Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Previous)
 Paper Code:MT-04
 Differential Geometry \& Tensors
 Section-B
 (Short Answers Questions)

1. Show that the tangent at a point of the curve of the intersection of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=t$ is
$\frac{x(x-x)}{a^{2}\left(b^{2}-c^{2}\right)\left(a^{1}-\lambda\right)}=\frac{y(Y-y)}{b^{2}\left(c^{2}-a^{2}\right)\left(b^{2}-\lambda\right)}=\frac{z(Z-z)}{c^{2}\left(a^{2}-b^{2}\right)\left(c^{2}-\lambda\right)}$
A M.T. -04, Pg. 08
2. Find the plane that has three point contact of origin with the curve

$$
a=t^{4}-1, y=f^{3}-1, z=t^{2}-1
$$

A M.T. -04, Pg. 10
3. Prove that the condition that four consecutive points of a curve should be coplanar is $\left|\begin{array}{c}x^{\prime} y^{\prime} z^{\prime} \\ x^{\prime \prime} \\ y^{\prime \prime \prime} z^{\prime \prime} \\ x^{\prime \prime \prime} \\ y^{\prime \prime \prime} \\ z^{\prime \prime \prime}\end{array}\right|=0$
A M.T. -04, Pg. 13
4. Show that the tangent at any point of the curve whose equation are $x=3 t, y=3 t^{2}, z=2 t^{3}$ makes a constant angle with line $y=z-x=0$
A M.T. -04, Pg. 07
5. Find the osculating plane at the point ' t ' on the helix $x=a \cos t, y=$ $a \sin t, z=c t$

A M.T. -04, Pg. 19
6. The necessary and sufficient condition for the curve to be a straight line is that $\mathrm{k}=0$ at all points of the curve.

A M.T. -04, Pg. 34
7. If the tangent and binomial at al point of curve make angle v, ϕ respectively with a fixed directions then:

$$
\frac{\sin v}{\sin \phi} \cdot \frac{d v}{d \phi}= \pm \frac{k}{\tau}
$$

A M.T. -04, Pg. 35
8. Prove that the curve given by $x=a \sin \mu, y=0, z=0 \cos \mu$ lies on a sphere.
A M.T. -04, Pg. 52
9. Prove that:

$$
x^{\prime \prime \prime} 2+y^{\prime \prime \prime} 2+z^{\prime \prime \prime} 2=\frac{1}{\delta^{2} \sigma^{2}}+\frac{1+\delta^{12}}{\delta^{4}}
$$

Where dashes denote differentiation with respect to ' s '.
A M.T. -04, Pg. 53
10. Prove that the distance between corresponding points of te two curve is constant.
A M.T. -04, Pg. 60
11. Prove that the tension of the twp Bertrand curves have the same sign and their product is constant.
A M.T. -04, Pg. 62
12. Find the evalute of a circular helix given by $x=a \cos \theta, y=a \sin \theta, z=$ $a \tan \alpha$

A M.T. -04, Pg. 65
13. Find the equation to the gonoid generated by lines parallel to the plane XOY are drawn to intersect DX and the curve $x^{2}+y^{2}=r^{2}, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{2 z}{c}$
A M.T. -04, Pg. 71
14. Prove that the points of the surface $x y z=a(y=+z x+x y)=0$ at which the indicates is a rectangular Hyperbola, lie on the cone $x^{4}(y+z)+$ $y^{4}(z+x)+z^{4}(x+y)=0$
A M.T. -04, Pg. 77
15. Find the equation of the developable surface which contains the two curves $y^{2}=4 a x, z=0$ and $(y-b)^{2}=4 c z, x=0$ and also show that its edge regression lies on the surface:

$$
(a x+b y+c z)^{2}=3 a b x(b+y)
$$

A M.T. -04, Pg. 8965
16. Find the equations to the edge of regression of the devlopable $y=x t-$ $t^{3}, z=t^{3}-t^{6}$
A M.T. -04, Pg. 98
17. Prove that generators of a developable surface are tangents to curve.

A M.T. -04, Pg. 101

18. Prove that on a given surface a family of curves and their orthogonal tranhection can always be chosen as parametric curves.
A M.T. -04, Pg. 129
19. On the paraboloid $x^{2}-y^{2}=z$, find the orthogonal trajectories of the setion by the planes $\mathrm{z}=$ constant.
A M.T. -04, Pg. 131
20. Let $v^{2} d u^{2}+u^{2} d v^{2}$ be the metric of a given surface. Then find the family of curves orthogonal to the curves UV = constant.
A M.T. -04, Pg. 132
21. Show that on a right helicoids te family of curves orthogonal to the curves $\mathrm{n} \cos \mathrm{v}=$ constant is the family $\left(u^{2}+a^{2}\right) \Delta m^{2} v=$ constant
A M.T. -04, Pg. 134
22. State and prove meunienis theorem.

A M.T. -04, Pg. 143
23. Show that the curvature k at any point p of the curve of intersection of two surfaces in given by $K^{2} \sin ^{2} \alpha=k_{1}{ }^{2}+k_{2}{ }^{2}-2 k_{1} k_{2} \cos \alpha$ where k_{1} and k_{2} are the normal of curvatures of the surface in the direction of the curve p and α is angle between their normals at that point.
A M.T. -04, Pg. 146
24. Show that the surface $e^{z} \cos x=\cos y$ is minimum surface.

A M.T. -04, Pg. 163
25. Find the value of (i) first curvature (ii) Ganssion curvature at any point of right helicoids $x=u \cos v, y=\sin v, z=c Q$
A M.T. -04, Pg. 164
26. Find the principal radip at the origin of the surface $2 z=5 x^{2}+4 x y+2 y^{2}$. Find the radius of curvature of the section $x=y$.
A M.T. -04, Pg. 167
27. To show that the directions given by $P d u^{2}+2 l d u d v+R d v^{2}=0$ are conjugate if $L R=2 M R+N P=0$
A M.T. -04, Pg. 180
28. Prove that on the surface $z=f(x, y)$ (Mange's form) the equation of asymptotic lines are :

$$
r d x^{2}+2 s d x d y+t d y^{2}=0
$$

A M.T. -04, Pg. 186
29. Prove hat for the surface $x=3 u\left(1+v^{2}\right)-u^{3}, y=3 v\left(1+u^{2}\right)-$ $v^{3}, z=3 u^{2}-3 v^{2}$ the asymptotic lines are $u \neq v=$ constant.
A M.T. -04, Pg. 188
30. Prove that osculating plane at any point of a curved asymptotic lines is the tangent plane to the surface.
A M.T. -04, Pg. 190
31. Prove that on the surface $z=f(x, y)$ torsian the asymptotic lines are :

$$
\pm \frac{\sqrt{s^{2}-r t}}{\left(1+p^{2}+q^{2}\right)}
$$

A M.T. -04, Pg. 194
32. Show that the curvature of an asymptotic line may be expressed as :

$$
\frac{\left.\left(\vec{r}_{1}, \vec{r}^{\prime}\right) \vec{r}_{2} \cdot \vec{r}^{\prime \prime}\right)\left(\vec{r}_{2} \cdot \vec{r}^{\prime}\right)\left(\vec{r}_{1} \cdot \vec{r}^{\prime \prime}\right)}{H}
$$

A M.T. -04, Pg. 195
33. Prove that the curves $u+v=$ constant are geodes pcs on a surface with metric $\left(1+u^{2}\right) d u^{2}-2 u v$ and $v+\left(1+v^{2}\right) d v^{2}$
A M.T. -04, Pg. 208
34. Prove that the curves of the family $\frac{v^{3}}{u^{3}}=$ constant and geodesies on a surface with metric $v^{2} d u^{2}=2 u v d v+2 u^{2} d v^{2} ;(u>0, v>0)$
A M.T. -04, Pg. 209
35. Prove that a curve on a geodesies if and only if it is a great circle.

A M.T. -04, Pg. 215
36. Find the Geodesic curvature of the curve $\mathrm{u}=$ constant on the surface $x=u \cos \theta, y=u \sin \theta, z=\frac{1}{2} a u^{2}$
A M.T. -04, Pg. 223
37. Gedoseics are drown on a catenoid so as to cross the meridpond at an angle whose sine is c / u where u is the distance of the point of crossing from the axis. Prove that the polar equation to their projection on the xy-plane is $\frac{u-c}{u+c}=e^{2(\theta+\alpha)}$ where α is an arbitrary constant.
A M.T. -04, Pg. 230
38. Show that for a geodesic :

$$
z^{2}=\left(K-K_{a}\right)\left(K_{b}-K\right) \text { or } \frac{1}{\sigma^{2}}=\left(\frac{1}{\delta}-\frac{1}{\delta_{a}}\right)\left(\frac{1}{\delta_{b}}-\frac{1}{\delta}\right)
$$

A M.T. -04, Pg. 234
39. Find the Gaussian curvature at the point (u, v) of the ancher ring :

$$
\vec{r}=(g(u) \cos v, g(u) \sin v, f(u))
$$

A M.T. -04, Pg. 236
40. For any surface prove that :

$$
\frac{\partial}{\partial u}(\log H)=1+u, \quad \frac{\partial}{\partial v}(\log H)=m+v
$$

Where u and v are parameters and symbols having their usual meaning.
A M.T. -04, Pg. 246
41. From the Gauss characteristic equation deduce that, when the parametric curves are orthogonal :

$$
k=\frac{1}{\sqrt{E G}}\left[\frac{\partial}{\partial u}\left(\frac{1}{E} \frac{\sqrt{G}}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{1}{\sqrt{G}} \frac{\partial \sqrt{E}}{\partial v}\right)\right]
$$

A M.T. -04, Pg. 247
42. State and prove Bonner's theorem on parallel surfaces.

A M.T. -04, Pg. 252
43. If a vector has components $\dot{x}, \dot{y}\left(\dot{x}=\frac{d x}{d t}, \dot{y}=\frac{d y}{d t}\right)$ is rectangular Cartesian coordinates then \dot{r}, \dot{v} are its components in polar coordinates.
A M.T. -04, Pg. 259
44. A Wuartant tensor of first order has components $x y, 2 y-z^{2}, x z$ in rectangular coordinates. Determine its covariant components in spherical coordinate.

A M.T. -04, Pg. 261
45. If $A_{i j}$ be covariant tensor of second order and B^{i}, C^{i} are contravariant vectors, prove that $A_{i j} B^{i} C^{i}$ is an invariant

A M.T. -04, Pg. 263
46. If A^{i} and B^{i} are arbitrary contravariant vectors and $C_{i j}, A^{i} B^{i}$ is an invariant show that $C_{i j}$ is a covariant tensor of second order.
A M.T. -04, Pg. 271
47. If $A_{i j}=0$ for $\mathrm{i}+\mathrm{j}$ show that the conjugate tensor $B^{i j}=0$ for $\mathrm{i}+\mathrm{j}$ and $B^{\prime \prime}=\frac{1}{A^{i i}}$ (no summation)
A M.T. -04, Pg. 274
48. Show that:
(i) $\left(g_{n j} g_{i k}-g_{n k} g_{i j}\right) g^{h i}=(N-1) g_{i k}$
(ii) $\frac{\partial k}{\partial x^{j}}\left(g_{n k} g_{i l}-g_{n l} g_{i k}\right) g^{h j}=\frac{\partial k}{\partial x^{k}} g_{i l}-\frac{\partial k}{\partial x^{l}} g_{i k}$

A M.T. -04, Pg. 283
49. Calculate the christoffed symbols corresponding tometric $d s^{2}=\left(d x^{\prime}\right)^{2}+$ $G\left(x^{1}, x^{2}\right)\left(d x^{2}\right)^{2}$ where G is a function of x^{1} and x^{2}.
A M.T. -04, Pg. 289
50. Surface of sphere is a two dimensional Riemannian space. Compute the christoffel symbols.
A M.T. -04, Pg. 290
51. Prove that:

$$
A_{i j}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}}\left(A_{j}^{i} \sqrt{g}\right)-A_{k}^{j}\left\{\begin{array}{l}
k \\
i j
\end{array}\right\}
$$

Show that if associate tensor $A^{i j}$ is symmetric then:

$$
A_{i, j}^{j}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}}\left(A_{i}^{j} \sqrt{g}\right)-\frac{1}{2} A^{j k} \frac{\partial g_{j k}}{\partial x^{i}}
$$

A M.T. -04, Pg. 301
52. Prove that :

$$
A_{j}^{i, j}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}}\left(\sqrt{g} A^{i j}\right)+A^{i k}\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}
$$

A M.T. -04, Pg. 302
53. To prove that :

$$
\operatorname{div} A_{i}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{r}}\left\{\sqrt{g} g^{r k} A_{k}\right\}=\operatorname{div} A^{i}
$$

Where A^{i} and A_{i} ar the contravariant and covariant components of the same vector A.
A M.T. -04, Pg. 305
54. If two unit vectors A^{i} and B^{i} are defines along a curve C such that intrinsic derivatives along are zero show that the angle between them is constant.
A M.T. -04, Pg. 312
55. If the intrinsic Derivative of a vector A^{i} along a curve C vanish at every point of the curve, then show that the magnitude of the vector A^{i} is constant along the curve.
A M.T. -04, Pg. 312
56. The necessary and sufficient condition that a system of coordinates be geodesic with the pole P_{0} are that their second covariant derivative, with respect to the metric of the space, al vanish at P_{0}.

A M.T. -04, Pg. 35
57. Show that the coordinate system x^{-i} defined by $x^{-i}=x^{i}+$ $\frac{1}{2}\left\{\begin{array}{c}i \\ m n\end{array}\right\} x^{m} \cdot x^{n}$ is a geodesic cootdinate system with the pole at origin.

A M.T. -04, Pg. 326
58. Show that the vector B^{i} of variable magnitude suffers a parallel displacement along a curve C if and only if :

$$
\left(B^{l} B_{j}^{i}-B^{i} B_{j}^{l}\right) \frac{d x^{i}}{d s}=0
$$

A M.T. -04, Pg. 331
59. Prove that :
(a) $R_{i j k}^{\alpha}$ has cyclic property in its subscripts i.e.

$$
R_{. j k}^{\alpha}+R_{. j k p}^{\alpha}+R_{. k i j}^{\alpha}=0
$$

(b) $R_{i j k}^{\alpha}$ vanish an contradiction in α and i i.e.
$R_{i j k}^{\alpha}=0$
A M.T. -04, Pg. 335
60. State and prove Banachs uf Identty.

A M.T. -04, Pg. 337
61. Prove that $R_{1212}=-G \frac{\partial^{2} G}{\partial u^{2}}$ for the V_{2} whose line element is $d s^{2}=d u^{2}+$ $G^{2} d v^{2}$, where G is a function of u and v .
A M.T. -04, Pg. 338
62. Prove that the divergence of Einstein tensor vanishes i.e. $G_{j, i}^{i}=0$

A M.T. -04, Pg. 340
63. Prove that an Einstein space $V_{N}(N>2)$ has constant curvature.

A M.T. -04, Pg. 341
64. The metric of V_{2} formed by the surface of sphere of radius a is : $d s^{2}=$ $a^{2} d v^{2}+a^{2} \sin ^{2} \theta d \theta^{2}$ in a spherical polar coordinates. Show that the curvature of the surface is $\frac{1}{a^{2}}$, which is constant.
A M.T. -04, Pg. 342
65. State and prove schur's theorem.

A M.T. -04, Pg. 344
66. If the metric of a two dimensional flat space it $f(r)\left[\left(d x^{1}\right)^{2}\left(d x^{2}\right)^{2}\right]$ where $(r)^{2}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$ show that $f(r)=C(r)^{k}$ where c and k aree constants.

A M.T. -04, Pg. 345
67. In a V_{2} Prove that :
(i) $R\left(g_{i j} g_{r j}-g_{i j} g_{r k}\right)=-2 R_{. r i j k}$

And hence that: $g R_{i k}=-2 R_{1212}$
A M.T. -04, Pg. 346
68. Show that for the right holicoed:

$$
\begin{gathered}
\vec{r}=(u \cos v, u \sin v, c v), \quad l=0, m=0 \\
n=-u, \lambda=0, \mu=\frac{u}{\left(n^{2}+c^{2}\right)}, v=0
\end{gathered}
$$

A M.T. -04, Pg. 246
69. State and prove gauss characteristic equations :

A M.T. -04, Pg. 242
70. Show that the curves $d u^{1}-\left(u^{2}+c^{2}\right) d v^{2}=0$ from an orthogonal system on the right helicoids :

$$
\vec{r}=(u \cos v, u \sin v, c v)
$$

A M.T. -04, Pg. 133
71. Determine the function $\mathrm{f}(0)$ so that $x=\cos \theta, y=a \sin v, z=f(v)$ shall be a plane curve.
A M.T. -04, Pg. 42
72. Prove that the principals normed at cinseculwe points of a curve do not intersect unless z $=0$

A M.T. -04, Pg. 36

