Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final)
 Paper Code:MT-10
 Mathematical Programming
 Section-C
 (Long Answers Questions)

1. Prove that $f(x)=\frac{1}{x}$ is strictly convex for $x>0$ and strictly concave for $x<0$.

A (P.No. 12, Exa. 1.3)
2. If $f(x)$ is continuous, $f(x) \geq 0,-\infty<x<\infty$ then to show that the function
$\phi(x)=\int_{x}^{\infty}(y-x) f(y) d y$ is a convex function provided the integral converges.

A (P.No. 13, Example 1.5)
3. To prove that every supporting huperplane of a closed convex set which is bounded from below contains at last one extreme point of the set.

A (P.No. 7, The. 1.6)
4. The sum of convex functions is convex and if atleast one of the functions is strictly convex then to show that the sum is strictly convex.
A (P.No. 11, The. 1.8)
5. To prove that A positive semi definite quadratic form $f(X)=X^{T} A X$ is a convex function over R^{n}

A (P.No. 16, The. 1.10)
6. Show that $f(x)\left[\begin{array}{c}b(x-\alpha) . b<0, x<\alpha \alpha \\ 0, \quad x \geq \alpha\end{array}\right.$ is a convex set for all x .

A (P.No. 19, Que. 4)
7. Solve the following L.P.P. using revised simplex method.

Max $z=3 x_{1}+6 x_{2}+2 x_{3}$
S.t. $\quad 3 x_{1}+4 x_{2}+x_{3} \leq 2$

$$
x_{1}+3 x_{2}+2 x_{3} \leq 1
$$

\& $\quad x_{1}, x_{2}, x_{3} \geq 0$
A (P.No. 29, Example 2)
8. Solve the following L.P.P. using revised simplex method :

Max $z=3 x_{1}+x_{2}+2 x_{3}+7 x_{4}$
S.t. $2 x_{1}+3 x_{2}-x_{3}+4 x_{4} \leq 40$
$-2 x_{1}+2 x_{2}+5 x_{3}-x_{4} \leq 35$

$$
\begin{array}{ll}
& x_{1}+x_{2}-2 x_{3}+3 x_{4} \leq 100 \\
\& & x_{1} \geq 2, x_{2} \geq 1, x_{3} \geq 3, x_{4} \geq 4
\end{array}
$$

A (P.No. 32, Que. 3)
9. Solve the following L.P.P. by standard form-II of revised simplex method.

$$
\begin{aligned}
& 2 x_{1}+5 x_{2} \geq 6 \\
& x_{1}+x_{2} \geq 2 \\
& x_{1}, x_{1} \geq 0 \\
& \mathrm{Z}=x_{1} \geq 2 x_{2}
\end{aligned}
$$

Min
A (P.No.40, Exa. 2.4)
10. Solve the following L.P.P. with the help of revised simplex method but without use of artificial variables.
$\operatorname{Max} \quad z=2 x_{1}+6 x_{2}$

$$
\begin{array}{ll}
\text { S.t. } & x_{1}+3 x_{2} \leq 6 \\
& 2 x_{1}+4 x_{2} \geq 8 \\
& -x_{1}+3 x_{2} \leq 6
\end{array}
$$

and $\quad x_{1}, x_{2} \geq 0$
A (P.No. 45, Example 5)
11. Using bounded variable technique solve the following L.P.P.
$\operatorname{Max} \quad \mathrm{z}=x_{1}+3 x_{2}$
S.t. $\quad x_{1}+x_{2}+x_{3} \leq 10$
$x_{1}-2 x_{3} \geq 0$
$2 x_{2}-x_{3} \leq 10$
and $\quad 0 \leq x_{1} \leq 8,0 \leq x_{2} \leq 4 x_{3} \geq 0$
A (P.No. 51, Exa. 6)
12. Using the bounded variable technique. Solve the following linear programming problem :
$\operatorname{Max} \quad \mathrm{z}=2 x_{1}+x_{2}$
S.t. $\quad x_{1}+2 x_{2} \leq 10$
$x_{1}+x_{3} \leq 6$
$x_{1}-x_{2} \leq 2$
$x_{1}-2 x_{2} \leq 1$
and $\quad 0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 2$
A (P.No. 57, Exa. 8)
13. Using the bounded variable technique. Solve the following L.P.P.
$\operatorname{Max} \quad \mathrm{z}=3 x_{1}+5 x_{2}+2 x_{3}$
S.t. $\quad x_{1}+2 x_{2}+2 x_{3} \leq 14$
$2 x_{1}+4 x_{2}+3 x_{3} \leq 23$
and $\quad 0 \leq x_{1} \leq 4,2 \leq x_{2} \leq 5,0 \leq x_{3} \leq 3$
A (P.No. 53, Exa. 7)
14. Solve the following mixed integer programming problem :
$\operatorname{Max} \quad z=4 x_{1}+6 x_{2}+2 x_{3}$
S.t. $\quad 4 x_{1}-4 x_{2} \leq 5$

$$
\begin{aligned}
& -x_{1}+6 x_{2} \leq 5 \\
& -x_{1}+x_{2}+x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0 \\
& x_{1}, x_{2} \text { are integers. }
\end{aligned}
$$

A (P.No. 90, Exa. 7)
15. Find the optimum integer solution to the following I.P.P.

Max $z=4 x_{1}+4 x_{2}$
S.t. $2 x_{1}+4 x_{2} \leq 7$
$5 x_{1}+3 x_{2} \leq 15$
$x_{1}, x_{2}, \geq 0$ and are integers
A (P.No. 87, Exa. 6)
16. Solve the following Integer programming problem.

Max $\quad z=2 x_{1}+10 x_{2}-10 x_{3}$
S.t. $\quad 2 x_{1}+20 x_{2}+4 x_{3} \leq 15$
$6 x_{1}+20 x_{2}+4 x_{3}=20$
And $\quad x_{1}, x_{2}, x_{2} \geq 0$ and are integers
A (P.No. 76, Example 3)
17. Find the optimum integer solution to the 1.p.p.

Maximize $\quad Z=3 x_{1}+4 x_{2}$
S.t. $\quad 3 x_{1}+2 x_{2} \leq 3$

$$
x_{1}+4 x_{2} \leq 10
$$

\& $\quad x_{1}, x_{2}, \geq 0$ and are integers
A (P.No. 71, Eax. 2)
18. Find the optimum integer solution to the 1.p.p.

Maximize $\quad \mathrm{Z}=x_{1}+2 x_{2}$
S.t. $\quad 2 x_{2} \leq 7$ $x_{1}+x_{2} \leq 7$ $2 x_{1} \leq 11$
\& $\quad x_{1}, x_{2}, \geq 0$ and are integers
A (P.No. 68, Exa. 1)
19. Use branch and bound method to solve following L.P.P.

Maximize

$$
\begin{aligned}
& \mathrm{Z}=7 x_{1}+9 x_{2} \\
& -x_{1}+3 x_{2} \leq 6 \\
& 7 x_{1}+x_{2} \leq 35 \\
& x_{2} \geq 7
\end{aligned}
$$

A (P. No. 99, Exa. 2)
20. Use branch and bound method to solve the following I.P.P.

$$
\begin{array}{ll}
\text { Minimize } & Z=4 x_{1}+3 x_{2} \\
\text { s.t. } & 5 x_{1}+3 x_{2} \geq 30 \\
& x_{1} \leq 4 \\
& x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0 \text { and are integers }
\end{array}
$$

A (P. No. 101, Exa. 3)
21. Use Branch and bound technique to solve the following problem :

Maximize $Z=3 x_{1}+3 x_{2}+13 x_{3}$
s.t. $-3 x_{1}+6 x_{2}+7 x_{3} \leq 8$
$6 x_{1}-3 x_{2}+7 x_{3} \leq 8$ $0 \leq x_{j} \leq 5$
and $\quad x_{j}$ are integers for $j=1,2,3 \ldots$
A (P.No. 103, Example 4)
22. Use branch and bound method to solve the following I.P.P.

Maximize $\quad Z=x_{1}+2 x_{2}$
s.t. $\quad x_{1}+x_{2} \leq 7$
$2 x_{1} \leq 11$
$2 x_{2} \leq 7$
$x_{1}, x_{2} \geq 0$ and are integers
A (P.No. 111, Que. 6)
23. Write the objective function in the form $Z=X^{T} A X+q^{T} X$
(i) $Z=2 x_{1}^{2}+x_{1} x_{2}+9 x_{1} x_{2}+3 x_{2}^{2}+x_{2} x_{3}+2 x_{2}$
(ii) $Z=x_{1}^{2}-6 x_{1} x_{2}+x_{3}^{2}+9 x_{3}$

A (P.No. 120, Que. 7)
24. Determine whether each of the following quadratic form is positive definite or negative definite.
(a) $2 x_{1}^{2}+6 x_{2}^{2}-6 x_{1} x_{2}$
(b) $-x_{1}^{2}-x_{2}^{2}-4 x_{3}^{2}+x_{1} x_{2}-2 x_{2} x_{3}$

A (P.No. 120, Que. 10)
25. Obtain the necessary and sufficient conditions for the following NLPP.

Minimize $\quad Z=2 x_{1}^{2}-24 x_{1}+2 x_{2}^{2}-8 x_{2}+2 x_{3}^{2}-12 x_{3}+200$
A (P.No. 124, Exa. 10)
26. Find the dimension of a rectangular parallelopied with largest volume whose sides are parallel to the coordinate planets to be inscribed in the ellpsoide.
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
A (P.No. 129, Exa. 13)
27. Write short notes on :
(i) Necessary conditions for general NLPP.
(ii) Sufficient conditions for GNLPP and
(iii) Lagrange's Multipler method

A (P.No. 121, 122, 123)
28. Obtain the necessary and sufficient conditions for the optimum solution of the following NLPP.
Minimize

$$
Z=4 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}
$$

Subject to

$$
x_{1}+x_{2}+x_{3}=15
$$

$$
2 x_{1}-x_{2}+2 x_{3}=20
$$

\&

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

A (P.No. 127, Exa. 11)
29. Determine the sign definiteness of each of the quadratic forms $X^{T} A X$:
(a) $A=\left[\begin{array}{ccc}2 & 1 & 4 \\ 6 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 3 & 2 & 1 \\ 1 & 2 & 4\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ -4 & 2 & -1 \\ 1 & -1 & 0\end{array}\right]$

A (P.No. 119, Que.6)
30. Which of the following quadratic form?
(a) $Z=x_{1}^{2}+2 x_{2}^{2}$
(b) $Z=\frac{x_{1}}{x_{2}}$
(c) $Z=x_{1}^{2}-x_{2}^{2}+4$
(d) $Z=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}+4 x_{1}$

A (P.No. 119, Que. 5)
31. What is a general nonlinear programming problem ? Establish the relation between saddle point and the minimal point of the nonlinear programming problem.
A (P.No. 138, 140)
32. Solve the following programming problem graphically:

Minimize $\quad f\left(x_{1} x_{2}\right)=x_{1}^{2}+x_{2}^{2}$
Subject to $\quad x_{1}+x_{2} \geq 4$
$2 x_{1}+x_{2} \geq 5$
and

$$
x_{1}, x_{2} \geq 0
$$

A (P.No 158, Exa. 10)
33. Solve the following non linear programming problems using the method of lagrange multipliers:
Maximize $f(x, y, z)=a y z$
Subject to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

$$
x, y, z \geq 0
$$

A (P.No. 161, Exa.Que.4)
34. Solve the following nonlinear programming problem using the method of lagrangian multipliers:
Minimize $f(X)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
Subject to $4 x_{1}+x_{2}^{2}+2 x_{3}=14$
\& $\quad x_{1}, x_{2}, x_{3} \geq 0$
A (P.No. 150, Exa. 4)
35. Let X_{0} be a solution of the NLPP

Maniimize $\quad f(X): X \in R^{n}$
Subject to $\quad G(X) \leq 0$ where

$$
G(X)=\left(g_{1}(X), g_{2}(X), \ldots \ldots g_{m}(X)\right)^{T} \text { and }
$$

$$
f(X), g_{i}(X) ; \quad i=1,2 \ldots \ldots m \text { are all convex functions. }
$$

Let the set of points X such that $G(X)<0$ be normally. The there exists a vector $\lambda_{0} \geq 0$ in R^{n} Such that

$$
f(X)+\lambda_{0}^{T} F(X) \geq f\left(X_{0}\right)
$$

A (P.No. 141, The. 3)
36. Use method of Lagrangian multiplies to solve the following non linear programming problem :
Optoimize $f(X)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100$
Subject to $\quad x_{1}+x_{2}+x_{3}=20$
\&

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

A (P.No. 154, Exa. 7)
37. Write the Kuhn-Tucker necessary and sufficient conditions for the following non linear programming problem to have on optimal solution.

Min $f\left(x_{1} x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}$
S.T. $2 x_{1}+3 x_{1} \leq 6$

$$
x_{1}+x_{2} \leq 4
$$

$$
x_{1}, x_{2} \geq 0
$$

A (P.No. 170, Exa. 1)
38. Use Kuhn-Tucker conditions to solve the following non-linear programming problem :
Man $f(x)=8 x-x^{2}$
S.T. $\quad x \leq 3$
\& $\quad x \geq 0$
A (P.No. 171, Exa. 2)
39. Solve the following non linear programming problem :

Min. $f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}$
S.t. $\quad x_{1}^{2}-x_{2} \leq 0$
$x_{1}+x_{2} \leq 2$
$x_{1}, x_{2} \geq 0$
A (P.No. 176, Exa.6)
40. Use Kuhn-Tucker conditions to solve the following non linear programming problem :
Optimize $\quad f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+3 x_{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$
Subject to $\quad x_{1}+x_{2} \leq 1$

$$
2 x_{1}+3 x_{2} \leq 6
$$

\& $\quad x_{1} x_{2} \geq 0$
A (P.No. 179, Exa. 8)
41. Use Kuhn-Tucker conditions to solve the following non linear programming problem :
Max. $f\left(x_{1}, x_{2}\right)=7 x_{1}^{2}-6 x_{1}+5 x_{2}^{2}$
S.t. $\quad x_{1}+2 x_{2} \leq 10$
$x_{1}-3 x_{2} \leq 9$
$x_{1}, x_{2} \geq 0$
A (P.No. 178, Exa. 7)
42. Solve the following nonlinear programming problem :

Min. $f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}$
S.t. $\quad x_{1}^{2}-x_{2} \leq 0$

$$
x_{1}+x_{2} \leq 2
$$

$$
x_{1}, x_{2} \geq 0
$$

A (P. No. 176, Exa. 6)
43. In the quadratic programming problem :

Maximize $\quad f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
Subject to $\quad A X \leq 0 \& X \geq 0$
The function $f(X)$ cannot have an unbounded maximum if $X^{T} G X$ is negative definite or if $C=0$ If $C \neq 0$ and $X^{T} G X$ is negative semidifinte then $f(X)$ may have an unbounded maximum.

A (P.No. 185, The.1)
44. Explain Wolfe's algorithm?

A (P.No. 186)
45. Solve the following quadratic programming problem using Wolfe's method:
Min. $f\left(x_{1}, x_{2}\right)=8 x_{1}-10 x_{2}+x_{1}^{2}+2 x_{2}^{2}$
S.t. $\quad x_{1}+x_{2} \leq 5$
$x_{1}+2 x_{2} \leq 8$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 194, Exa. 2)
46. Solve by Wolfe's method:

Max. $f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}-x_{1}^{2}$
S.t. $\quad 2 x_{1}+3 x_{2} \leq 6$
$2 x_{1}+x_{2} \leq 4$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 198, Exa. 4)
47. Solve the following quadratic programming problem by Beala's method:

Max. $f\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2}-2 x_{1}^{2}$
S.t. $\quad 2 x_{1}+4 x_{2} \leq 4$
$x_{1}+2 x_{2} \leq 2$
\& $\quad x_{1}, x_{2} \geq 0$

A (P.No. 218, Exa. 10)
48. Use Beale's method to solve the quadratic programming problem:

Min. $f\left(x_{1}, x_{2}\right)=6-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}$
S.t. $\quad x_{1}+x_{2} \leq 2$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 209, Exa. 7)
49. Explain the Duality in Quadratic programming.

A (P.No. 228)
50. State and prove duality theorem for quadratic programming problem.

A (P.No. 230)
51. Drive the dual of the quadratic programming problem is :

Min $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
Subject to $\quad A X \geq b$
Where A is an $m \times n$ real matrix and G is an $n \times n$ real [positive semidefinite a symmetric matrix.

A (P.No. 233, Exa.1)Type equation here.
52. If $f(X)$ is a concave function then give the dual of the following quadratic programming problem:
Max $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
Subject to $\quad A X \geq b$

$$
X \geq 0
$$

A (P.No. 234, Que.2)
53. Find an optimal solution of the following convex separable programming problem:
Max $\quad z=3 x_{1}+2 x_{2}$
Subject to $\quad 4 x_{1}^{2}+x_{2}^{2} \leq 16$
\& $\quad x_{1} x_{2} \geq 0$
A (P.No. 241, Exa. 1)
54. Solve the following convex separable programming problem:

Min $\quad Z=x_{1}^{2}-2 x_{1}-x_{2}$
Such that $\quad 2 x_{1}^{2}+3 x_{2}^{2} \leq 6$
\&

$$
x_{1} x_{2} \geq 0
$$

A (P.No. 244, Exa. 2)
55. Solve the following convex separable programming problems:

Max

$$
\begin{aligned}
& Z=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2} \\
& 2 x_{1}^{2}+3 x_{2}^{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Such that
\&
A (P.No. 248, Que. 5)
56. To prove that :
(a) Every local maximum of the general convex programming problem is it's global maximum.
(b) The set of all optimum solutions (global maximum) of the general convex programming problem is a convex set.
A (P.No. 237, Que. 33)
57. Solve the following convex separable programming problems :

Max

$$
z=x_{1}+x_{2}^{4}
$$

Subject to

$$
3 x_{1}+2 x_{2}^{2} \leq 9
$$

\&

$$
x_{1}, x_{2} \geq 0
$$

A (P.No. 247, Que. 1)
58. Use Bellmon's optimality principle to divide a positive quantity 'b' into n parts in such a way that's their product is maximum.

OR
Find maximum value of the product of $x_{1}, x_{2}, \ldots x_{n}$
A (P.No. 251, Exa.1)
59. Make use of dynamic programming to show that $\sum_{i=1}^{n} P_{i} \log P_{i}$ subject to
$\sum_{i=1}^{n} P_{i}=1, P_{i}>0$ is minimum when
$P_{1}=P_{2} \ldots \ldots .=\frac{1}{n}(i$ in suffix $)$
A (P.No. 253, Exa. 2)
60. Use dynamic programming to solve the following problem:

Min

$$
\left(x_{1}^{2}+x_{2}^{2}+\cdots \ldots+x_{n}^{2}\right)
$$

Subject to

$$
x_{1}, x_{2}, \ldots \ldots x_{n}=b
$$

\& $\quad x_{1}, x_{2}, \ldots \ldots x_{n} \geq 0$
A (P.No. 255, Exa.3)
61. Solve the following problems by using dynamic programming:

Min

$$
\sum_{i=1}^{n} x_{1}^{2} \text { Subject to } \sum_{i=1}^{n} x_{1}=b_{i} x_{i} \geq 0
$$

$\mathrm{i}=1,2, \ldots . . \mathrm{n}$
Hence or otherwise minimize $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
Subject to $x_{1}, x_{2}, x_{3} \geq 15$
\& $\quad x_{1}, x_{2}, x_{3} \geq 0$
A (P.No. 257, Que.1)
62. Solve the following problems by using dynamic programming:

Maximize value of y_{1}, y_{2}, y_{3} Subject to

$$
y_{1}+y_{2}+y_{3} \leq 15 \text { and } y_{1}, y_{2}, y_{3} \geq 0
$$

A (P.No. 257, Que.5)
63. Use dynamic programming to solve the following L.P.P.

$$
\begin{array}{ll}
\text { Max. } & z=2 x_{1}+5 x_{2} \\
\text { Such that } & 2 x_{1}+x_{2} \leq 43 \\
& 2 x_{2} \leq 46
\end{array}
$$

\& $\quad x_{1}, x_{2} \geq 0$
A. (P.No. 259, Exa. 1)
64. Solve the following L.P.P. using dynamic programming:

Max

$$
\begin{aligned}
& z=3 x_{1}+5 x_{2} \\
& x_{1} \leq 4 \\
& x_{2} \leq 6 \\
& 3 x_{1}+2 x_{2} \leq 0
\end{aligned}
$$

Such that
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 260, Exa. 2)
65. Solve the following L.P.P. using dynamic programming :

Max. $z=3 x_{1}+7 x_{2}$
S.T. $x_{1}+4 x_{2} \leq 8$ $x_{2} \leq 8$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 264, Que.1)
66. Solve the following L.P.P. using dynamic programming :

Max. $\quad z=3 x_{1}+x_{2}$
S.T. $2 x_{1}+x_{2} \leq 6$
$x_{1} \leq 2$
$x_{2} \leq 4$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 264, Que.5)
67. Explain the solution of linear programming problem using dynamic programming?
A (P.No. 253)
68. Formulate the Kuhn-Tucker necessary conditions for the following problem

Maximize
Subject to
$f(X)$
$g_{i}(X) \geq 0 ; i=1,2, \ldots \ldots . m$
$g_{i}(X) \leq 0, \quad i=m+1, m+2, \ldots . P$
$h_{i}(X)=0, j=1,2, \ldots \ldots . q$
$X_{i} \geq 0$

A (P.No. 132, Que. 3)
69. Solve the following L.P.P. using dynamic programming:

Max. $\quad z=10 x_{1}+30 x_{2}$
S.T. $3 x_{1}+6 x_{2} \leq 168$
$12 x_{2} \leq 240$
\& $\quad x_{1}, x_{2} \geq 0$
A (P.No. 264, Que. 3)
70. If $f(x)$ is a convex function over the non negative or that of E^{n} then show that:
$S=\{X: f(x) \leq b, X \geq 0\}$ is a convex set.

A (P.No. 119, Que.3)
71. Show that the following function are convex:
(a) $f(x)=|x|$
(b) $f(x)=e^{x}$

A (P.No. 19, Que. 9)
72. A positive quantity b is to be divided in to n parts in such a way that the product of the n parts is maximum. Use Lagrange Multiplier technique to obtain the oprimal sub division.
A (P.No. 130, Exa. 14)

