Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Question Bank-2015
 Paper Code:MT-05
 Section-A (Very Short Answer type Questions)

1).Define moment of Inertia.
2).Define compound pendulum
3).Define instantaneous axis of rotation.
4).Define degree of freedom.
5).What is principle of energy?
6).Define steady motion of a Top.
7).Define compressibility.
8).Define unsteady fluid flow.
9) Write moment of Inertia of a solid ellipsoid of mass M and length of axes $2 a, 2 b$ and $2 c$ about the axis OX.
10). Write formula for time period of simple pendulum of length 1 .
11).What is the locus of invariable line?
12). Write principle of conservation of Angular Momentum under Impulsive forces.(p.189)
13).In which system, all generalized co-ordinates are independent to each other? (p.204)
14).Define density.
15).Define steady flow of fluid.
16).What is Barotropic fluid flow?

(Section-B)

1). Find M.I. of a uniform rectangular lamina of mass M and sides of length 2a, and $2 b$ about a line through its centre and parallel to sides $2 \mathrm{a}, 2 \mathrm{~b}$ and perpendicular to its plane.
2).Find the length of simple equivalent pendulum in case of circular disc when the axis is horizontal and a tangent to it.
3).A body moves under no forces about a point O, the principal moments of inertia at O being $6 \mathrm{~A}, 3 \mathrm{~A}$ and A. Initially the angular velocity of the body has components $\mathrm{w}_{1}=\mathrm{n}, \mathrm{w}_{2}=0, \mathrm{w}_{3}=3 \mathrm{n}$ about the principal axes. Show that at any later time
$\mathrm{W}_{2}=-\sqrt{5} n \tanh (\sqrt{5} n t)$ and ultimately the body rotates about mean axis.
4).State and prove principle of conservation of angular momentum under finite forces.
5).Two equal rods $A B$ and $B C$, each of length 1 , smoothly jointed at B, are suspended
from A and oscillates in a vertical plane through A. Show that the periods of normal oscillations are $\frac{2 \pi}{n}$, where $n^{2}=\left(3 \pm \frac{6}{\sqrt{7}}\right) \frac{g}{l}$.
6).Find the stream lines and path lines of the particles of the velocity field:
$u=\frac{x}{1+t}, v=y$ and $\mathrm{w}=0$.
7). Show that $\frac{x^{2}}{a^{2}} f(t)+\frac{y^{2}}{b^{2}} \phi(t)+\frac{z^{2}}{c^{2}} \psi(t)=1$, where $f(t) \cdot \phi(t) \cdot \psi(t)=1$ is a possible form of the boundary surface.
8).In the case of the two-dimensional fluid motion produce by a source of strength m placed at a point S outside a rigid circular disc of radius a whose centre is O. Show that the velocity of slip of the fluid in contact with the disc is greatest at the points where the line joining S to the ends diameter at right angles to OS cut the circle and prove that its magnitude at these points is $\frac{2 \mathrm{~m} . \mathrm{OS}}{\left(\mathrm{OS}^{2}-\mathrm{a}^{2}\right)}$.
9) Derive the equation of motion of translation.
10).Find the change in kinetic energy due to action of impulse.
11).If the earth be regarded as a solid of revolution, whose principal moments of inertia at its centre of gravity are A,A,C. Show that its axis of rotation describes a cone of very small angle about the axis of the figure in period $\frac{A}{C-A}$ siderial days.
12). Show that when a body moves under the action of a system of conservative forces, the sun of its kinetic and potential energies is constant throughout the motion.
13). When the axis of a symmetrical top is stationary and the spin is large and equal to n , a blow J is applied perpendicular to the axis at a distance d from the fixed point. Prove that the maximum angular deflection of the axis approximately $2 \tan ^{-1}\left\{\frac{J d}{C n}\right\}$, C being the moment of inertia of the top about its axis of symmetry.
14). The velocity field at a point in fluid is given as $\vec{q}=\frac{x}{y} \hat{\imath}+y \hat{\jmath}+0 . \hat{k}$, obtain path lines.
15).Derive the equation of continuity in vector form by Euler's method.
16). Show that ellipsoid $\frac{x^{2}}{a^{2} k^{2} t^{4}}+k t^{2}\left(\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)=1$ is a possible form of the boundary surface of a liquid at time t .

(Section-C)

1).A solid homogenous cone of height h and vertical angle 2α,oscillates about a horizontal axis through its centre. Show that the length of the simple equivalent pendulum is
$\frac{h}{5}\left(4+\tan ^{2} \alpha\right)$.
2). Two equal cylinders each of mass m are bound together by an elastic string whose tension is T and roll with their axes horizontal down a rough plane of inclination α. Show that their acceleration is
$\frac{2}{3} g \sin \alpha\left[1-\frac{2 \mu T}{m g \sin \alpha}\right]$, where μ is the coefficient of friction between the cylinders.
3). A uniform thin circular disc is set rotating with an angular velocity ω about an axis through the centre making an angle i with the normal. Prove that the semi-vertical angle θ of the cone described by the axis of disc is given by $\tan \theta=\frac{1}{2} \tan i$.

If ω be angular velocity, prove that above cone is described in period $\frac{2 \pi}{\omega \sqrt{1+3 \cos ^{2} i}}$. (p.173)
4).Determine the stream line if the velocity of an incompressible fluid at the point (x, y, z) is given by $\left(\frac{3 x z}{r^{5}}, \frac{3 y z}{r^{5}}, \frac{3 z^{2}-r^{2}}{r^{5}}\right)$, where $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$.
5).Two unequal masses M and M^{\prime} rest on two rough planes inclined at angles α and β to the horizon, they are connected by a fine string passing over a small pulley of mass m and radius a , which is placed at the common vertex of two planes, show that the acceleration of either mass is $g[M(\sin \alpha-\mu \cos \alpha)-$ $\left.M^{\prime}\left(\sin \beta+\mu^{\prime} \cos \beta\right)\right] \div\left[M+M^{\prime}+m \frac{k^{2}}{a^{2}}\right]$, where μ and μ^{\prime} are the coefficients of friction of two planes, k is the radius of gyration of the pulley about its axis and mass M moves downwards.
6). A rigid body, symmetrical about an axis, so that $\mathrm{B}=\mathrm{A}$, is supported at its centre of gravity which is fixed and only forces that have moments about the C.G. are equivalent to a retarding frictional couple, proportional to the angular velocity and acting in a plane at right angles to the instantaneous axis. Assuming $\mathrm{C}>\mathrm{A}$, prove that equations of motion can be integrated in the form $\omega_{1}=\alpha e^{-C \lambda t} / A \sin \left(\frac{\sigma}{\lambda} e^{-\lambda t}+\epsilon\right)$, $\omega_{2}=\alpha e^{-C \lambda t / A} \cos \left(\frac{\sigma}{\lambda} e^{-\lambda t}+\epsilon\right), \omega_{1}=n e^{-\lambda t}$ where $\mathrm{n}, \alpha, \sigma$ are constants, $\sigma=\frac{n(C-A)}{A}$ and λ is a constant defined by a constant couple.
7).If initially the axis of the top is horizontal and it is set spinning with angular velocity ω in a horizontal plane prove that the axis will start to rise if $\mathrm{nC} \omega>\mathrm{mgh}$ and that, when $\mathrm{nC} \omega=2 \mathrm{mgh}$, the axis will rise to an angular distance $\cos ^{-1} \frac{A \omega}{n C}$, provided that $\mathrm{A} \omega<\mathrm{nC}$ and will there be at instantaneous rest. A, C and n have their usual meanings.
8). Show that if the velocity potential of an irrotational fluid motion is equal to $A\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} z \tan ^{-1}\left(\frac{y}{x}\right)$, the lines of flow will be on the series of the surface $\left(x^{2}+y^{2}+z^{2}\right)=$ $C^{2 / 3}\left(x^{2}+y^{2}\right)^{2 / 3}$

