Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Final)
 Paper Code:MT-08
 Numerical Analysis
 Section-B
 (Short Answers Questions)

1. Find a real root of the equation $x^{3}-9 x+1$ by bisection method.

A (P.No. 3)
2. Find the real root of the equation $x^{2}-2 x-5=0$ using secant method.

A (P.No. 7)
3. Find two nearly equal roots of the equation $x^{3}-4.4 x^{2}+6.5 x-2.7=0$ in the neighbourhood of $x=1$.
A (P.No.10)
4. Find the square root of 13 using Newton Raphson method.

A (P.No. 26)
5. Perform one iterations of Muller's method to find the root of the equation $x^{3}-x-1=0$. Take $x_{1}=-1, x_{1}=0.5, x_{2}=1$ as initial approximations.
A (P.No. 32)
6. Show that $x=1$ is a multiple root of equation $x^{3}-3 x^{2}-3 x-1=0$ with multiplicity three.
A (P.No.34)
7. Find quotient and remainder on division of polynomial $x^{4}-5 x^{3}+6 x^{2}+$ $4 x-18$ by a linear factor $(x-2)$. Also verify the result.
A (P.No. 43)
8. Find a real root of the equation $x^{4}+7 x^{3}+24 x^{2}-15=0$, using BirgeVieta method, perform two iterations.
A (P.No. 46,47)
9. Solve the given system of the equations using the method of determinants.

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& X+2 y-z=4
\end{aligned}
$$

A (P.No.66, 67)
10. Solve the following linear equations.

$$
\begin{aligned}
& 2 x_{1}+8 x_{2}+2 x_{3}=14 \\
& 6 x_{1}+6 x_{2}-x_{3}=13 \\
& 2 x_{1}+x_{2}+2 x_{3}=5
\end{aligned}
$$

Using Gauss-Jordon method.
A (P.No. 67, 68)
11. Find the eigenvalues and eigen vectors of the following matrix:
$A=\left[\begin{array}{lr}-5 & 2 \\ 2 & -2\end{array}\right]$
A (P.No. 87, 88)
12. Compute largest eigenvalue in magnitude and and corresponding eigenvector of the matrix.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]
$$

A (P.No. 93, 94)
13. Transform the following matrix to tridiagonal form by Given's method.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -1 \\
3 & -1 & 1
\end{array}\right]
$$

A (P.No. 104)
14. Using the method of least-squares find a straight line that fits the following data:

x	71	68	73	69	67	65	66	67
y	69	72	70	70	68	67	68	64

Also find the value of y at $x=68.5$.
A (P.No. 121)
15. Fit a curve $y=a x^{b}$ to the following data:

x	1	2	3	4
y	5	7	9	10

Also estimate the value of y at $x=2.5$.
A (P.No. 131)
16. Express $2-x^{2}+3 x^{4}$ as a sum of chebyshev polynomials.

A (P.No. 150)
17. Find the value of y at $t=0.2$ by using seven terms Taylor's series, where $y(t)$ is the solution of the second order initial value problem:

$$
\frac{d^{2} y}{d t^{2}}=4-t+y^{2}, \quad y(0)=1, y^{\prime}(0)=-1
$$

A (P.No. 165)
18. Use Picard's method to compute $y(05)$, where $y(t)$ is the solution to the given IVP.
$\frac{d y}{d t}=1+y, \quad y(0)=1$
A (P.No. 167)
19. Compute $y(0,2)$, using second order runge-kutta method with two different schemes where $y(t)$ is the solution of the IVP.
$\frac{d y}{d t}=t+y, \quad y(0)=1$
A (P. No. 172)
20. Explain the Milne's predictor corrector formula.

A (P. No. 185, 186)
21. Use Adans-Moultan Predictor corrector formula to compute $y(0.4)$, given that:
$\frac{d y}{d t}=t y, \quad y(0)=1, \quad y(0.1)=1.01, y(0.2)=1.022, y(0.3)=1.023$
A (P.No. 196, 197)
22. Explain Local truncation error and convergence?

A (P.No. 198)
23. Explain Boundary value problems and solutions of Boundary value problem.
A (P.No. 204, 205)
24. Solve the boundary value problem.
$\frac{d^{2} y}{d x^{2}}=y, \quad y(0)=0, \quad y(1)=1.2$
By employing shooting method, take $y^{\prime}(0)=0.85,0.95$ as initial guesses.
A (P.No. 207)
25. Solve the BVP by Numerous method
$\frac{d^{2} y}{d x^{2}}=x+y, \quad y(0)=0, \quad y(1)=0$ with step size $h=\frac{1}{4}$
A (P.No. 217)
26. Solve the BVP:
$y^{i v}=2$
$y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0$

A (P.No. 220)
27. Explain Bisection method?

A (P.No. 2, 3)
28. Explain Regular falsi method?

A (P.No. 4, 5)
29. Explain Secant method.

A (P.No. 5, 6)
30. Explain Newton-Raphson method.

A (P.No. 8)
31. Explain Newton-Raphson method for pth root of a number?

A (P.No. 10,11)
32. Find the root of the equation $\sin x-x^{3}=1$ using Newton-Raphson method.

A (P.No 9)
33. Explain iteration method?

A (P.No. 12)
34. Explain Aitken's Δ^{2}-method to accelerate the convergence.

A (P.No. 14)
35. Explain Newton-Raphson method for system of Non-linear equations?

A (P.No. 15, 16)
36. Explain chebyshev method?

A (P.No. 23, 24)
37. Find the square root of 13 using chebyshev method?

A (P.No. 26)
38. Find the root of the equation $x^{3}-x^{2}-x-1=0$ using chebyshev method?
A (P.No. 27)
39. Explain Muller's method?

A (P.No. 29, 30)
40. Find a root of the equation: $x^{3}+x^{2}-x-1=0$ with multiplicity 2 , taking initial approximation as $x_{0}=0.9$
A (P.No. 34)
41. Explain Newton-Raphson method for complex roots.

A (P.No. 36)
42. Find the root of the equation $x^{4}-x-10=0$ using birge-vieta method. Perform three iterations.

A (P. No. 45)
43. Find all the roots of the equation $x^{2}-6 x^{2}+11 x-6=0$ using Graeffe's root square method.
A (P.No. 58)
44. Explain partition method?

A (P.No. 75)
45. Solve the given system of equation using conjugate-Gradient method.

A (P.No. 79)
46. Writw basic properties of eigen values and eigen vectors.

A (P.No. 90, 91)
47. Use Jacobi method to compute eigenvalues of given matrix (two iterations only)

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

A (P.No. 96)
48. Explain Rutishauser method?

A (P.No. 110)
49. Using the Rutishauser method, find all the eigenvalues of the matrix.

$$
A=\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]
$$

A (P.No. 110)
50. Explain least-squares principle?

A (P.No. 119)
51. Explain linear regression of fitting a straight line?

A (P.No. 120)
52. Fit a straight line to the given data:

x	1	2	3	4	5	6
y	2.6	2.7	2.9	3.025	3.2	3.367

Also find value of y at $x=5.5$.
A (P.No. 122)
53. Explain fitting a polynomial of degree n ?

A (P.No. 125)
54. Fit a second degree polynomial to the data :

x	-4	-3	-2	-1	0	1	2	3	4
y	-5	-1	0	1	3	4	4	3	2

A (P.No. 127)
55. Explain fitting a curve of the form $y=a x^{b}$.

A (P.No. 130)
56. Explain fitting a curve of the form $y=a e^{b x}$

A (P.No. 132)
57. Fit a exponential curve of the form $y=a e^{b x}$ to the given data:

x	1	2	3	4	5	6
y	1.6	4.5	13.8	40.2	125	300

Also find the value of y at $x=4.5$.
A (P.No. 133)
58. Explain Taylor series expansion of a function?

A (P.No. 140, 141)
59. Obtain Taylor series expension of the function $f(x)=e^{x}$ about $x=0$. Find the number of terms of the exponential series such that then sum gives the value of e^{x} corext to siz decimal places at $x=1$.
A (P.No. 141)
60. Obtain a second degree polynomial approximation to the function:
$f(x)=\frac{1}{1+x^{2}}, \quad x \in[1,12]$
Using Taylor series expansion about $x=1$. Find a bound on the truncation error.
A (P.No. 143)
61. Explain orthogonal polynomials and least squares approximations.

A (P.No. 143, 144)
62. Explain chebyshev approximation (uniform-minimax polynomial approximation).
A (P.No. 148, 149)
63. Explain chebyshev polynomials and its properties?
A. (P.No. 146, 147)
64. Express $2 T_{0}(x)+T_{1}(x)+2 T_{2}(x)$ as a polynomial in x .

A (P.No. 151)
65. Find the best lower order approximation to the polynomial $2 x^{2}+5 x^{2}$

A (P.No. 151)
66. Solve the initial value problem by Taylor's series method.

$$
\frac{d y}{d t}=(y+2 t), \quad t=\in[0,0.2], \quad y(0)=-1
$$

A (P.No. 163)
67. Use Picard's method to compute $y(t)$ given that $\frac{d y}{d t}=\frac{e^{-t}}{y}, \quad y(0)=2$

A (P.No. 168)
68. Solve the following IVP by Milne's method, given that :

$$
\begin{aligned}
& \frac{d y}{d t}=t+y, \quad t \in[1,0.4] \\
& t_{0}=0, y_{0}=1
\end{aligned}
$$

A (P.No. 186, 187)
69. Evaluate $y(1.5)$ by Adams-Bashfourth method of order four given that $\frac{d y}{d t}=t^{2}(1+y)$
$y(1.1)=1.233, y(1.2)=1.548, y(1.3)=1.979, y(1.4)=2.575$
A (P.No. 195)
70. Solve the BVP

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=x y \\
& y(0)+y^{\prime}(0)=1, y(1)=1 \text { with step siiz } h=\frac{1}{3}
\end{aligned}
$$

A (P.No. 218)
71. Write the derivative boundary conditions for $y^{\prime \prime}=f(x, y)$.

A (P.No. 214)
72. Write runge-kutta method or order two for stability analysis of single step methods?

A (P.No. 200)
73. Fit a straight line to the given data :

x	-1	0	1	2	3	4	5	6
y	10	9	7	5	4	3	0	-1

Also find the value of y at $x=3.5$.
A (P.No. 123)
74. Explain least square principle for continuous function?

A (P.No. 134)

