itindcaesthet thevibrtiond enegylendsaendequispocedbutconveges sowly a the vibriond quatum number incees Die to perace of adammidity, the petertid enegy anve is not stridly pardolic but its shape danges thigher values of qartumnumber v. Thepetetid enegy inthiscæeis givenbyas

$$
\begin{aligned}
& V(r)=\left(\frac{1}{2} \frac{\partial^{2} V(r)}{\partial r^{2}}\right)_{r=r_{e}}\left(r-r_{e}\right)^{2}+\left(\frac{1}{6} \frac{\partial^{3} V(r)}{\partial r^{3}}\right)_{r=r_{e}}\left(r-r_{e}\right)^{3}+\ldots \\
& \quad V(r)=f\left(r-r_{e}\right)^{2}-g\left(r-r_{e}\right)^{3}
\end{aligned}
$$

 preset in their vibrions The patetid enegy a ne for such osillatas is as shown a bdow and by considaing the dbove petertid eregy the Sdroding equitionissdved

Interatomic Distance

Theallonedvibrdiord levdsaregivenbyfdlowingeqution

$$
E(v)=\left(v+\frac{1}{2}\right) h v-\left(v+\frac{1}{2}\right)^{2} h v x+\left(v+\frac{1}{2}\right)^{3} h v y+\ldots \ldots .
$$

Herexandyarethearemminityountats
Interms of temviuestheaboveeqdianiswittenas

$$
G(v)=\left(v+\frac{1}{2}\right) \bar{v}-\left(v+\frac{1}{2}\right)^{2} \bar{v} x+\left(v+\frac{1}{2}\right)^{3} \bar{v} y+\ldots \ldots .
$$

Thequarity \bar{v} isthelinespaing of enegyleds interns of vevenumbesif the patetid enegy ispurely pardodic, $\overline{v x}$ isthearkamoridity consartwhosevdue is much snaller then \bar{v} and is dways pesitive So theenegy leuds arent t eqispaced कdoservedfromaboveequion Asthevdue of vibrdiand quatum nunber vinues spardions betveen levds dereeme The spection nules for traitionsbetweenvibrtiond levelsfter corsidaingtheahamoridty areas

$$
\Delta \mathrm{V}=\boxplus, \pm, \pm, \ldots, ~ \oplus C
$$

These transitions are dassified as fundaretd band coresponding to tranition $v=1$ to $v=0$, firstovetonesor secondharricsfor $v=2$ to $v=0$, andseeand ovetonearthirdhamaricsforv $=3$ to $v=0$, ec
Supposeatransitiantakes pacefroman upper vibrdionstde v^{\prime} toloner stde $v^{\prime \prime}$ thenthefrequacyof raddianisgivenby

$$
v_{v}=\frac{\left(E_{v}^{\prime}-E_{v}^{\prime \prime}\right)}{h} H z
$$

Internsof wavenunber

$$
\begin{aligned}
& \bar{v}_{v}=\frac{\left(E_{v}^{\prime}-E_{v}^{\prime \prime}\right)}{h c}=G\left(v^{\prime}\right)-G\left(v^{\prime \prime}\right) \\
& \bar{v}_{v}=\left(v^{\prime}-v^{\prime \prime}\right) \bar{v}-\left\{v^{\prime}\left(v^{\prime}+1\right)-v^{\prime \prime}\left(v^{\prime \prime}+1\right)\right\} \bar{v} \bar{p}
\end{aligned}
$$

Sincevibrdiond quatumnumber is duassiszaroso $v^{\prime \prime}=0$ and $v^{\prime}=v$, sothe naverunher of fundereatd bandovetonesare

$$
\begin{array}{ll}
\bar{v}_{1}=(1-2 x) \bar{v} & \text { Fundaretd band } \\
\bar{v}_{2}=(1-3 x) 2 \bar{v} & \text { Firstovatone } \\
\bar{v}_{3}=(1-4 x) 3 \bar{v} & \text { Secondoettone }
\end{array}
$$

215 Vibraiand Frequany and Force Constant for ArhemmicOsillator

Thevibriona frequenc famaricosillatarisgivenby

$$
v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}
$$

wherek isfrceconstat and μ is the red redmass Thespardion between the levds iscontartandisequa to \bar{v} intems of waven inber. Incæeof ahamoric osillatar the dowe formia hdos for swall amditude of vibrdions The vibrdiond frequany of ahamricosillator instavisgivenby

$$
\begin{aligned}
& v=c \Delta G_{v}=c \frac{\Delta G_{v+\frac{1}{2}}+\Delta G_{v-\frac{1}{2}}}{2} \\
& v=\frac{1}{2} c[\{G(v+1)-G(v)\}+\{G(v)-G(v-1)]
\end{aligned}
$$

$$
v=\frac{1}{2} c[G(v+1)-G(v-1)]
$$

Asweknowthat

So

$$
G(v)=\bar{v}\left(v+\frac{1}{2}\right)-\bar{v} x\left(v+\frac{1}{2}\right)^{2}
$$

$$
\begin{aligned}
& v=\frac{1}{2} c\left[\left\{\bar{v}\left(v+\frac{3}{2}\right)-\bar{v} x\left(v+\frac{3}{2}\right)^{2}\right\}-\left\{\bar{v}\left(v-\frac{1}{2}\right)-\bar{v} x\left(v-\frac{1}{2}\right)^{2}\right\}\right] \\
& v=\frac{1}{2} c\left[\left\{\bar{v}\left(v+\frac{3}{2}-v+\frac{1}{2}\right\}-\bar{v} x\left\{\left(v+\frac{3}{2}\right)^{2}-\left(v-\frac{1}{2}\right)^{2}\right\}\right]\right. \\
& v=\frac{1}{2} c[2 \bar{v}-\bar{v} x(4 v+2)] \\
& v=c[\bar{v}-\bar{v} x(2 v+1)]
\end{aligned}
$$

So a value of v increses ,the frequancy of vibrion dereemes From the vibrdiond frequacy of snall ampitudevibrdion, wehave

$$
v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}=c \bar{v}
$$

Sothefarcecontatisgivenby

$$
k=4 \pi^{2} \mu c^{2} \bar{v}^{2}
$$

21.6 IsdqpicEffetinVibrctional Spadrc

Theistopictarm of thendellenedffert redredmasses, bat the frree contat is sare Fromthe value of force constat $k=4 \pi^{2} \mu c^{2} \bar{v}^{2}$, it is doseved that the equilibrium vibrdiond nevenumber will be dfferet for dfferet iscopic form Le \bar{v}_{1} and \bar{v}_{2} aretheequilibriumnavenumbers for tho isctopic formshaving red reed mases μ_{1}^{\prime} and μ_{2}^{\prime}. Thefromtheforcecontat we have

$$
\begin{equation*}
\frac{\bar{v}_{2}}{\bar{v}_{1}}=\rho=\sqrt{\frac{\mu_{1}^{\prime}}{\mu_{2}^{\prime}}}, \text { or } \quad \bar{v}_{2}=\rho \bar{v}_{1} \tag{A}
\end{equation*}
$$

Thearammidity consatisprqpationa toequilibriumconstatso

$$
\begin{equation*}
x_{2}=\rho x_{1} \tag{B}
\end{equation*}
$$

So the waverunter of thecertre of ay band indving loner vibrtiond lead $\mathrm{v}=0$ is

$$
\begin{equation*}
\bar{v}_{v \rightarrow 0}=v\left[1-(v+1) x_{1}\right] \bar{v} \tag{C}
\end{equation*}
$$

Sobyusingequtiors (A) and (B) in(C) we

$$
\begin{aligned}
& \bar{v}_{v \rightarrow 0}=v\left[1-(v+1) x_{1}\right] \bar{v} \\
& { }_{2} \bar{v}_{v \rightarrow 0}=v\left[\rho-(v+1) x_{1} \rho^{2}\right] \bar{v}
\end{aligned}
$$

The above equtions represest the waverunbes of the isctopic forms of same moleale The wavenumer dfference of the cettes of the tho istapic bands caledaistopicshifts, $\Delta \bar{v}_{i}$.

$$
\Delta \bar{v}_{i}=(1-\rho)\left\{1-(v+1)(1+\rho) x_{1}\right\} \bar{v}_{1}
$$

Theistapicsiftforfunderertd band firstovetoneandsecondovetoneareas Fundmental Band v=1tov=0

$$
\Delta \bar{v}_{i}(1)=(1-\rho)\left\{1-2(1+\rho) x_{1}\right\} \bar{v}_{1}
$$

FirstOratore $\quad v=2 t o v=0$

$$
\Delta \bar{v}_{i}(2)=(1-\rho)\left\{1-3(1+\rho) x_{1}\right\} 2 \bar{v}_{1}
$$

SecondOatione $\mathbf{v = 3 t r v}=\mathbf{0}$

$$
\Delta \bar{v}_{i}(3)=(1-\rho)\left\{1-4(1+\rho) x_{1}\right\} 3 \bar{v}_{1}
$$

Theisdopicsiftdapends yponthefador $(1-\rho)$. Theshiftincem withinueme in $(1-\rho)$. If $\rho>1$, isdopicsift $\Delta \bar{v}$ istoneroblover wevenunter andfor $\rho<1$ the shiftistonarobligher wevenumberside

217 MdealeasVibrdingRotator

Wehave consideed the vilations and retdions of a datoric noleale independatly up to row. But a vibrding moleale is dwass msoided with redtiond mation so wehaveto conside thecontimed vibriond and rodtiond maionof themdeale Letusdsassthiscontinednotionundr situtions.

I. MdealeasRigdRddar and HamaricOsillator

TheNers Ifriared speetra of thendeales consist of bandswtich composed of doæelines arangedinapatialarmame. Thisfinestucturesugeststht dring the vibrdiond trasition the roddiond state of the molevie dso danges The molealecan betreted as vibrding roddor. Supposethevilraions and rodions
of roleales tike plare independetly i.e there is no interation between tho notions Thetded enegy of themdealeinthiscæecanbewittenw

$$
E_{v r}=E_{v i b}+E_{r o t}
$$

If themolealeisrigidrotdor andhamoricosillator,then

$$
\begin{aligned}
& E_{v r}=\{G(v)+F(J)\} c h \\
& E_{v r}=\left(v+\frac{1}{2}\right) h c \bar{v}+\frac{h^{2}}{8 \pi^{2} I} J(J+1)
\end{aligned}
$$

Supposeatrasitiontakes parefromvibrdiond levd v^{\prime} to $v^{\prime \prime}$ lead dangwith trasition from rodiond lead J^{\prime} to levd $J^{\prime \prime}$. Then the dange in enegy accompariesthetrasitionsis

$$
\Delta E_{v r}=E_{v r}^{\prime}-E_{v r}^{\prime \prime}=\left(v^{\prime}-v^{\prime \prime}\right) h c \bar{v}+\frac{h^{2}}{8 \pi^{2} I}\left[J^{\prime}\left(J^{\prime}+1\right)-J^{\prime \prime}\left(J^{\prime \prime}+1\right)\right]
$$

Vibrational -Rotational Levels of Diatomic Molecule

Thewavenumer of raddionaisingdetothetrasitionis
$\bar{v}_{v r}=\frac{E_{v r}^{\prime}-E_{v r}^{\prime \prime}}{h c}=\left(v^{\prime}-v^{\prime \prime}\right) \bar{v}+B\left[J^{\prime}\left(J^{\prime}+1\right)-J^{\prime \prime}\left(J^{\prime \prime}+1\right)\right]$, where $B=\frac{h}{8 \pi^{2} I c}=\frac{h}{8 \pi^{2} \mu r^{2} c}$

II. DiatonicMdealeasNonrigidandArhamuricOsillator

If thedatomicmolealeisntrigdrdtor andthreisahamoridy ispresertin thevibrdions, thentheeregy of themolealeisgivenby

$$
\begin{aligned}
& E_{v r}=\{G(v)+F(J)\} c h \\
& E_{v r}=\operatorname{ch}\left[\left(v+\frac{1}{2}\right) \bar{v}-x\left(v+\frac{1}{2}\right)^{2} \bar{v} \ldots+B J(J+1)-D J\left(J^{2}+1\right)^{2}+\ldots\right]
\end{aligned}
$$

If wereged thesrill certrifugd dstations, then wetakeD $=0$ andothesthen theenegy of themdealeinthisceæeळ

$$
E_{v r}=\operatorname{ch}\left[\left(v+\frac{1}{2}\right) \bar{v}-x\left(v+\frac{1}{2}\right)^{2} \bar{v}+B J(J+1)\right]
$$

Thesdetionnulesforcontinedvibriord androdiond tranitionaeas

$$
\Delta v= \pm 1, \pm 2, \text { etc. } . \quad \Delta J= \pm 1
$$

Vibrational-Rotational Transitions

Letusconsider two vibrtiond stedesigntedbyv=0ardv=1 Therddiona staes in $v=0$ aedanced by $J^{\prime \prime}$ andinthestav $=1$ aredanted by J^{\prime}. For the trasitionfromv $=0$ to $v=1$ thewavenunber of theraddion

$$
\begin{aligned}
& \bar{v}_{v r}=\frac{E_{r, v=0}^{\prime}-E_{r, v=1}^{\prime \prime}}{h c} \\
& \bar{v}_{v r}=\left\{B J^{\prime}\left(J^{\prime}+1\right)+\frac{3}{2} \bar{v}-\frac{9}{4} x \bar{v}\right\}-\left\{B J^{\prime \prime}\left(J^{\prime \prime}+1\right)+\frac{3}{2} \bar{v}-\frac{1}{4} x \bar{v}\right\} \\
& \bar{v}_{v r}=\bar{v}(1-2 x)+B\left(J^{\prime}-J^{\prime \prime}\right)\left(J^{\prime}+J^{\prime \prime}+1\right)=\bar{v}_{0}+B\left(J^{\prime}-J^{\prime \prime}\right)\left(J^{\prime}+J^{\prime \prime}+1\right)
\end{aligned}
$$

where $\bar{v}_{0}=\bar{v}(1-2 x)$, it is the nave nunber of pre vibrtiond transtions ($J^{\prime}=J^{\prime \prime}=0$).
$\bar{\nu}_{0}$ iscdledænaven mber of thebandarign
Nowleusconsida
RBrand $\Delta J=+1$, i.e. $\left(J^{\prime}-J^{\prime \prime}\right)=+1 \quad \bar{v}(R)=\bar{v}_{0}+2 B\left(J^{\prime \prime}+1\right), J^{\prime \prime}=0,1,2, \ldots$.
PBrand $\Delta J=-1$, i.e. $\left(J^{\prime}-J^{\prime \prime}\right)=-1 \quad \bar{v}(P)=\bar{v}_{0}-2 B J^{\prime \prime}, J^{\prime \prime}=1,2, \ldots$.
InGengd $\bar{v}_{v r}=\bar{v}_{0}+2 B n, \quad$ Where $n= \pm 1, \pm 2, \pm 3 \ldots$ etc., $n \neq 0$
So the vibrdiond-rodiond speetra of datamic noleale consist of numbers of linestasperdionof $2 \mathrm{Bm}^{1}$ a a und thecetreof band

21.8 Breakdonn of Bar-Oppahaviar Approvinatiar Thelrtaradionof RodaliansandVibrations

 ereges, thentheR andP banchlines areequidstat But in actul paticethe separtion bedween the lines of orebranch dereeses (R brand) and of the cther brach(Pband) inceeses Thisis realted detointeationbedweenvibrdiond andrdaiond notion of thendeale

When a moleale vibrtes ,then the bond lengh danges which case the dangein nomet of inatial and rodiond constat B of themeleale This is called as interation betweentwometions As thevibriond quatumnumber v inceeses ,the amplitude of vibrdians inceeses, hence the value of rodtional constat deremes de to inceree in averye bond lengh The dapendance of raddiond constatanvibrdiond quatumnumer canbeexpesseds

$$
B_{v}=B_{e}-\alpha\left(v+\frac{1}{2}\right)+\ldots \ldots .
$$

where $\quad B_{v}=\frac{h}{8 \pi^{2} I_{v} c}$ and $B_{e}=\frac{h}{8 \pi^{2} I_{e} c}$
Herel ${ }_{v}$ isthememef inetiaof nolealeinv ${ }^{\text {th }}$ vibrdiond stae, I_{e} isthe mometof inatiainequilibiumstdeand isasmall positiveintege of theardar of $0.0 B_{e}$ to $0.0 B_{e}$ Inthesarewey thenan-rigidty constat of themodealein theV ${ }^{\text {th }}$ tateisgivenby

$$
D_{v}=D_{e}+\beta\left(v+\frac{1}{2}\right)+\ldots \ldots
$$

Disthenorigidty canstat in ${ }^{\text {th }}$ sta, D_{e} isnanrigidty contar inequilibium canstatand β iscantartacompredtoD. Sotherddiand enegyisgivenby

$$
E_{r}=B_{v} J(J+1) h c-D_{v} J^{2}(J+1)^{2} h c+\ldots
$$

Wavenumber cm^{-1}
Figre: Idzal Vibraiond-Rotaiond Spetra
Thetad enegy of themedeale atter consideing theinteration between thevibrdiond androdiond notionis

$$
E_{v r}=\left(v+\frac{1}{2}\right) h c \bar{v}-\left(v+\frac{1}{2}\right)^{2} h c x \bar{v}+\ldots .+B_{v} J(J+1) h c-D_{v} J^{2}(J+1)^{2} h c+. .
$$

Thewevenunter of thelines of PandR brancesare
PBrandr $\left.\bar{v}(P)=\bar{v}_{0}-\left(B_{v}^{\prime}+B_{v}^{\prime \prime}\right) J+\left(B_{v}^{\prime}-B_{v}^{\prime \prime}\right)\right)^{2}+4 D_{v} 3^{3}$
RBrandx $\bar{v}(R)=\bar{v}_{0}+\left(B_{v}^{\prime}+B_{v}^{\prime \prime}\right) J+\left(B_{v}^{\prime}-B_{v}^{\prime \prime}\right) J^{2}-4 D_{v} v^{3}$

HereJ $=0,1,2,3, \ldots$. edc and \bar{v}_{0} isthewevenunber of thecertreof bandwhich isgivenas

$$
\bar{v}_{0}=(1-2 x) \bar{v}, v=1 \rightarrow v=0
$$

If weneedet thenonrigity contatD, then
PBrandx $\quad \bar{v}(P)=\bar{v}_{0}+\left(B_{v}^{\prime}+B_{v}^{\prime \prime}\right) m+\left(B_{v}^{\prime}-B_{v}^{\prime \prime}\right) m^{2}, \mathrm{~m}=1,-2,-3, \ldots$.
RBrandr $\quad \bar{v}(R)=\bar{v}_{0}+\left(B_{v}^{\prime}+B_{v}^{\prime \prime}\right) m+\left(B_{v}^{\prime}-B_{v}^{\prime \prime}\right) m^{2}, \mathbf{T}=+\mathbb{1},+2,+3, \ldots .$.

Figre Real Vibrdiona-Pddional Speetra(FineStucture) SoweCandudethefdlowingfromthedbovetheary
1 As the vibrtiond enagy inceeses ,the averge internuder dtance inceeses sotherddiond constat B, issmalle inthe upper statthenlower stde So $B_{v}{ }^{\prime}<B_{v}{ }^{\prime \prime}$, mernblandherdappersinR branchanhigh wevunher sideof thearign Surnabandissadt to bedeyradedtonaros thered Sothe vibrdiord-rddiord spedrabanobaredegadedtoredaly.
2 Thewavdenghs spardion of successivelinesintheP andQbrandesaea

$$
\begin{aligned}
& \Delta \bar{v}(P)=2 B_{v}^{\prime}-\left(B_{v}^{\prime}-B_{v}^{\prime \prime}\right) 2 J+\ldots \\
& \Delta \bar{v}(R)=2 B_{v}^{\prime}+\left(B_{v}^{\prime}-B_{v}^{\prime \prime}\right) 2 J+\ldots
\end{aligned}
$$

3 ForbothP andR bandes $B_{v}{ }^{\prime}<B_{v}{ }^{\prime \prime}$, sothesppardionbedweenthelines of R branch dereeses with inceese inJ values where a thespardion between lines of Pbanchin eems withincereinJ.

21.91llutrativeExaple

Exampel Thevaueof \bar{v} and $_{\bar{v} x}$ are $158036 \mathrm{~m}^{1}$ and $120 / 3 \mathrm{~m}^{1}$ respectively for the grand stae of molealar oxygen Calalte the zeropairt enegy. ($\mathrm{leV}=8088 \mathrm{ml}^{2}$).
Sd. Thevibrdiond enegyof thedatomicmodealeisgivenby

$$
G(v)=\bar{v}\left(v+\frac{1}{2}\right)-\bar{v} x\left(v+\frac{1}{2}\right)^{2}
$$

Forzeropairteregyv $=0$ so

$$
\begin{aligned}
& G(0)=\bar{v} \frac{1}{2}-\bar{v} x \frac{1}{4}, G(0)=1580.36 \times \frac{1}{2}-12.073 \times \frac{1}{4}=790.18-3.02 \\
& G(0)=787.16 \mathrm{am}^{\mathrm{l}}, G(0)=\frac{787.16}{8068}=0.097 \mathrm{eV}
\end{aligned}
$$

Example2 Theforcecontat of thebond in CO moleale is 190 N mand its redreed mass is $1.15 \times 10^{-26} \mathrm{~kg}$. Calaltethefrequancy of vibrion and spaing betweenthevibrtiond leads
Sd. Thefrequacy of vibrion of themdealeisgivenby

$$
\begin{aligned}
& v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}=\frac{1}{2 \times 3.14} \sqrt{\frac{190}{1.15 \times 10^{-26}}} \\
& v=2.0467 \times 10^{13} \mathrm{HZ}
\end{aligned}
$$

Thesepardionbeweenthetwoenegyleds

$$
\begin{aligned}
& \Delta E=E_{v+1}-E_{v}=h v \\
& \Delta E=E_{v+1}-E_{v}=6.63 \times 10^{-34} \times 2.0467 \times 10^{13} \\
& \Delta E=6.63 \times 10^{-34} \times 2.0467 \times 10^{13}=13.5696 \times 10^{-21} \mathrm{~J} \\
& \Delta E=\frac{13.5696 \times 10^{-21}}{1.6 \times 10^{-19}} \mathrm{eV} \\
& \Delta E=8.481 \times 10^{-2} \mathrm{eV}
\end{aligned}
$$

Exampe3 HC molealedosabswavdengh35mioromer detovibrdiond trasitions FindtheforcecantartforHO moleale
Sd. Thefrequancyof vibrdiarsisgivenby

$$
v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}
$$

$$
k=4 \pi^{2} v^{2} \mu
$$

Here $m_{H}=1.0087$ amu and $m_{C l}=35.453 \mathrm{amu}$
Sotheredredmmssof thendealeisgivenby

$$
\begin{aligned}
& \mu=\frac{m_{H} m_{C l}}{\left(m_{H}+m_{C l}\right)}=\frac{1.0087 \times 35.453}{(1.0087+35.453)}=0.98 \mathrm{amu} \\
& \mu=0.98 \times 1.67 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

Thefrequacyof vibrdiancandsobewittenas

$$
v=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{3.5 \times 10^{-6}}=8.571 \times 10^{13} \mathrm{HZ}
$$

Sothefarceconstatisnowgivenby

$$
\begin{aligned}
& k=4 \times(3.14)^{2}\left(8.571 \times 10^{13}\right)^{2} \times 1.63 \times 10^{-27} \\
& k=472.24 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Example4 Thefundanetd band of a datonic meleale is cettered arand $245 \mathrm{am}^{1}$ andfirstovetonet $4260 \mathrm{~mm}^{1}$. Find \bar{v} and $\overline{v x}$.
Sd. Thefrequency of fundarertd andfirstovetonesaregivenby

$$
\begin{array}{ll}
\bar{v}_{1}=(1-2 x) \bar{v} & \text { Fundarett band } \\
\bar{v}_{2}=(1-3 x) 2 \bar{v} & \text { Firstovatone }
\end{array}
$$

So, $\quad \frac{\bar{v}_{1}}{\bar{v}_{2}}=\frac{(1-2 x)}{(1-3 x) \times 2}$

$$
2 \bar{v}_{1}-6 \bar{v}_{1} x=\bar{v}_{2}-2 \bar{v}_{2} x
$$

$$
\left(2 \bar{v}_{2}-6 \bar{v}_{1}\right) x=\bar{v}_{2}-2 \bar{v}_{1}
$$

$$
x=\frac{\left(\bar{v}_{2}-2 \bar{v}_{1}\right)}{\left(2 \bar{v}_{2}-6 \bar{v}_{1}\right)}=\frac{(4260-4290)}{(8520-12870)}=\frac{30}{4350}
$$

$$
x=0.0069
$$

As $\quad 2 \bar{v}_{1}-\bar{v}_{2}=2 \bar{v} x$

$$
\begin{aligned}
& \bar{v} x=\frac{\left(2 \bar{v}_{1}-\bar{v}_{2}\right)}{2}=\frac{4290-4260}{2}=15 \mathrm{~m}^{1} \\
& \bar{v}=\frac{15}{x}=\frac{15}{0.0069}=2174 \mathrm{am}^{1}
\end{aligned}
$$

21.1 SedfLeaningExarisx

Q1 What is the orde of enegy dfference between vibriond levds of a moleale?
Q2 Disassthearammidity pesetinndealarvibrtions
Q3 Disass the effect of istopic exdange on the vibriond speetra of a datomicmeale
Q4 Disassthefinestuctureof thevibrdiond-rodiond spedra

21.11 Summary

The amof this unit is to sudy the vibrdiond-rodiond spedra of the datomic roleales First of al the previbraion notion of the moleale is corsidred and the enegies leads are deemined After this ffect of ahammidity presest in the maleale hes been dsassed Dieto ahameric ffedthepresenceof findareatd band first ovetones andsecondo vetoneswere dsassed Effect of theisdopic exchangeonthespeedrahesbeen asodsabsed Afterconsidaingtheprevibrtiond notiontherddiond notion of themoleale is dso considred The tho motions first treted as non-interating and the tod enegy of the moleale hes been calalted The contrined vibrtiond and rodtiond metionprovidesthepresencedfferet brandes inthemdeala spedra Differe t ces wereconsidred regardngtherigdty adnonrigdty of thebond कhamaric andahamaric effet in thevibrdions At lat thefinestucture of thevibriona-rodiond spedrahavebeen dsassed Thefinespeetracrerdated to interation of vibriond andrudiond netion Theeffet hes been dsassed intems of separdionbetweenthelines of dfferetbranches

21.1 Garran

fononner: Saretypodndes
Hkeronuder: Differettypeof nudes
Pdar: Haing ineand-ivechage
Osillaing: Peiodcally vaying
Rigid: Hadtochange
Feilde: Eaytockange

Distation: Dfeds

Consege: Teminging

Degadkd: Endng

21.13Exarcis

Q1 Witetheardrof frequey andwavelenth of NR spedra
Q2 Howthepdar mealesinteratwithdedromagnicradaions?
Q3 Gvetheeramdes of por modeales
Q4 Witethesdetionnuesfortraritionsbewwenthevibrtiond leads
Q5 Arethevibrdionsof adatomic moalesaeprehameric?
Q6 Disasstheeffect of ahamridityonthevibrdiond spedra
Q7 Disass thefundermetd bandandvaiasovetones invibrtiond speetra
Q8 Disass the effect of isdopic exchange on the funderetd and on the ovetones of thevibrtiond spetra
Q9 Witetheformiafor calaldion of farcecontat of bond in adatomic moleale
Q10 Disass the Vibraiond-Rddiond spedra of datomic moleales Disass thevaria sbranches of thespedra
Q11 Whitethesdetionnuesfortrasitionsinvibrdiond-rddiond spedra
QD Disass theeffect of norrigidty andathemridityontheNR spedra

ReferencesandSuggestedResing:

1 Codin N. Banwal and Eaine M. Mocadr Mdealar Speetroscopy, Tata Mcgan-Hill EdrdionPivateLinited NawDdh, 1994.
2 J. M. Hdias ModanSpeetroscopy,JdmWiley\&Sons, Engand, 1987.
3. S.L. Gupa V. Kumar and R.C. Shema Elenerts of Spectroscopy, Pragil
Pradan, Merut, 1990

4 Raj Kumar: Atomic \& Mdealar Spedra: LAFER, Kedr Nath RamNath Meat, 2007.

5. GM. Barow, Introdationto Mdealar Speedroscapy, McGrawHill, Landon, 196

UNT-2 InfiraredSpatroscopy: Pari-II

StuctureoftheUnit
220 Ojedives
221 Introdution
222 Themad Distribtionof Vibrdiond and Roddiond Levds
223 Vibrdiond Speetraof Pdytamic Mdeales
224 Funderetd Vibrdionsandther Symmetry
225 ArdysisbyIfrraredTedriques
2251 Skedd Vibrdions
2252 GrapFrequaies
226 Farié-TranformirfraedSpeetronedes
2261 Midndsonlntafeonaters
262 SarcesandDdetars
2263 Farie-Tranformtion
2264 MoingMirrors
2265 Siged-Averagng
2266 Comptes
2267 Spedra
227 Seff LefningExecise
228 Summay
229 Gossay
2210 ExeriseRefernes andSuggetedReedings

2200getive

 vibraiond enegy leids of meleales The dfferet modes of vibrdions of polydamic nodeales will bedsassed Theinsturertaionfor recordingtheIR spedraof themdealeswill beexdained

221 Introdutior

The vibriand enegy leads of the noleales are quatized The popldion of theseenegyledstataytemperdurewill bedsassed Thenomal cordntes of vibriors and vaia s modes of vibrtion of polytomic ndeales areexdanedwitheramdes Theinstumetdion requredtorecordtheIR speetra of themdealesisdsa ssedi.e FTR spedraneete.

222 Themal Distribution of Vibrationd and Rodaiond
 Ledk

Vibrdiond Leds : Accordng to Maxndl-Bdtman dstribtion law the nunber of nelealesinthe ${ }^{\text {th }}$ tate N , reftivetoloneststa, N_{6} isgivenby
 temperdure $\mathrm{G}_{\mathrm{G}}(\mathrm{v})$ istheenegy termviueof thetrasitionfrom $v^{\text {th }}$ statozeo sta

$$
G_{0}(v)=G(v)-G(0), G(v)=\bar{v}\left(v+\frac{1}{2}\right)-\bar{v} x\left(v+\frac{1}{2}\right)^{2}
$$

At roomtemperture the popldion of higer vibrdiond levds is very siall as compred to lonets levd $v=0$ As theterperdure inceeses the popldion of higev vibrtiond ledd increesesshowninthegad 221
Roddiand Leds: The redive popldion of varias roddiond levds corespondngtoavibrdiond levd is of dfferetneture A rodiond stathaing raddiond quertumnumes J is ($2+1$) fdd degenete The probadility of a moleale to be in each degenerte state is equa. Le the moleales are in the lonest vibrdiond staev $=0, \mathrm{~N}_{n=-1}$, bethen unber of moleales inthis stae These molealesaedstributedinvarias rddiond stass Thenumber of molealesina rodiond stedef agivenvibrtiond steeisæ

$$
N_{J}=\frac{N_{v=0}}{Z_{r}}(2 J+1) e^{\frac{-F(J) h c}{k T}}
$$

whereZ, istherddiond patitionfundionwtichisgivenby

$$
\begin{aligned}
& Z_{r}=\sum_{J=0}^{\infty}(2 J+1) e^{\frac{-F(J) h c}{k T}} \\
& Z_{r}=\sum_{J=0}^{\infty}(2 J+1) e^{\frac{-B J(J+1) h c}{k T}} \\
& Z_{r}=\int_{0}^{\infty}(2 J+1) e^{\frac{-B J(J+1) h c}{k T}} d J=\frac{k T}{h c B}
\end{aligned}
$$

Figre221 Pqulationof Rodtiond leds

$$
\text { So } \frac{N_{J}}{N_{v=0}}=\frac{h c B}{k T}(2 J+1) e^{\frac{-B J(J+1) h c}{k T}}
$$

Weseeherethat athevdueof incremes, thevdueof $\frac{N_{J}}{N_{v=0}}$ first incemes and thenderes Thevalue f Jfor whichtheppoldionismaximmis codalated ळ

$$
\frac{d}{d J}\left(\frac{N_{J}}{N_{v=0}}\right)=\frac{d}{d J}\left(\frac{h c B}{k T}(2 J+1) e^{\frac{-B(J+1) h c}{k T}}\right)=0
$$

$$
J_{\text {max }}=\sqrt{\frac{k T}{2 B h c}}-\frac{1}{2}
$$

Thus, thevdueof J twichtheppoldionisnaximm, increeses with dereese inB ardincreseintemperture Astheterpertureof themdealargesincees ,thenthefdlowingeffedsaredoseved

1 Theetersionof bandtikesplacedongbothsidesi.e dang P branchand Rbanch
2 Theintenity maximainbethbrancesmovesfathe from \bar{v}_{0}.
3 Theintenity maximmisfandforhighe valueff.
4. Thehigt of intenity naxinadereeses
5. Theineqdity betweentheirtensity of twolranches beeconeslessmaked

22: Vibraioral Spedraof PdyctoricMdeale:

A polydomic mealehaing N tonshave3Nageeso freedmi.e 3 N coadndes are reaired to speeify the positions of all nude. Ot of these 3 N degeeof freedons 3 arerd tedtotrandtiond motion, 3(nonliner modeale) α 2 lineer moleale) aerdtedto rodiond mation and remaining 3N-G nonlineer noleale) or 3N-5 (liner moleale) aerdtedtovibrtiond notion Therewill be 3N-6 ar 3N-5 enegy leds coresponding to these vibrdions So in the spectu mof themdealeshaingntanstherewill be3N-6(nonlineermoleale) a 3 N-5(linerrmeale) dsandianbands

Nomal CoordinztesandNomal Mocesof Vibraians

For the ardysis of speetra shown by podytomic roleales ,thestudy of modes of vibrdionsisessertid. Letusconidar aliner datonic molealehaing 3N-6degeeof freedons danded by mandgenedizedcocrdndes $q, q_{1}, q_{3}, . . q_{n}$ represerting theeailibriumstate of eachnudes Theptetid enegy of canbe epandedby Talor'sseriesinterm of thesecoordntes i.e

$$
V=V_{e q}+\left\{\sum_{i} \frac{\partial V}{\partial q_{i}}\right\}_{e q} q_{i}+\left\{\frac{1}{2} \sum_{i, j} \frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right\}_{e q} q_{i} q_{j}+\ldots \ldots
$$

If theequilibriumpdertid enegyistikenærferenceanddosentobezerthen

$$
V=\left\{\frac{1}{2} \sum_{i, j} \frac{\partial^{2} V}{\partial q_{i} \partial q_{j} q_{e q} q_{i} q_{j}} \text {, becase }\left\{\frac{\partial V}{\partial q_{i}}\right\}_{l_{e q}}=0\right. \text { inequilibriumposition }
$$

Leusconsidetht

$$
b_{i j}=\left\{\frac{1}{2} \sum_{i, j} \frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right\}_{e q} \text {, then } V=\frac{1}{2} \sum_{i, j} b_{i, j} q_{i} q_{j}
$$

Thekindicenegyisgivenby

$$
\begin{aligned}
& K=\frac{1}{2} \sum_{i, j} m_{i, j} \dot{q}_{i} \dot{q}_{j}, \text { wherethecoefficietsaregivenby } \\
& \left.m_{i, j}=m_{j, i}=\sum_{k} m_{k} \frac{\partial r_{k}}{\partial q_{i}}\right)\left(\frac{\partial r_{k}}{\partial q_{j}}\right)=m_{i, j}\left(q_{1}, q_{2}, q_{3}, \ldots . q_{m}\right) \\
& m_{i, j}=\left(m_{i, j}\right)_{c q}+\sum_{k}\left(\frac{\partial m_{i j}}{\partial q_{l}} q_{l}+\ldots \ldots .\right.
\end{aligned}
$$

If wecorsiderorly thefirstermof theseries, thenthekintic enegy is wittena

$$
K=\frac{1}{2} \sum_{i, j} a_{i, j} \dot{q}_{i} \dot{q}_{j} \text {, where } a_{i j}=\left(m_{i j}\right)_{e_{q}}
$$

TheLagangian of thesystemisgivenby

$$
L=K-V=\frac{1}{2} \sum_{i, j}\left(a_{i j} \dot{q}_{i} \dot{q}_{j}-b_{i j} q_{i} q_{j}\right)
$$

TheLagangian'seqution of mationare

$$
\begin{align*}
& \sum_{i=1}^{m}\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}\right]=0 \\
& \frac{d}{d t}\left[\frac{1}{2} \sum_{j} a_{i j} q_{j}+\frac{1}{2} \sum_{j} b_{i j} q_{j}=0\right. \\
& \sum_{j} a_{i j} q_{j}+\sum_{j} b_{i j} q_{j}=0 \tag{A}
\end{align*}
$$

Itrequesets ast of mequtions $(\mathrm{i}=1,2,3, \ldots . ., \mathrm{n})$. Thegened sdution of surh equianisa

$$
\begin{equation*}
q_{j}=A_{j} \operatorname{Sin}(\omega t+\alpha) \tag{B}
\end{equation*}
$$

whereA istheanditudeand ω istheargula frequency whichisgivenby

$$
\omega=\sqrt{\lambda}=2 \pi v
$$

Bysubstituingfrom(B) ineqution(A) wegł

$$
\sum_{j}\left(b_{i j}-a_{i j} \lambda\right) A_{j}=0, i=1,2,3 \ldots m
$$

whichgives ase of msimitaneas liner honegeneas equaions inA's and if A'sarentall tobezerothen

$$
\begin{aligned}
& \sum_{j}\left(b_{i j}-a_{i j} \lambda\right)=0 \\
& \left(\begin{array}{lll}
b_{11}-a_{11} \lambda & \ldots & b_{1 n}-a_{n n} \lambda \\
b_{21}-a_{21} \lambda & \ldots & b_{2 n}-a_{n n} \lambda \\
\ldots & \ldots & \ldots \\
b_{n 1}-a_{n 1} \lambda & \ldots & b_{n n}-a_{n n} \lambda
\end{array}\right)=0
\end{aligned}
$$

Thiseqdionis anequion of n "degeegivingmvius of λ intems of a'sand b's These valus of λ 's $\alpha \omega^{2}$ are the nomal frequancy of vibrions of a plyatomicmoleale

Wenow conside thenomal coordnates surhthat ech of themereate aly anesingefrequacy osilldions Leusnowtraformtheequtions inq's tonarnal coordites Q 's a

$$
q_{i}=\sum_{j=1}^{i} C_{i} Q_{j} \quad \text { or } \quad q=C Q
$$

where(q) add(O) aesingecdumnwtrices Incrod to witetheeqdion of motioninterms of namd coordntes, wehereto findfirst thekindic eregy and peterid enegy add theLagangianintems of Qs. Thepeterid enegy is givenby
$V=\frac{1}{2} \sum_{i, j} b_{i j} q_{i} q_{j}$, whichis aquaddicinq Anyquaddic expressionis of theform canbewittena

$$
\alpha q_{1}^{2}+\beta q_{2}^{2}+2 \gamma q_{1} q_{2}
$$

whichcenbewittena

$$
\left(q_{1}, q_{2}\right)\left(\begin{array}{ll}
\alpha & \gamma \\
\gamma & \beta
\end{array}\right)\binom{q_{1}}{q_{2}}=X^{T} U X
$$

where $\quad X=\binom{q_{1}}{q_{2}}$

$$
\begin{aligned}
& U=\left(\begin{array}{ll}
\alpha & \gamma \\
\gamma & \beta
\end{array}\right) \\
& X^{T}=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

NownecanviteV $\boldsymbol{a}^{\text {s }}$

$$
\begin{aligned}
& V=\frac{1}{2} q^{T} b q \\
& V=\frac{1}{2} C^{T} Q^{T} b C Q \\
& V=\frac{1}{2} Q^{T} C^{T} b C Q \\
& V=\frac{1}{2} Q^{T} \lambda Q
\end{aligned}
$$

Where $\quad C^{T} b C=\lambda$

Sothepatetid eregy canbewittena

$$
\begin{aligned}
& V=\frac{1}{2} \sum_{k} \omega_{k}^{2} Q_{k}^{2} \\
& T=\frac{1}{2} \sum_{i, j} a_{i j} \dot{q}_{i} \dot{q}_{j}=\frac{1}{2} \dot{q}^{T} \alpha \dot{q} \\
& T=\frac{1}{2} \dot{Q}^{T} C^{T} \alpha C \dot{Q}=\frac{1}{2} \dot{Q}^{T} \dot{Q}=\frac{1}{2} \sum \dot{Q}_{k}^{2}
\end{aligned}
$$

Where $\quad C^{T} \alpha C=1$
TherefreLaganganwill be

$$
\begin{aligned}
& V=\frac{1}{2} \sum_{k} \omega_{k}^{2} Q_{k}^{2} \\
& T=\frac{1}{2} \sum_{i, j} a_{i j} \dot{q}_{i} \dot{q}_{j}=\frac{1}{2} \dot{q}^{T} \alpha \dot{q} \\
& T=\frac{1}{2} \dot{Q}^{T} C^{T} \alpha C \dot{Q}=\frac{1}{2} \dot{Q}^{T} \dot{Q}=\frac{1}{2} \sum_{k} \dot{Q}_{k}^{2} \\
& C^{T} \alpha C=1 \\
& L=T-V=\frac{1}{2} \sum_{k} \dot{Q}_{k}^{2}-\frac{1}{2} \sum_{k} \omega_{k}^{2} Q_{k}^{2} \\
& \sum_{k=1}^{m}\left[\frac{d}{d t}\left(\frac{\delta L}{\delta \dot{Q}_{k}}\right)-\left(\frac{\delta L}{\delta Q_{k}}\right)\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{m}\left[\ddot{Q}_{k}+\omega_{k}^{2} Q_{k}\right]=0 \\
& \ddot{Q}_{m}+\omega_{m}^{2} Q_{m}=0 \\
& Q_{m}=A_{m} \cos \omega_{m} t+B_{m} \sin \omega_{m} t
\end{aligned}
$$

whichwhenusedwith

$$
\begin{aligned}
& \sum_{k=1}^{m}\left[\frac{d}{d t}\left(\frac{\delta L}{\delta \dot{Q}_{k}}\right)-\left(\frac{\delta L}{\delta Q_{k}}\right)\right]=0 \\
& \sum_{k=1}^{m}\left[\ddot{Q}_{k}+\omega_{k}^{2} Q_{k}\right]=0 \\
& \ddot{Q}_{1}+\omega_{1}^{2} Q_{1}=0 \\
& \ddot{Q}_{2}+\omega_{2}^{2} Q_{2}=0 \\
& \ddot{Q}_{3}+\omega_{3}^{2} Q_{3}=0
\end{aligned}
$$

$a r$

$$
\ddot{Q}_{m}+\omega_{m}^{2} Q_{m}=0
$$

Corespondngto Q_{1} thefrequacy is ω_{1}, for Q_{2} it is ω_{2}, andso on TheQ'sare calledænomat coordintes Thesduionstodboveequionsarea

$$
\begin{aligned}
& Q_{1}=A_{1} \cos \omega_{1} t+B_{1} \sin \omega_{1} t \\
& Q_{2}=A_{2} \cos \omega_{2} t+B_{2} \sin \omega_{2} t \\
& Q_{3}=A_{3} \cos \omega_{3} t+B_{3} \sin \omega_{3} t
\end{aligned}
$$

...................................
..................................

$$
Q_{m}=A_{m} \cos \omega_{m} t+B_{m} \sin \omega_{m} t
$$

Here $_{1}, \omega_{2}, \omega_{3}, \ldots . . . \omega_{\mathrm{m}}$ arecdlederomal frequaces

244 Fundmetrd Vibrdiarsandtheir Symmety

 canbesperified by threecordnates i.e x, y, adz zcordnates Sotherevill be 3N cordintesi.e ndealehs 3 N deyeed freedm Now thendealeisfree to meve in timee dmersiond space ∞ a whde withat dange of strpe The
trandaiand maionusesthredegreeof freedomleaing3N-3asrevzining Also a norlineer moleale hes three degee of freedminde to rodtions. So the moleale is left with 3N-6 degee of freedm The only other metion allowed to melealeistheintena vibrdias, soanan-linearndealewill have3N-6dagee of freedomdeto internd vibraions If thendealeis lineer, thentherewill be 3N-5degreof freedomdetointemal vibrdions Inbothtypes of ndealesthere areN anss, so there will beN-1 bands (aydic meevies) betweenthe atars Therewill beN-1 vibrdions areof bondstedingtypemaions and 2N-5 (nanlineer) or 2 N -4 (linear) areof bendngtypenetions.

In cose of datomic moleale $\mathrm{N}=2$ and $3 \mathrm{~N}-5-1$, so there is aly ane fundanetd vibrdian Inceseof tri-tomicnan-linerndealelikeH2O, thereare 3N-6-3 dlowed vibrdiand modes called as nomd modes Theses modes of vibrdionsareshownasbdow.

Figre222 Vibraiarsof WharMdeale

Figure223Vibraionsof CarbonDioideMdeale

Eachvibrdiond notionislabdedæsymmicaratisymmic If werddethe vibrdingmedealeby 180° sudthet vibrdionisqite undangedindarate then it is calledassymmic vibrdions Howere if therddion prodres a vibrtion whichisinatiphæewiththeaigina, thensurnnotioniscalledmatisymmetric stedching mode The vibrtions of weter moleale and cabon doxide moleale aeshowninfigre

22. AntyeisbyInfracerTedrique

A compe molealehes 3N-6ar 3N-5 nomal node of vibrtions Each normal node indves some dspaceret of all or nealy dl the atons in the moleale but in some of the rodes, al tons may undago appocinately the saredsplaceret and in thes thedsdaceme of asmall gapof tons may bemurhnorevigras thentheremaindr. Thuswenay dvidethenornal nodes into two graps a skeded vibrtions and darateitics gap vibrtions The skedd vibrtions indvemany of theatons to sareetert andthedrarateistic vibrtions indve aly a swall pation of the modeale while athes remain stdionay.

2251Seded Vibraians

Forargaic modeales thesefdl intherage $1400700 \mathrm{~cm}^{1}$ andaisefrom lineror brancheddainstudtreinthemoleale Thueachsurgrapgivesrise tosered Skeled modes of vibriors and henceseved dosantions bends inthe infrared
It is not poside to asign patiala bands to speeific vilrdiond nood, bt the doseved band is tighly typicd of a rodealar stucture undr eaningtion Futher adnangeinthedkinor ringintheformof sbositution realtsinanaked dangeinthepattem of dosandionband Thesebanosaretretedasfingrpirtof a patialarmealarstudure

Figre224 The adbondion banch at $1605 \mathrm{am}^{12}$ and $151 \mathrm{an}^{14}$ vere dracdaisicof phenl ringseded vibationsof liginnacondeales

2252GrapFrequacies

The gap frequaies are usally independat of the struture of the moleale a whde and fall in the regions wall above and wall bataw that of skedd modes Thegapfrequaies of sarefunctiond gapsaegivenintdde balow.

Characteristic Infrared Absorption Frequencies

Bond	Compound type	Frequency range cm^{-1}
$\mathrm{C}-\mathrm{H}$	Alkanes	$2850-2960$
		$1350-1470$
$\mathrm{C}-\mathrm{H}$	Alkenes	$3020-3080$
		$675-1000$
$\mathrm{C}-\mathrm{H}$	Aromatic rings	$3000-3100$
		$675-870$
$\mathrm{C}-\mathrm{H}$	Alkynes	3300
$\mathrm{C}=\mathrm{C}$	Alkenes	$1640-1680$
$\mathrm{C} \equiv \mathrm{C}$	Alkynes	$2100-2260$

Bond	Compound type	$\underset{\mathrm{cm}^{-1}}{\text { Frequency range }}$
$\mathrm{C}=\mathrm{C}$	Aromatic rings	1500, 1600
$\mathrm{C}-\mathrm{O}$	Alcohols, ethers, carboxylic acids, esters	1080-1300
$\mathrm{C}=\mathrm{O}$	Aldehydes, ketones, carboxylic acids, esters	1690-1760
$\mathrm{O}-\mathrm{H}$	Monomeric alcohols, phenols	3610-3640
	Hydrogen-bonded alcohols, phenols	3200-3600
	Carboxylic acids	2500-3000
$\mathrm{N}-\mathrm{H}$	Amines	3300-3500
$\mathrm{C}-\mathrm{N}$	Amines	1180-1360
$\mathrm{C} \equiv \mathrm{N}$	Nitriles	2210-2260
$-\mathrm{NO}_{2}$	Nitro compounds	1515-1560

Shift in the darateistic frequnies coars deto two maja fatars Firstly the shiftray aisedeto interadians betweenthedfferet noleales Seeondy, the sift in the frequaies is dso de physicd stae of meleales. The nore condased phesegiveslowerfrequnies parialaly inceseof polarmeales In nonpdar meales thereismoshift insymmetric vibraionsbatasnaller shift in thes.

22f Farie-TransaminfiraredSpatrantar:

Farie-tranfomirfraed(FIR) spectroscopy is besed ontheideaf the intefernce fradtionbetwentwo bernstoyiddanirtaferoramThelater is a signd podred ∞ a fundion of the dange of pth lengh between the two beats The two domins of dstance and frequany ae interconvetilde by the matherticd method of Fourie-tranformaion Thebasic compments of anFIR speetroneer are shown schentically in given Figure The radition energing fromthesarceis pessedthragh aninteffermeter tothesemplebforereedinga dteetor. Upon ampifiction of thesignd, in which highfreapany cartribuions have been diminsted by a filter, the dsta ae conveted to dgitd formby an andogto-dgitd conveter and tranfered to the compter for Farietraisformion Thenijorcomponets of thespedroneter aedsasseds

261MidAsanlnteferanders

The nost cormmon inteferoneer used in FITR speetromery is a Midhason intefermeter, which consists of two papendalaly plane minras, aneof which contrave inadredion perpendala totheplax, asenir-rfleding film thebermsditte, biseds theplanes of thesetno nirras The bermsditter nateid hestobechosen accordingto theregiontobeeramined Mateidssuchas gemariumor iranoxidearecated ato aninfraedtrasparetsthbstasurhas patasiumbrovide or cesiumioddeto prodre bermsdittes for the mid or neer-irfraedregors Thinagericfilns, suhapdy (dhleretergdthata), ae ueed inthefa-irfraedregon If addlinted bermof nonodrandic radtion of wardengh λ (an) is pessed into an idead beamsditter, 50\% of the incidat raddion will berefleted to oreof themirras while 50% will betransiitted to the dhe mirrar. Thetwo beens are reflected from thesenirras, reuringto the bermsditter wherethey reeontineandintefere Themaingmincor podresan qdicd pth dffererce between the tho ams of the inteffermer. For path dfferences of ($n+1 / 2$) , thetwo berns intefferedestudively inthecereof the trasnitted beemandconstudively inthecereof thereflected berm

Figre225 Finspadraniar

2262 SarcesandDtestors

FITR speetronetes ure a Gdor or Nent sarce for the midififraed regon If thefa-infraed region is to beeanined thenahigh-pressrentrary lamp can be used For the ner-irfraed, ungten-hagogen lamps are used as sarces Thereare two cormanly used deedas endoyed for the midirfrared rejon Thenorial detetor for ratineuseis a pyrodetric deviceincorporting daterium trydyoine slfate (DTGS) in a temperdureresistat akdi halide window. Formeresensitivewark, neary cachiumtelluide(MCT) canbeused butthishestobecodedtoliquidritrogentemperatures Inthefa-ifriaredregon, gemaiumorindumatimanydtedarsaeemdoyed qeardingatliquidhdium temperdures For the nex-irfraced region, the deetars ueed aegeneally lead slficephtoconditars

2263Farier-Tranformaian

Theessertid equtions for a Farie-tranformaion reding the intenity falling on the detetor $I(\delta)$ to the speetra poner density at a patiala veverumber \bar{v} isgivenby $B(\bar{v})$ क

$$
\begin{aligned}
& I(\delta)=\int_{0}^{\infty} B(\bar{v}) \cos (2 \pi \bar{v} \delta) d \bar{v} \\
& \text { Where } B(\bar{v})=\int_{-\infty}^{\infty} I(\delta) \cos (2 \pi \bar{v} \delta) d \delta
\end{aligned}
$$

These two equians ae interconnetide and areknown æ a Farie-tranform pair. Thefirst shons thevaidionin poner darsity wafundion of thedfference in pathlengh, whichisanirteferemeepttem Thesecondshous the vaidionin interity mafundion of waverunber. Ead canbeconvetedirtothedher by the matherticd methodof Fourie-tranformion Theessertid experimettodatan anFTR spedtumistoprodreeninteffergam with and withat a sampleinthe bermand tranforming the inteffergans into spedra of (a) the sarce with samdedbsandionsand(b) thesarcewithatsampledsondions Therdio of the form andthelater carespondstoada beberndspersivespedtum Themajor advace tonad ratine uee in the midinfraed region care with a rew motherdicd method devised for fat Farie-tranformaion (FFT). This wes contined with advacees in cormutes which ended these calaltions to be cariedatrodidy.

2264MoingMirrars

Thenraingmincris acund componetof theinteferneetr. Ithestobe acurddy dignedandmit becopdde of scaringtwo dstares so thet thepth dfferececoresponds to aknownvaue A nunber of fatars asocided withthe noving mirror need to beconsidred when evduting an irfrared speetrm The intefergamis an andogesignd t thedझedor thet hes tobedgitizedinardar thet the Fourie-tranformaion into a convertiond spednum ben be caried at Therearetwo patialar sarces of erro intranforningthedgitized ifformaion on the inteferogaminto a speetrum Firs, the tranformtion caried at in praciceindves anirtegdionstageove afintedsdacemetrathe thenoveran infiritedsplacerett Themtherdice process of Farier tranformionamemes infiritebandaies Theprocess of apodzdionis therenovd of thesideldoes (dr pob) by moltidy ing theirteferogrmby asitddefundion beforetheFarietranformioion is caried at A sitddefundion most casetheintenity of the inteffegamtofall smodhy tozerodits ends MosFIR spedranters offer a daciceof apodzdion qdiors and a goodgered puroseapodzdionfundion is thecosinefundion afdlons

$$
F(D)=[1+\cos (\pi D)] 2
$$

whereDistheqdiced pathdfference Thiscoinefundionprovidesagood compronise between redution in osilldians and detriortion in speetrd resduion When accurte band shapes ae reqired nore spdisticted motheraticd funcions may be reeded Andhe sarce of erra atises if the samde intervds are not exatly the same an eech side of the naxima corespondng to zeo pth differnces Phexe corection is required and this corredion proedreensuresthit thesampeintevalsarethesmeanechsideof thefirstinterva andshouldcorespondtoapthdfferenceof zero. Theresdution foranFIR instureetislinitedbythenaximempethdfferecebedveenthetno berms Thelimiting resdutionin wavenumess (cm^{1}) isthereiprocd of thepth lenghdffernce(om). Foreamde apthlenghdfferenceof 10 cmis required to adieve liniting resdution of $0.1 \mathrm{~m}^{1}$. This simple calaltion appers to showthat it is emy to ardievehigh resduion Urfotuntely, this is not the cere sincethepresision of theqdics and mirror novenert nedarismbeconemare dffialttoadievetlongr dsdacerets of pthlenghs

2265Sigel-Avaraging

Themannadvatageof radidscarninginstumets istheddility to inceere the siged-tomise rdio (SNR) by signd-avaging leading to an inceese of sign-to-nisepropationd tothesqueroot of thetime, afdlows

SNR $\alpha \mathrm{n}^{12}$

Threaredminishingreumsfor signd-ararging inthet it tikes aninceesingy longe time to adieve geeter and geter impoveret. The acomidion of a lagen numer of repet scars makes geeter darmos ontheinstruet if it is to eadly reprodrethecondions Itisnomal toincorportealæer monodrandic sarce in the beernof the cortinus sarce Thelwer beemprodures standard fringes which can 'lineup' sucessive scars acarddy and can dłemine and carrd thedsdaremet of themavingmirror atdl tines

2266Complas

The compter farss a anuid compenet of nodemirfraed intrumets and pefoms a number of fundions The compter cortrds the instumet, for earmle, itsts scan speed and scarring limits, andstats and staps scaring it read spedra into the conpter merry fromtheingnumt a the spedrumis scamed this neens that the spednumis dgitized Speetra may be mariplated taing thecompter, for examde by adding ands shrating speetracr eycanding ares of the spedrumof interest The computer is dso used to scan the spedra cortinuady and averge or add the resalt in the compter nemary. Complex andyses may beatondically caried at by following ase of preprogammed cormands Thecompter isdsousedtopldthespedra

2267Spatra

Ealy iffraed insturets recorded percertagetrarsnittanceover a liner wadenghrange Itisnowunsal to ueewandenghfor ratinesamdes andthe navenulber scdeiscormmily ueed Theatpatfromtheindu mertisreferedto a a spectum Most cormerid insturets preest a speatrm with the navenunber dereesing fromlet to rigt Theirfraed spedtumcan bedvided into thee min regors the far infraed ($<400 \mathrm{~cm}^{1}$), the midiffrared $\left(4000-400 \mathrm{~m}^{1}\right)$ andtheneer-irfraed $\left(1300-4000 \mathrm{~m}^{1}\right)$.

Figre226 Typicd FIR speetraf Aniline
Many infraed apdicdions emdoy the midirfraed region but thener- andfaiffraed regors dso proide impatat informion dant catan mateids Geneally, thereareless infraed bands inthe $400-1800 \mathrm{~cm}^{1}$ region with many bands beveen 1800 and $400 \mathrm{~m}^{1}$. Someines, the scde is danged so thet the regonbetween 400 and $1800 \mathrm{~m}^{1}$ iscartratedandtheregionbetween 1800 and $400 \mathrm{~cm}^{1}$ is expanded toendreizefetures of interet Theadndescelenay be presented in \% trarsmittacce with 100% t the top of the spedtum It is cormondææ to have a dhice of dbsabanceor trasmittance w a nare of bandirterity.

22] Seff LemingExarcis

Q1 Witetheformlafor popldion of arddiona lend tanytemperture
Q2 WitetheLayangianco asystemof adatomicmdeale
Q3 WhitetheFrequnies of vibrtion of C-Hinalkenes akynes adaromic ring
Q4 Witetheuseof mavingmirrorinFTR speetroneer.

22E Sumay

Insunt aesswin pqualon a vorana andradionalevsa any temperture Thedeyeneray of rodiand leid as well naximmpoplaionfor a patiala valueof rodional quatumnumber hes been dsassed Thedegeeof freedbns of a moleales haing N atons a ndl vibrdiand degree of freedom have been dsassed The namd coardntes as nell as nomed node of vibrdions of a datamic noleale havebeen exdained The skedd vibriond frequacy range and fundiond frequaies range is dso dsassed Findly the instruertaion required to reeord the IR speetrumpatialaly FTIR hes been dsassed in dzal. All the componets of FIR speetrodntoneter have been dsassedind\#al.

2X Glomay

Degnarde: Nunter of Sdeshaing sameeregy
Degeedfreedm: Nunbe of indpendat coordndes reairedto speeify the sta
Lagagian:Tdd eregyfundionnedzics
Linm: Alongaline
Nentiner: Natdangaline(bend)
Trangperet: Adetopess
Splitter: Dividngintotwoornany
Intefferanter : Insturettorecordtheinteference
Interfergrams Inteferencepatem

210Exacis

Q1 Whitetheformlafor poplation avibricion lere day temperdure
Q2 Disassthethemad dstribtiono f vibrdiond and Iddiond leads
Q3 Witetrevaiasdeyeef freedmof andealehaingNacons
Q4 Whitethen unber of vibctiond noods of a liner and nonliner meale haingNatans

Q5 Wite the Lagangian eqution of motion of a sytem of a datomic moleale
Q6 Exdainthenomal modes andnormal coordnates
Q7 Witethevarias modes of vibrtion of a liner and nontineer moleale witherande
Q8 Witeashatncteanskeded vibrtion
Q9 Witeashatndeangapfrearnies
Q10 Witetheganad rejorsof skedd andgapfrequanies
Qill WitetheFrequmies of vibrdion of $\mathrm{C}=$ bond in akenes, akynes and aomaicring
QD Witethebesiccomponets of FTIR speetrometer.
Q13 Witethesarces of IR anddłetars of IR usedinFTR speetrometes
Q14 Disasstheconstucionandwarking of FIR speetrometa.

RefarencesandSuggetedResding:

1 Colin N. Bandll and Eáne M. McCah Mdealar Speetroscopy, Tata Mcgan-Hill EdrdionPivateLinited NawDath, 1994.
2 J. M. Holia ModanSpeetroscopy,JdmWiley \& Sons, Engand, 1987.
3 S.L. Gupa V. Kumar and R.C. Shema Elenets of Spectroscopy, Pragid Prokaten, Mertu, 1990
4 Raj Kumar: Atonic \& Mdealar Speetra: LAFER, Kedr Nath RamNath Ment, 2007.
5 GM. Barow, IntrodutiontoMdealar Speetroscopy, McGrawHill, London, 196
6. B. Stuat, Infrared Speedroscopy. FundanemtalsandApdicaior, JdmWley \& Sons, Ltd 2004.

UNT-Z RanznSpatra, Frand-CondonPinciple

SrutureoftheUnit

230 Ojedives

231 Introdution
232 RaranEffect
233 Cassicd Thery of RamenEffet
2331 QatumTheory of RamenEffet
2332 Prodadilityof TrasitioninRananEffet
2333 Vibrdiond RanenSpedra
2334 Roddiona RavanSpeedra
2335 Vibrdiond-Rddiond RarinSpeedra
234 RamenSpeetronter
235 FrankCandonPinide
236 IllugrdiveExamdes
237 Seff LearingExerise
238 Summay
239 Gossay
2310 Exerise
RefernesandSuggestedRedngs

2300beative:

This unit is designed to provide baic knowledbe doat the one of nod
 audl mqatumtheeries of Ranmeffeet will bedsassed Itwill beexdained herethat how the Raman scattering is redted to vilraion and rodtiond enegy levds of themdealesandhowitcenprovidetheirforraiondatthemdeala
stucture Therequired insturettion to doseve Ranan Scatering will dso be dsassed

23] Introdiciar

The scettering of eectromegeic radtion from the sdid and there is a sift in frearicy of detronagntic radaion is called ∞ Ranan Effeet The scetteingof theseraddionsby thesdidisredtedtothevibrtiond andrationa enegy leuds of the moleales of the sdids Herethe baic theries of Ramen effed, aign of dfferet speetrad lines and vaias banches of these lines are exdarned FirallytheRamanSpeetromeerisdsassedindझdil.

232RantenEffed

When a mandrondic radidios or radidions of vey nerowfrequacy band ae scattred by a solid then the scattred redtions not aly consists of raddions of indidtfrequency butdsoradaionsof frequanies doweandlodow thet of indidat bermfreat ancy. Thistypeof scatteinginwtichthefrequacy of indadt bermundagees a dafinite drange wes doserved and wes studied by Rananin 1928 andiscelledaRananEffet If \bar{v}_{i} is thewaver unber of indadt waveand \bar{v}_{s} isthewavenumber of scettered wavethentheRanensiftisgivenby

$$
(\Delta \bar{v})_{r m n}=\bar{v}_{i}-\bar{v}_{s}
$$

Thisdfferenceisthedarateisic of them*erid anditdoes notdapend yponthe navenunber of theinidat radition If $(\Delta \bar{\nu})_{m n}$ ispoitive, then Ranm speedrais sadtohareStokes lines andif $(\Delta \bar{v})_{m m}$ is negdive,thentheRamanspedraissad tohaveati-Stokeslines

The intersity of Stokes lines is tighe a compared to ati-Stokes lines The Rananshift $(\Delta \bar{v})_{m m}$ lies withintherange $100-3000 \mathrm{~m}^{-1}$, whichfall inthefar and neer iffrared region of the spednm This shift suggest that the danges in the
enegy of scattered raddions in the Ranm Effet corespond to the eregy danges accompaning rodiond and vibrdiond trasitions in the moleales of thenteids

23: Caxicd Theoyof RananEffed

If antomoramealeispacedinandetric fidd,thenthedeetronsand thenude are dsdaced redive to each othe i.e an dectric dplemant is indreedinthendealedetothis redivedsdaenet of dedransandnude. It is dso called ∞ moleala polaizdionby theeternd deedric fied LAE is the interity of dedricfiddand μ isthemagitudeof indreedd polememetthen

$$
\mu=\alpha E
$$

where α is thepdaizddility of thendeale Theintensity of the letric fidd of thededromagnic wave of frequicy, canbeepressedas

$$
E=E_{0} \operatorname{Sin}(2 \pi v t)
$$

Sothepdaizddility of thendealeisgivenby

$$
\mu=\alpha E_{0} \operatorname{Sin}(2 \pi v t)
$$

Sotheinteration of raddion of frequacy v indresadplemomertinthetom or moleale This dplemenert osillates with sare frearncy v. So fromthe dasicd theary, thisosilldingd polewill scdter crenitradtion of frequany v i.e frequacy of incidatraddions ItiscalledaRRalèghscatteing

In the dove dsassion n internd motion i.e redtion and vibrtion of the molealeis considged Letusfirst conside theffet of vibriind motion of a datomic noleale When the two nude of the moleale vibrate ang the line joiningthenthenthepdaizdility of themdeal ewill dange Thedrangeinthe polaizadility α, withswall dspacemetxfromeailibriumpositionisgivenby

$$
\alpha=\alpha_{0}+\beta \frac{x}{A}
$$

where α_{0} is the equilibium padaizdility β is the rate of varidion of polaizdility withdsdacemtandA is thevibraiond ampitude If themoleale exeates the simple hammic notion ,then the dspacemert from the neen positionisgivenby

$$
x=A \operatorname{Sin}\left(2 \pi v_{v} t\right)
$$

Where v_{v} is thefrequacy of vibrtion of themdeale Sothepdaizddility of the nodealeisgivenby

$$
\alpha=\alpha_{0}+\beta \operatorname{Sin}\left(2 \pi v_{v} t\right)
$$

Sotheindreddpolemanertisgivenby

$$
\begin{aligned}
\mu & =\alpha_{0} E_{0} \operatorname{Sin}(2 \pi v t)+\beta E_{0} \operatorname{Sin}(2 \pi v t) \operatorname{Sin}\left(2 \pi v_{v} t\right) \\
\mu & =\alpha_{0} E_{0} \operatorname{Sin}(2 \pi v t)+\frac{1}{2} \beta E_{0}\left[\operatorname{Cos} 2 \pi\left(v-v_{v}\right) t-\operatorname{Cos} 2 \pi\left(v+v_{v}\right) t\right]
\end{aligned}
$$

Thustheind reedd penemertosilldes withfrequanies of raddions $v, v+v_{v}$ and $v-v_{v}$. Thefirst frequany is sareatht of indagtradaioni.e Raleigh scattering and lat two frequncies are deto Ranan scedteing Thevibrdiond siftisequl to v_{v}.

Now le us consider the effet of radion of moleale on palaizdolity. Dringtherddion of themdealetheaietdion of themdeale with respect to dedricfidd of radaiondanges, therefrethemdealeisnot isdroic, itshons
dfferet polaizdility in dfferet dretions The polaizddility of the moleale vaieswithtine Thevaidion of plaizadility canbeepresseda

$$
\alpha=\alpha_{0}+\beta^{\prime} \operatorname{Sin} 2 \pi\left(2 v_{r}\right) t
$$

where ${ }_{v}$ is thefrequancy of rodtion Thepdaizdility dangestartetwicethe freapacy of rodion, therforein paceof v_{r}, wehavewitten $2 v_{r}$. Theindred dpolenometisgivenby

$$
\begin{aligned}
& \mu=\alpha_{0} E_{0} \operatorname{Sin}(2 \pi v t)+\beta^{\prime} E_{0} \operatorname{Sin}(2 \pi v t) \operatorname{Sin}\left(4 \pi v_{r} t\right) \\
& \mu=\alpha_{0} E_{0} \operatorname{Sin}(2 \pi v t)+\frac{1}{2} \beta^{\prime} E_{0}\left[\operatorname{Cos} 2 \pi\left(v-2 v_{r}\right) t-\operatorname{Cos} 2 \pi\left(v+2 v_{r}\right) t\right]
\end{aligned}
$$

TheRaran lines will hevefrequanies $v, v+2 v_{r}$ and $v-2 v_{r}$. TheRamen sift will be $2 v_{r}$ r.e eqd totwicethefrequacy of rddion
So we condudetht inthescatteredraddion therewill bevibrtiond linest v_{v} oneither sides of Rayleghline v anddso rodtiond Ramenlines t $2 v_{r}$ aneither sdes of v. Itisnd necessay tohaveapermatdedric dpdemmerttoshow Ravian speetra So the hono-nder moleales dso show Ravian speetra even thoughtheyareIR inative

2331QuartumTheryof RaranEffet

Whendetronmencic waves areinidat ontherdeales of ashbtace thendeto absundion of theseraddians themdeales aerased to higer stae Nowif themdeales reumto their aigind stat, thenthefrearncy of radion evittedissareath of indidat ligt, batif they reumtoahiger orlower ste Leusconsidgramdealeinitsinitid stehaingengy $E^{\prime \prime}$ anditiseyposedto indadst raddions of waverumber \bar{v}_{i}. De to dbsandion of this raddion the moleal lisraisedtohiger enegy stehaingenegy $E^{" \prime}+h c \bar{v}_{i}$. Nowsupposetht themdealereums to alevd of enegy led of enagy E^{\prime} lying dover", by losingeregy $h c \bar{v}_{s}$ andwaven mber of scatteredradiansis \bar{v}_{s}.

$$
\begin{aligned}
& E^{\prime \prime}+h c \bar{v}_{i}-h c \bar{v}_{s}=E^{\prime} \\
& E^{\prime}-E^{\prime \prime}=h c\left(\bar{v}_{i}-\bar{v}_{s}\right)=h c(\Delta \bar{v})_{m n}=\Delta E
\end{aligned}
$$

TheRananshift is eqal to thedffernceinenegy of two ledds requeserted by E^{\prime} and $E^{\prime \prime}$. Thesignof $(\Delta \bar{v})_{m n}$ deperosupon $\left(E^{\prime}-E^{\prime \prime}\right)$, if $E^{\prime} \not E^{\prime \prime}$ then $(\Delta \bar{v})_{m m}$ is positive and herceRaran Stokes lines areprodreed If $E^{\prime}<E^{\prime \prime}$ then $(\Delta \bar{v})_{m m}$ is
negiveandhenceRanmati-Stokes lines areprodred Cassically theintensity of Stokes andati-Stokes lines shaldbesarebut experimetally it isfound tht theintensity of Stckeslinesishigeracomparedtoati-Stekeslines

2332Pdodilityof TrasitioninRananEffect

When an tomor moleale is pared in detric fidd of intersity E the detronsandnude aedsdaxedinsurhamamer somto indreetedric dpde nomertugivenby

$$
\mu=\alpha E
$$

where α is themoleala parizdolity. Now if thetwo nude vibrtedang the linejdining them,then the plaizddility will vary. For siall dsdacemett the vaidionintheplaizdadity iseyresseda

$$
\alpha=\alpha_{0}+\beta \frac{x}{A},
$$

Where α_{0} theequilibriumpdaizadility is β istherdeof vaidionof pdaizdadity with dsplacenert and A is amditude of vibrtions Le us consider the x componets of plaizdaility anddłeminethetrasition probadilityas

$$
P_{m n}(x)=\int \psi_{m}^{*}\left(\alpha_{x x} E_{x}\right) \psi_{n} d \tau
$$

where $\alpha_{x x}$ isthepdaizddility inthexdredionnhenthededricfiddE E_{x} isating inthesaredredions Thevaridion of plaizadility $\alpha_{x x}$ dringtheosillaion of nolealeisgivenby

$$
\begin{equation*}
\alpha_{x x}=\alpha_{x x}^{0}+\beta_{x x} \frac{x}{A} \tag{B}
\end{equation*}
$$

Therefrefromeqution(A) and(B) wehave

$$
\begin{equation*}
P_{n n}(x)=\alpha_{x x}^{0} E_{x} \int \psi_{m}^{*} \psi_{n} d \tau+\frac{E_{x}}{A} \beta_{x x} \int \psi_{m}^{*} \psi_{n} d \tau \tag{C}
\end{equation*}
$$

Sowecondudefromeqution(C) ∞
1 Thefirstermof this equioniszeroeccet $m=n$ Thistermgives risetoa trasitionwhich cbes not invivethevibrtiond or rodiond trasitions This temgivesthetrasitionprobadility of Raleighscatteing
2 For Ranm scattering $m \neq n$ thefirst tamis zeo, while for non zero of secondtem $\beta_{x x}$ motdrangedringthevilartions

3 For the moleale to be Ranian ative it is neessary that the molealar palaizdolity most drange in aty drection dring the rodtions of the modeale

2333Mibrdiand RananSpatra

Thevibrtiond Ranm speetrumaises detotransion of molealefrom anevibrtiond lead to dhe vibrdiond levd of samededroric state Qaxtum mecharically if $\beta_{x x}$ isnotzer, themedealewill showRananscatteing Fromthe study of matrix demet $P_{m m}(x)$ of the polaizdility, it is found that in cæe of hamaricosillator thesamesdetionulehdobfor Ramanscatteingaincereof infraredspetumi.e

$$
\Delta v= \pm 1
$$

Thetransition tokes parealy adaret vibriond levds i.e fromoneled to net upper leud (Stokeslines) or to thenextlowe lead (ati-Stckes lines). Thus inthe Ravan speetrumthrewill beoneStokeandoneati-Stokelinewtichare shiftedbyanarourt $|\Delta \bar{v}|_{u i b}$ tobothsids of theaigina line

$$
|\Delta \bar{v}|_{v i b}=G(v+1)-G(v)=\bar{v}
$$

Atadray temperturemest of themdeales areintheir lonest vibrdiond sta i.e $v=0$, so majaity of trations will beof thetype $\mathrm{v}=0$ to $\mathrm{v}=1 \mathrm{~A}$ small nunber of moleales ocapy thev $=1$ ledd whichnay undagpthetrasitionsa $v=1$ to $v=2$ (Stokes line) or fromv $=1$ to $v=0$ lead (ati-Stckes line). The intersity of thesewill beweak becaseof small number of noleales inthisstate Thus theirterity of theStokes Ramenlines corespanding totrasition $v=0$ to $v=1$ is mad greter then that of ati-Stokes Raven lines corespondng to trasition $v=1$ to $v=0$. At hightemperdurethenunber of moleales intigher vilrdiond leds inceeses sotheinterities of ati-Stokeslinesinceeses
Thevibrdiond enegy of adatomic modealeisgivenby

$$
E_{v}=\left(v+\frac{1}{2}\right) h c \bar{v}-\left(v+\frac{1}{2}\right)^{2} h c x \bar{v}
$$

Fortrasitionv $=0$ tov $=1$ givingverystrongvibriond Ramanline

$$
E^{\prime}-E^{\prime \prime}=(1-2 x) h c \bar{v}
$$

TheRamanshiftisgivenby

$$
(\Delta \bar{v})_{v i b}=(1-2 x) \bar{v}=\bar{v}_{0}
$$

where \bar{v}_{0} is equal to the frequancy of thecertre of thefundenertd vibriond bandintheirfraredspeetrumof therdeale

2334Rdaliond RavenSpadra

These spedra aise deto transition of themdealefromonerdtiond enegy steteto the che roddiond ste of thesarevibrdiond stae Theselines apeer on both sides of Raylegh line The slection rulefor rodiond Ranan trasitionis dffferet fromthat of purdy rodiond trasitions (for infrareed). For theRaranEffecthesdectionnuesfortranitionbewweenrodtiond levdsaea

$$
\Delta J=0, \pm 2
$$

The transion coresponding to $\Delta J=0$ represets no dange in the maleala enegy i.e there is same frequacy of scattered Ranian roddion (Raylegh scattering. The trasition corresponding to $\Delta J=+2$ gives Stokes lines while $\Delta I=-2$ givestheati-Stokeslines
Therodiond enegyleds of aliner molealeaerepresetedby

$$
E_{r}=\frac{h^{2}}{8 \pi^{2} I} J(J+1)
$$

Fortrasition $J=+2$, thevalueof rodtiond shittof Stokeslinesisgivenby

$$
\begin{aligned}
& (\Delta \bar{v})_{\text {rot }}=\frac{h}{8 \pi^{2} c I}\{(J+2)(J+3)-J(J+1)\} \\
& (\Delta \bar{v})_{\text {rot }}=2 B(2 J+3), \text { Where }_{B}=\frac{h}{8 \pi^{2} c l}
\end{aligned}
$$

Fortransioan $\Delta=-2$, thevdueof rottiond shift of ati-Stokeslinesisgivenby

$$
(\Delta \bar{v})_{\text {rot }}=-2 B(2 J+3)
$$

Innuregered fortheRanenShitdetorddiond nationd thendealeisa

$$
\begin{aligned}
& (\Delta \bar{v})_{r o t}= \pm 2 B(2 J+3), \\
& \text { wheeJ }=0,1,2,3, \ldots . . E c
\end{aligned}
$$

Thewaveunhersof thecorespondingspedtad lines aregivenby
$\bar{v}=\bar{v}_{\text {ece }}-(\Delta \bar{v})_{r o x}$, where $\bar{v}_{\text {exc }}$ is the naverunber of exding raddians

2335Vibraiond-Rdaionel RanenSpatra

Theoretically it is posiblefor vibrdiond androdiond trasitions totake pacesmittaneady in a Ranentranition, thessetion rue is $\infty \Delta v= \pm 1$ and $\Delta I=0, \pm 2$.
Foradtanicrodealevibrdiond-rddiond enegylendsaegivenby

$$
E_{v r}=h c\left\{\bar{v}\left(v+\frac{1}{2}\right)-\bar{v} x\left(v+\frac{1}{2}\right)^{2}\right\}+B h c J(J+1)
$$

wherev $=0,1,2,3 \ldots$...ec and $=0,1,2,3 \ldots . .$. , ec
Internsof waverunter

$$
\bar{v}_{v r}=\bar{v}\left(v+\frac{1}{2}\right)-\bar{v} x\left(v+\frac{1}{2}\right)^{2}+B J(J+1)
$$

Apdyingsdetionnules

$$
\begin{array}{ll}
\Delta I=0 & \Delta \bar{v}(Q)=\bar{v}_{0} \mathrm{~m}^{\mathrm{T}}, \text { Fordll J } \\
\Delta I=+2 & \Delta \bar{v}(S)=\bar{v}_{0}+B(4 J+6) \mathrm{cm}^{\mathrm{T}}, \mathrm{~J}=0,1,2,3, \ldots . \\
\Delta I=-2 & \Delta \bar{v}(O)=\bar{v}_{0}-B(4 J+6) \mathrm{m}^{\mathrm{T}}, \mathrm{~J}=2,3,4, \ldots . .
\end{array}
$$

where $\quad \bar{v}_{0}=\bar{v}(1-2 x)$, addO, Q Srefesto Obrand Qbandh R brand respectively.

Thestokeslineswill ocarat

$$
\begin{aligned}
& \bar{v}(Q)=\bar{v}_{e x c}-\Delta \bar{v}(Q)=\bar{v}_{e x c}-\bar{v}_{0} \mathrm{an}^{1}, \text { fordl vadued J } \\
& \bar{v}(O)=\bar{v}_{e x c}-\Delta \bar{v}(O)=\bar{v}_{e x c}-\bar{v}_{0}+B(4 J+6) \mathrm{m}^{1}, \text { for }=2,3,4, . \\
& \bar{v}(S)=\bar{v}_{\text {exc }}-\Delta \bar{v}(S)=\bar{v}_{e x c}-\bar{v}_{0}-B(4 J+6) \mathrm{m}^{1}, \text { forJ }=0,1,2 \ldots
\end{aligned}
$$

Theati-Stokeslineswill ocarat

$$
\begin{aligned}
& \bar{v}(Q)=\bar{v}_{\text {ece }}+\Delta \bar{v}(Q)=\bar{v}_{\text {ece }}+\bar{v}_{0} \text { an', frall valuef } J \\
& \bar{v}(O)=\bar{v}_{e c c}+\Delta \bar{v}(O)=\bar{v}_{e x c}+\bar{v}_{0}-B(4 J+6) \mathrm{Cm}^{2} \text {,forJ }=2,3,4, . . \\
& \bar{v}(S)=\bar{v}_{e c e}+\Delta \bar{v}(S)=\bar{v}_{e x e}+\bar{v}_{0}+B(4 J+6) \mathrm{Om}^{1}, \text { fof }=0,1,2 \ldots
\end{aligned}
$$

234RananSpadranter

Theinstumetrequiredto recordthe Ranan scdteringis calede Ranan Speetroneter. The recordng of the Ranan speth messetidly requires illumination of sample with monodrondic raditions and d\&etion of scatered radidias trigt angetoindidatradtions Thebæic compmets of theRamen Speetronetraea:

1 Exiting sarce In the Ranen spedroneter we need a mandrantic sarceof radidions Forthispurpeonepatiala lineof meary ac speetumis slected Thechice of the wavelengh of this linedapends ypontheinterity of theline Nonedas in Ranan speedranter aH HeliumNeenlæer bermisused

2 SanpleTubeandSample Thenterid of thesampletubeiseithe gass or quatz Thetube is shaped dang with wsoided refledars in a wey so a to dreat murh of the indart ligt into the sample The lengh of the tube is 2030 mand 12 mindameta . To avidmoliplerflectionsthebork of thetube is hom-shaped and dackened Thedhe endof thetubeis mackodically flat so that scateredraddionsob notsffer aydstationontheireit TheRamantube is proteded fromhet gerested by lamps by mers of a gas jaked throigh whichuterdiralates TheRarin speetr mcanberecarded withsdid, liqidand gosphesesamplesbatheliqidsampleisncrepreferedbecaseitemy tohande it Thequatity of theliquid sample requred is between 10100 mL . Water is a goodsdvet beeaseof itsweek Ranenspetum
3 Filters Liquidfiltes areplaed betweenthesarceadd thesamdetubein arde to renove high enegy radidions thet may case photodecompositions, to
isdzesinge exding line and to removethe continuas spectrumin the region coapiedbytheRaranline
4 Odicd sytem The qdicd sytemis desigred so that the naximom anout of scattered Ranan raddion is accepted by the spedrametr. A sitdde speetrogad, withpismorgrdinghavingwideapetureandmedumdspersionis prefered

235FrankCondenPingiple

The Frank Condon prinide is redted to deetroric speetra of the moleales Thededraic spedtra of themdealeaiseuhenthedetrons in the noleales areexdedtohiger enegystae Theenegy invd vedinthisislageso thedetroric speetra of thendealesfall inthevisideandutravide regan of dedronagnic speetrum The eledroric spedra aise de to dange in the arangeret of moleala detrons A shall dange in dedraric enegy is accomparied by a large dange in the vibrtiond engy of themdeale and a swall dangeinvibrtiond enegy is accomparied by a lagedangeinrodional enegy of the modeale Thevibrtiond enegy danges casethe apperance of vaiu usband andtherddiond enegy danges casefarmion of vaia erchband

$\boldsymbol{r}_{\boldsymbol{x} \boldsymbol{y}} \longrightarrow$

The pobadility of trasition bedween two given vibrdiond leads of tho dfferet dedraric staes is given by theFrank-Condon pingipe According to this piniple "The trasition bedween tho vibrtiond levds shaid stat from etreneposition of thelevds and they arereprestedby vetica lines".
Therearagernetof thededronsinamdealeis 1000 timesfater thanthetime paiod of vibrdions of nude. Dring the detraric trasition the internuder dstancedbes not dangeapreiddy sothetrasitions arerepreseted by vetica lines Futher, the trasitions ae nost probade when the nude in their neen pesions Thenude spendmaximutimeintherestaes becaseof zerokinaic engy intherestas Thesqureof thevibrdiond eigenfuntionis maximent edremepositionsimplyingtheprodadility of findngthenude ismaxmmthere Honere for lonet vibriiond stev $v=0$, quatummedarics predds thet the not probade position for nude is the equilibriumposion r_{e} Thus the most probade internuder dstace for the vibraiond levds dher then $v=0$, corespondstoetrenepositionsandmidpositionforv $=0 . \mathrm{So}$, thetranitionswill stat fromedremeposionfor leds dhe than $v=0$ andfor $v=0$ thetrasition will stat frommid-paint

236IllustaliveExample

Example1The wandengh of theexating line in Ranan scedtering is $5460 A^{\circ}$ andstokeslineis doservedt $5520{ }^{\circ}{ }^{\circ}$. Findthevavdengh of ati-Stokesline
Sd. TheRamansiftisgivenby

$$
\begin{aligned}
& (\Delta \bar{v})_{r m n}=\bar{v}_{i}-\bar{v}_{s} \\
& \bar{v}_{i}=\frac{1}{5460 \times 10^{-8}}=18315 \mathrm{~cm}^{-1} \\
& \bar{v}_{s}=\frac{1}{5520 \times 10^{-8}}=18116 \mathrm{~cm}^{-1} \\
& (\Delta \bar{v})_{r m n}=18315-18116=199 \mathrm{~cm}^{-1}
\end{aligned}
$$

Thewevenumber of theati-Stokeslimeisgivenby
$\left(\bar{v}_{s}\right)_{\text {anti-stokes }}=\bar{v}_{i}+(\Delta \bar{v})_{r m n}=18315+199=18514 \mathrm{~cm}^{-1}$
Thewardengh of ati-Stckeslineisgivenby

$$
\lambda=\frac{1}{18514}=5401 \mathrm{~A}^{\circ}
$$

Exampe2Theerditingraddiorsheswavdengh $4358 A^{\circ}$ inRanan speetumof asbstarcewhich showlinest $(\Delta \bar{v})_{m m}=008,846,995,1599$ and $3064 \mathrm{~cm}^{-1}$. At wht wavdengh these lines will apper if the exating sarce hes wavdengh $54 \mathrm{~cm}^{-1}$
Sd. Theveverunber of theexditingline

$$
\bar{v}_{i}=\frac{1}{5461 \times 10^{-8}}=18312 \mathrm{~cm}^{-1}
$$

Sincethedfferemerenwinsthesare,thenthewavenunter of Ranænlinesaeas

$$
\bar{v}_{s}=\bar{v}_{i}-(\Delta \bar{v})_{r m n}
$$

Sothenevenumesarea
$\bar{v}_{s 1}=18312-608=17704 \mathrm{~cm}^{-1}$
$\bar{v}_{s 2}=18312-846=17466 \mathrm{~cm}^{-1}$
$\bar{v}_{s 3}=18312-995=17317 \mathrm{~cm}^{-1}$
$\bar{v}_{s 4}=18312-1178=17134 \mathrm{~cm}^{-1}$
$\bar{v}_{s 5}=18312-1599=16113 \mathrm{~cm}^{-1}$
$\bar{v}_{s 6}=18312-3064=15248 \mathrm{~cm}^{-1}$
Example 3 A sbostance shows a Ranan line t $458 A^{0}$ when exiting line $4358 A^{\circ}$ wes used Find the positions of Stokes and ati-Stckes lines for thesame sbostacewhenexditingline4047 A° isused
Sd. TheRaranshittisgivenby

$$
\begin{aligned}
& (\Delta \bar{v})_{r m n}=\bar{v}_{i}-\bar{v}_{s} \\
& \bar{v}_{i}=\frac{1}{4358 \times 10^{-8}}=22946 \mathrm{~cm}^{-1} \\
& \bar{v}_{s}=\frac{1}{4567 \times 10^{-8}}=21896 \mathrm{~cm}^{-1} \\
& (\Delta \bar{v})_{r m n}=22946-21896=1050 \mathrm{~cm}^{-1}
\end{aligned}
$$

Thewaver unter of thedher exditinglineis

$$
\bar{v}_{i}^{\prime}=\frac{1}{4047 \times 10^{-8}}=24710 \mathrm{~cm}^{-1}
$$

Sothewavenunter of Stckeslineisa

$$
\bar{v}_{\text {stoke }}=24710-1050=23660 \mathrm{~cm}^{-1}
$$

andthewavenumber of ati-Stokeslineis

$$
\bar{v}_{\text {anti-soote }}=24710+1050=25760 \mathrm{~cm}^{-1}
$$

Thewardenghsof Stokesandati-Stckeslinesare

$$
\begin{aligned}
& \lambda_{\text {sooke }}=\frac{1}{23660}=4226.5 \mathrm{~A}^{\circ} \\
& \lambda_{\text {anti-soloke }}=\frac{1}{25760}=3882 \mathrm{~A}^{\circ}
\end{aligned}
$$

Exampe4Intherddional Rananspedrumof andealethedsdacenetfrom exating line is represented by $(\Delta \bar{v})_{\text {ot }}= \pm(62.4+41.6 \mathrm{~J}) \mathrm{cm}^{-1}$. Calalate the nomettof inetiaof themdeale
Sd. Therddiora Ramansiftisgivenby

$$
\begin{aligned}
& (\Delta \bar{v})_{\text {rot. }}=2 B(2 J+3) \\
& (62.4+41.6 J)=2 B(2 J+3) \\
& 41.6\left(J+\frac{3}{2}\right)=4 B\left(J+\frac{3}{2}\right) \\
& B=\frac{41.6}{4}=10.4 \mathrm{~cm}^{-1}
\end{aligned}
$$

Therddiond contatB isrddedtonemetaf inetial $\boldsymbol{\infty}$

$$
\begin{aligned}
B & =\frac{h}{8 \pi^{2} I c} \quad \text { SO } \quad I=\frac{h}{8 \pi^{2} B c} \\
I & =\frac{6.62 \times 10^{-27}}{8 \times(3.14)^{2} \times 10.4 \times 3 \times 10^{10}} \\
& =2.7 \times 10^{-40} \mathrm{gm.cm}^{2}
\end{aligned}
$$

237 SafLermingExacis

Q1 WhtisRameffect?
Q2 Exdantheaiginof Stokesadadi-Stokeslines
Q3 Disassthequatumthery of RamenEffet
Q4 Witethesdetionnlesfor Rananvibrdiond-rddiond trasitions

238 Summay

Theaimof thisuritistostuly thespeetroscopytedriqueknownaRanan Effect Thistertriquecanbeused in paceof IR spedroscopy tedriquabt this tedriquiswrevesdileascompaedtoIR tedrique TheIR tedriquefalsto provideinfomaianwenthemdeales arehom-nuder inthemateids Sime the prinide of Raran Effet indves the plaizaion of moleales by the raddians,so theinformaiancandso beddained fromthisterviqe Herefirst the dfirition of Ravan Effeet hes been dsassed and then its dasicd and quatumthearies havebeen davdqped Thequatumtheary is useful to provide theinformaion daat the interity of Stokes and anti-Stokes lines Thesdedion ruesfortransiansarangthevariasvibrdiand lends aswll beweenrodiand leids have been dsassed The basic companets of Ranan spetroneer have been dsassed Finaly there is the dsassion an the Frand-Condan piniple whichpredidsthetransition probablity betweentwodectraicstdes

239 Gobay

Honoruder: Sanetypeof nudes
Hłtronuder: Differettypeof nudes
Pdar: Haingpositiveand negaivedarge
Osillaing: Peiodcally vaying
Pdaizaility: menernt terdantobepdaized
Band: Grapof enegylendsor speetrd lines
Sift: Kindof dspacenett
Accomprying: Similtaready
Photockaropisition: Dissocitionbyradaions
Sctltring: Absondionandreemissionof radaiors
Inter-nuder: Beweenthonides.

2310Exacis

Q1 WhtisRayleghline?
Q2 ExdanStokesardati-Stokeslines?

Q3 Exdanthevaridion of plaizddility of molealewiththedetric fidd of detronayicicradions
Q4 Exdannhy theirtensity of Stokes andati-sokeslinesisntsame?
Q5 Witethebasiccommenets of Rananspeetroneter.
Q6 ExdantheFrank-Condonpinoiple
Q7 Disassthedasicd thery of RamanEffet
Q8 Exdanthefinestuctureof Ramenspedrad lines

ReferencesandSuggestedResing:

1 Cdin N. Banvell add Eaine M. MoCadr Mdealar Speetroscopy, Tta MCGran-Hill EdrdionPivateLinited, NewDdh, 1994
2 J. M. Holia ModanSpeetroscopy,JdmWiley\&Sons, Engand 1987.
3 S.L. Gupa, V. Kumar and R.C. Shema Elenerts of Spectroscopy, Praggi Prakeden Ment, 1990
4 Raj Kunar, Atonic \& Mdealar Speetra: LAEER Kedar Nath RamNath, Ment, 2007.
5. GM. Barow, Introdutionto Mdealar Speetroscapy, McGraw Hill, Lardon 1961

[^0]: Quatumsteldgr i.e 32^{+}
 (ii) Quatumstald ${ }_{52}$ i.e 52^{+}
 (iii) Quatumstalelp p_{12} i.e $1 / 2$

