## **Program : M.A./M.Sc. (Mathematics)**

M.A./M.Sc. (Final)

Paper Code:MT-08

## **Numerical Analysis**

## Section - B

## (Short Answers Questions)

- 1. Find a real root of the equation  $x^3 9x + 1$  by bisection method.
- A (P.No. 3)
- 2. Find the real root of the equation  $x^2 2x 5 = 0$  using secant method.
- A (P.No. 7)
- 3. Find two nearly equal roots of the equation  $x^3 4.4x^2 + 6.5x 2.7 = 0$  in the neighbourhood of x = 1.
- A (P.No.10)
- 4. Find the square root of 13 using Newton Raphson method.
- A (P.No. 26)
- 5. Perform one iterations of Muller's method to find the root of the equation  $x^3 x 1 = 0$ . Take  $x_1 = -1$ ,  $x_1 = 0.5$ ,  $x_2 = 1$  as initial approximations.
- A (P.No. 32)
- 6. Show that x = 1 is a multiple root of equation  $x^3 3x^2 3x 1 = 0$  with multiplicity three.
- A (P.No.34)
- 7. Find quotient and remainder on division of polynomial  $x^4 5x^3 + 6x^2 + 4x 18$  by a linear factor (x 2). Also verify the result.
- A (P.No. 43)
- 8. Find a real root of the equation  $x^4 + 7x^3 + 24x^2 15 = 0$ , using Birge-Vieta method, perform two iterations.
- A (P.No. 46,47)
- 9. Solve the given system of the equations using the method of determinants.

$$3x + y + 2z = 3$$
  
 $2x - 3y - z = -3$   
 $X + 2y - z = 4$ 

A (P.No.66, 67)

10. Solve the following linear equations.

$$2x_1 + 8x_2 + 2x_3 = 14$$
  
 $6x_1 + 6x_2 - x_3 = 13$   
 $2x_1 + x_2 + 2x_3 = 5$ 

Using Gauss-Jordon method.

A (P.No. 67, 68)

11. Find the eigenvalues and eigen vectors of the following matrix:

$$A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

A (P.No. 87, 88)

12. Compute largest eigenvalue in magnitude and and corresponding eigenvector of the matrix.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$

A (P.No. 93, 94)

13. Transform the following matrix to tridiagonal form by Given's method.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

A (P.No. 104)

14. Using the method of least-squares find a straight line that fits the following data:

| X | 71 | 68 | 73 | 69 | 67 | 65 | 66 | 67 |
|---|----|----|----|----|----|----|----|----|
| У | 69 | 72 | 70 | 70 | 68 | 67 | 68 | 64 |

Also find the value of y at x = 68.5.

A (P.No. 121)

15. Fit a curve  $y = ax^b$  to the following data:

| X | 1 | 2 | 3 | 4  |
|---|---|---|---|----|
| У | 5 | 7 | 9 | 10 |

Also estimate the value of y at x = 2.5.

A (P.No. 131)

16. Express  $2 - x^2 + 3x^4$  as a sum of chebyshev polynomials.

A (P.No. 150)

17. Find the value of y at t = 0.2 by using seven terms Taylor's series, where y(t) is the solution of the second order initial value problem:

$$\frac{d^2y}{dt^2} = 4 - t + y^2, \ y(0) = 1, y'(0) = -1$$

A (P.No. 165)

18. Use Picard's method to compute y(05), where y(t) is the solution to the given IVP.

$$\frac{dy}{dt} = 1 + y, \qquad y(0) = 1$$

A (P.No. 167)

19. Compute y(0, 2), using second order runge-kutta method with two different schemes where y(t) is the solution of the IVP.

$$\frac{dy}{dt} = t + y, \qquad y(0) = 1$$

A (P. No. 172)

20. Explain the Milne's predictor corrector formula.

A (P. No. 185, 186)

21. Use Adans-Moultan Predictor corrector formula to compute y(0.4), given that:

$$\frac{dy}{dt} = ty$$
,  $y(0) = 1$ ,  $y(0.1) = 1.01$ ,  $y(0.2) = 1.022$ ,  $y(0.3) = 1.023$ 

A (P.No. 196, 197)

22. Explain Local truncation error and convergence?

A (P.No. 198)

23. Explain Boundary value problems and solutions of Boundary value problem.

A (P.No. 204, 205)

24. Solve the boundary value problem.

$$\frac{d^2y}{dx^2} = y$$
,  $y(0) = 0$ ,  $y(1) = 1.2$ 

By employing shooting method, take y'(0) = 0.85, 0.95 as initial guesses.

A (P.No. 207)

25. Solve the BVP by Numerous method

$$\frac{d^2y}{dx^2} = x + y$$
,  $y(0) = 0$ ,  $y(1) = 0$  with step size  $h = \frac{1}{4}$ 

A (P.No. 217)

26. Solve the BVP:

$$y^{iv} = 2$$
  
  $y(0) = y'(0) = y(1) = y'(1) = 0$ 

- A (P.No. 220)
- 27. Explain Bisection method?
- A (P.No. 2, 3)
- 28. Explain Regular falsi method?
- A (P.No. 4, 5)
- 29. Explain Secant method.
- A (P.No. 5, 6)
- 30. Explain Newton-Raphson method.
- A (P.No. 8)
- 31. Explain Newton-Raphson method for pth root of a number?
- A (P.No. 10,11)
- 32. Find the root of the equation  $\sin x x^3 = 1$  using Newton-Raphson method.
- A (P.No 9)
- 33. Explain iteration method?
- A (P.No. 12)
- 34. Explain Aitken's  $\Delta^2$ -method to accelerate the convergence.
- A (P.No. 14)
- 35. Explain Newton-Raphson method for system of Non-linear equations?
- A (P.No. 15, 16)
- 36. Explain chebyshev method?
- A (P.No. 23, 24)
- 37. Find the square root of 13 using chebyshev method?
- A (P.No. 26)
- 38. Find the root of the equation  $x^3 x^2 x 1 = 0$  using chebyshev method?
- A (P.No. 27)
- 39. Explain Muller's method?
- A (P.No. 29, 30)
- 40. Find a root of the equation:  $x^3 + x^2 x 1 = 0$  with multiplicity 2, taking initial approximation as  $x_0 = 0.9$
- A (P.No. 34)
- 41. Explain Newton-Raphson method for complex roots.

A (P.No. 36)

42. Find the root of the equation  $x^4 - x - 10 = 0$  using birge-vieta method. Perform three iterations.

A (P. No. 45)

43. Find all the roots of the equation  $x^2 - 6x^2 + 11x - 6 = 0$  using Graeffe's root square method.

A (P.No. 58)

44. Explain partition method?

A (P.No. 75)

45. Solve the given system of equation using conjugate-Gradient method.

A (P.No. 79)

46. Writw basic properties of eigen values and eigen vectors.

A (P.No. 90, 91)

47. Use Jacobi method to compute eigenvalues of given matrix (two iterations only)

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

A (P.No. 96)

48. Explain Rutishauser method?

A (P.No. 110)

49. Using the Rutishauser method, find all the eigenvalues of the matrix.

$$A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$$

A (P.No. 110)

50. Explain least-squares principle?

A (P.No. 119)

51. Explain linear regression of fitting a straight line?

A (P.No. 120)

52. Fit a straight line to the given data:

| ے۔<br>آ | X | 1   | 2   | 3   | 4     | 5   | 6     |
|---------|---|-----|-----|-----|-------|-----|-------|
|         | У | 2.6 | 2.7 | 2.9 | 3.025 | 3.2 | 3.367 |

Also find value of y at x = 5.5.

A (P.No. 122)

53. Explain fitting a polynomial of degree n?

A (P.No. 125)

54. Fit a second degree polynomial to the data:

| ٠. |   | • • • • • • • • • • • • • • • • • • • • | 8 P - | 1) 110 11110 |    | crettet . |   |   |   |   |
|----|---|-----------------------------------------|-------|--------------|----|-----------|---|---|---|---|
|    | X | -4                                      | -3    | -2           | -1 | 0         | 1 | 2 | 3 | 4 |
|    | y | -5                                      | -1    | 0            | 1  | 3         | 4 | 4 | 3 | 2 |

A (P.No. 127)

55. Explain fitting a curve of the form  $y = ax^b$ .

A (P.No. 130)

56. Explain fitting a curve of the form  $y = ae^{bx}$ 

A (P.No. 132)

57. Fit a exponential curve of the form  $y = ae^{bx}$  to the given data:

| X | 1   | 2   | 3    | 4    | 5   | 6   |
|---|-----|-----|------|------|-----|-----|
| У | 1.6 | 4.5 | 13.8 | 40.2 | 125 | 300 |

Also find the value of y at x = 4.5.

A (P.No. 133)

58. Explain Taylor series expansion of a function?

A (P.No. 140, 141)

59. Obtain Taylor series expension of the function  $f(x) = e^x$  about x = 0. Find the number of terms of the exponential series such that then sum gives the value of  $e^x$  corext to siz decimal places at x = 1.

A (P.No. 141)

60. Obtain a second degree polynomial approximation to the function:

$$f(x) = \frac{1}{1+x^2}, \quad x \in [1, 12]$$

Using Taylor series expansion about x = 1. Find a bound on the truncation error.

A (P.No. 143)

61. Explain orthogonal polynomials and least squares approximations.

A (P.No. 143, 144)

62. Explain chebyshev approximation (uniform-minimax polynomial approximation).

A (P.No. 148, 149)

63. Explain chebyshev polynomials and its properties?

A. (P.No. 146, 147)

64. Express  $2T_0(x) + T_1(x) + 2T_2(x)$  as a polynomial in x.

A (P.No. 151)

65. Find the best lower order approximation to the polynomial  $2x^2 + 5x^2$ 

A (P.No. 151)

66. Solve the initial value problem by Taylor's series method.

$$\frac{dy}{dt} = (y+2t), \ t = \in [0,0.2], \quad y(0) = -1$$

A (P.No. 163)

67. Use Picard's method to compute y(t) given that  $\frac{dy}{dt} = \frac{e^{-t}}{v}$ , y(0) = 2

A (P.No. 168)

68. Solve the following IVP by Milne's method, given that:

$$\frac{dy}{dt} = t + y, \quad t \in [1, 0.4]$$
  
  $t_0 = 0, \ y_0 = 1$ 

A (P.No. 186, 187)

69. Evaluate y(1.5) by Adams-Bashfourth method of order four given that  $\frac{dy}{dt} = t^2(1+y)$ y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, y(1.4) = 2.575

A (P.No. 195)

70. Solve the BVP

$$\frac{d^2y}{dx^2} = xy$$

$$y(0) + y'(0) = 1, y(1) = 1$$
 with step siiz  $h = \frac{1}{3}$ 

A (P.No. 218)

71. Write the derivative boundary conditions for y'' = f(x, y).

A (P.No. 214)

72. Write runge-kutta method or order two for stability analysis of single step methods?

A (P.No. 200)

73. Fit a straight line to the given data:

| X | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6  |
|---|----|---|---|---|---|---|---|----|
| у | 10 | 9 | 7 | 5 | 4 | 3 | 0 | -1 |

Also find the value of y at x = 3.5.

A (P.No. 123)

74. Explain least square principle for continuous function?

A (P.No. 134)

