Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Question Bank-2015
 Paper Code:MT-07
 Section - A

1. Define isomorphism on groups. Ans.P. 16
2. Define solvable group. Ans.P. 31
3. Is 5 a unit element in ($\mathrm{R},+$) but not in $(\mathrm{Z},+)$? Ans. Yes
4. Define unital module. Ans.P. 53
5. Define minimal generating set for submodule N of an R -module M . Ans.P. 70
6. Define image of a linear transformation(range space) $\quad \mathrm{t}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$. Ans.P. 76
7. Is each linear transformation a linear functional? Ans.No.
8. The field C of complex numbers is what type of extension over field R? Ans. Algebraic extension.
9. Define row rank of a matrix. Ans. P. 159
10. Define eigen value of a linear transformation. Ans. P. 166
11. Define orthogonal set. Ans. P. 195
12. Define orthogonal complement of a vector. Ans. P. 196

Section-B

1. Let G_{1} and G_{2} be two groups and $\mathrm{H}_{1}=\left\{\left(\mathrm{a}, \mathrm{e}_{2}\right) \mathrm{I}\right.$ a $\left.\in \mathrm{G}_{1}\right\}, \mathrm{H}_{2}=$ $\left\{\left(e_{1}, b\right)\right.$ I b $\left.\in G_{2}\right\}$ where e_{1} nd e_{2} are identity of G_{1} and G_{2} respectively. Then prove that H_{1} and H_{2} are normal subgroup of G_{1} $\times \mathrm{G}_{2}$. Ans.P. 5
2. Let $\left(\mathrm{R},+\right.$) be the additive group of real number and $\left(\mathrm{R}^{+},\right)$be a multiplicative group of positive real numbers. Show that a mapping $\varnothing: R \rightarrow R^{+}$defined by $\varnothing(x)=e^{x}$ is an isomorphism. Ans.P. 17
3. Conjugacy on a group G is an equivalence relation. P. 30
4. Let G be a group. Then prove that G is an abelian if and only if $\mathrm{G}^{(1)}=\{\mathrm{e}\}$, e being the identity of G. P. 30
5. Prove that every subgroup of a solvable group is solvable. P. 33
6. Prove that every finite group G has a composition series. P. 36
7. Let R be a Euclidean ring. Let a and b be two nonzero elements of R such that b is unit in R. Then prove that $d(a b)=d(a)$.
P. 47
8. If M_{1} and M_{2} are submodules of an R-module M, then prove that :
(i) $\quad \mathrm{M}_{1} \cap \mathrm{M}_{2}$ is a submodule of M and
(ii) $M_{1}+M_{2}=\left\{m_{1}+m_{2} \mid m_{1} \epsilon M_{1}, m_{2} \epsilon M_{2}\right\}$ is a submodule of M. P. 58
9. Show that the following map is a linear transformation:
$t: R^{3} \rightarrow R^{2}$ given by $t(x, y, z)=(z, x+y) \quad \forall(x, y, z) \in R^{3} . \quad$ P. 76
10. If $B=\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ is the usual basis of R^{2}. Determine its dual basis. P. 91
11. Let K be a field extension of a field F and let $\alpha \in \mathrm{K}$ be algebraic over F. Then show that any two minimal monic polynomial for α over F are equal. P. 108
12. Let Q be the field of rational numbers, then show that

$$
\mathrm{Q}(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3}) . \quad \mathrm{P} .115
$$

13. Prove that an irreducible polynomial $f(x)$ over a field of characteristic $p>0$ is inseparable if and only if $f(x) \in F\left[x^{p}\right]$.
P. 123
14. Prove that the order of the Galois group $G(K \mid F)$ is equal to the degree of K over F. P. 135
15. Prove that for any matrix A over field $F \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$. P. 160
16. Let A be a matrix of order nxn over a field F. Then prove that a scalar $\lambda \epsilon F$ is an eigen value of $A \operatorname{iff} \operatorname{det}(A-\lambda I)=0$. P. 183
17. Let V be an inner product space. Then for arbitrary vectors u , $\mathrm{v} \in \mathrm{V}$, prove that $|<\mathrm{u}, \mathrm{v}>| \leq$ IIuII IIvII. P. 192
18. Prove that a linear transformation t from a finite dimensional space V to itself is skew symmetric iff they commute.
P. 217

Section-C

1. Show that any two subnormal series for the group G have equivalent refinements. P. 34
2. Let V and V ' be vector spaces over a field F and $B=\left\{b_{1}, b_{2}\right.$, $\left.\ldots . ., \mathrm{b}_{\mathrm{n}}\right\}$ be a basis for V . Then prove that there exists a unique linear transformation $t: V \rightarrow V^{\prime}$ for any list $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}, \ldots \ldots, b_{n}{ }^{\prime}$ of
vectors in V^{\prime} such that $t\left(b_{i}\right)=b_{i}^{\prime}{ }^{\prime} ; i=1,2, \ldots \ldots \ldots, n$.
P. 79
3. Let V be n dimensional vector space over a field F and $B=\left\{b_{1}, b_{2}\right.$, $\left.\ldots . ., b_{n}\right\}$ be a basis for V, then prove that for any scalars λ_{1}, λ_{2}, $\ldots . ., \lambda_{n} \in F$ there exists a unique functional $f \in V^{*}$ such that $f\left(b_{i}\right)=\lambda_{i}$; $\mathrm{i}=1,2$, ,n.
P. 85
4. Let $\mathrm{V}, \mathrm{V}^{\prime}$ and V^{\prime} ' be finite dimensional vector spaces over a field F and let B, B' and B'' be there respectively bases. Then show that for linear transformations $\mathrm{t}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ and $\mathrm{s}: \mathrm{V}^{\prime} \rightarrow \mathrm{V}^{\prime}$;

$$
M_{B^{\prime \prime}}^{B^{\prime \prime}}(s o t)=M_{B^{\prime \prime}}^{B^{\prime}}(s) M_{B^{\prime}}^{B}(t) . \quad \text { P. } 155
$$

5. If $B=\left\{b_{1}=(-1,1,1) ; b_{2}=(1,-1,1) ; b_{3}=(1,1,-1)\right\}$ is a basis of $V_{3}(R)$, then find the dual basis to B .
