Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final) Question Bank-2015
 Paper Code:MT-08
 Section A (Very short answer type Questions)

1. (a). Derive the Newton-Raphson formula to find $\mathrm{p}^{\text {th }}$ root of a given number N .
(b) Write the formula for finding root of the equation by Muller's method what is rate of convergence of this method?
(c) Find Quotient and remainder on division of polynomial $x^{4}-5 x^{3}+4 x-18$ by a linear factor $(n-2)$, using synthetic division method.
(d) Find the largest eigen value of $\mathrm{A}=\binom{12}{34}$ by power method

Ans. Let $X_{0}=\binom{0}{1}$ be the eigen valve.

$$
\text { Then } A X_{0}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{0}{1}=\binom{2}{4}=4(0.5)=4 X_{1}
$$

$$
A X_{1}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{0.5}{1}=\binom{2.5}{5.5}=5.5\binom{0.45}{1}
$$

$\therefore \quad$ The largest eigen value is 5.5
(e) Derive Hermitian matrix and unitary matrix
(f) What is Economization of the power series.
(g) Write the formula for Adams - Moultan Predictor.
(h) What do you mean by Absolute stable and relatively stable methods?
(i). State the Newton - Raphson formula and explain how it is
used to obtain real root?
(j). Write the formula for finding a root of the equation by chebshe v method is faster than Newton- Raphson method.
(k). What is the advantage of Graeffe's root squaring method.
(l). For solving a live on system, compare Gaussian elimination method and Gauss Jordan method.
(m). Write the Rutishauser method to find the eigen valves of the matrix
(o). What is least - squares principle
(p). Write the Tayler series expansion of a function.
(q). What is Initial Value Problem (IVP) and Bandary Value Problem (BVP).

Section -B

1. Find a root of the equation $3 x-\sqrt{1+\sin x}=0$ using iteration method.
2. Find complex root of the equation $Z^{2}+1=0$ by Newton - Raphson method. Use $Z_{0}=\frac{1}{2}(1+i)$ as an initial approximation.
3. Solve the system of equation by LV Factorization method:$2 x+3 y+3=9, x+2 y+3 y=6,3 x+y+2 z=8$
4. Obtain a second degree polynomial approximation to the function $f(x)=x^{3}$, on the interval $[0,1]$, using least- squares principle. Take weight function $W(x)=1$
5. Using the chebyshev polynomials, obtain the least squares approximations of second degree for the function $f(x)=x^{3}+x^{2}+3, x \in[-1,1]$
6. Use Picard's method to compute $\mathrm{y}(0.5)$ where $\mathrm{y}(+)$ is the sowtion to the given IVP $\mathrm{dy} / \mathrm{dt}=1+\mathrm{y}, \mathrm{y}(0)=1$
7. Solve the boundary value problem
$\frac{d^{2} y}{d x^{2}}=y, \mathrm{Y}(0)=0, \mathrm{Y}(1)=1.2$
by employing shooting method; take $y^{\prime}(0)=0.85,0.95$ as initial guesses.
8. Solve the BVP by Numerov method
$\frac{d^{2} y}{d x^{2}}=x+y, \mathrm{y}(0)=0 ; y(1)=0$
with step size $x=\frac{1}{4}$
9. Find the real root of the equation $x^{3}-2 x-5=0$ Regular - falsi method.
10. Find a real root of the equation $x^{4}+7 x^{4}+24 x^{2}=15=0$ using Birge- vieta method. Perform two iterations.
11. Solve the following linear equation
$2 x_{1}+8 x_{2}+2 x_{3}=14$
$6 x_{1}+6 x_{2}-x_{3}=13$
$2 x_{1}+x_{2}-2 x_{3}=5$
12. Using the Rutishavser method find all the eigen valves of the matrix.
13. Using the method of least - Squares find a straight line that list the following data.

Also find the value of y at $x=68.5$

X	71	68	73	69	67	65	66	67
Y	69	72	70	70	68	67	68	64

14. Solve the initial value problem by Taylor's series method

$$
\frac{d y}{d t}=-[y+2 t], t \in\{0,0.2\} ; \quad y(0)=-1
$$

15. Evaluate y (1.5) by Adams - Basufarth method of order far, given that $\frac{d y}{d t}=\epsilon^{2}(1+y)$ $y(1.1)=1.233, y(1.2)=1.548 ; y(1.3)=1.979, y(1.4)=2.575$
16. Solve the $\mathrm{BVP} \frac{d^{2} y}{d x^{2}}=x y, y(0)+y^{1}(0)=1 ; y(1)=1$ with stop size $h=\frac{1}{3}$.

Section-C

17. Find the root of the equation $x^{3}-2 x-5=0$ by Muller's method. Take 1,2 , and 3 as initial approximations.
18. Perform two iterations of Bairstow-method to find two roots of the equations $x^{4}-3 x^{3}+20 x^{2}+44 x+54=0$ use (z, z) as initial approximation.
19. Find all the eigen valves and eigen vectors of the following matrix using Given's method. $A=\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 5 & 1 \\ 2 & 1 & 6\end{array}\right)$
20. (a) Solve the following initial value problem

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}+2 \frac{d y}{d t}+y=0, \in[0,0.1] \\
& y(0)=0 ; y^{\prime}(0)=1
\end{aligned}
$$

(b) Solve by Milne's method

$$
\begin{aligned}
& \quad \frac{d y}{d t}=\frac{t}{y}, y(1)=2 ; \mathrm{t} \in[1,1.4] \\
& {[p g-188, \operatorname{Ex} 10.2]}
\end{aligned}
$$

21. Find the root of the equation $x^{3}-x^{2}-x-1=0$ using chebyshev method and NewtonRaphson method. Compare the results.
22. Using Jacobi's method of find all the eigenvalves and eigen vectors of the following matrix A (perform there itaions)
23. (a) Derive the gram- Schmidt Orthogonalizing process,
(b) Obtain the chebyshow polynomial approximation of second degree (best minimax approximation) to $f(x)=x^{3}$ on the interval $[0,1]$
24. Solve the BVP, $\frac{d^{2} y}{d t^{2}}=y, y(0)=0 ; y(1)=1.1752$ by shooting method together with Range - Kutta method.
