Program: M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Question Bank-2015 Paper Code:MT-07

Section - A

- 1. Define isomorphism on groups. Ans.P.16
- 2. Define solvable group. Ans.P.31
- 3. Is 5 a unit element in (R,+) but not in (Z,+)? Ans. Yes
- 4. Define unital module. Ans.P.53
- 5. Define minimal generating set for submodule N of an R-module M. Ans.P.70
- 6. Define image of a linear transformation(range space) t:V→V'. Ans.P.76
- 7. Is each linear transformation a linear functional? Ans.No.
- 8. The field C of complex numbers is what type of extension over field R? Ans. Algebraic extension.
- 9. Define row rank of a matrix. Ans. P.159
- 10. Define eigen value of a linear transformation. Ans. P.166
- 11. Define orthogonal set. Ans. P.195
- 12. Define orthogonal complement of a vector. Ans. P.196

Section-B

- 1. Let G_1 and G_2 be two groups and $H_1 = \{(a,e_2) \mid a \in G_1\}$, $H_2 = \{(e_1,b) \mid b \in G_2\}$ where e_1 nd e_2 are identity of G_1 and G_2 respectively. Then prove that H_1 and H_2 are normal subgroup of $G_1 \times G_2$. Ans.P.5
- 2. Let (R,+) be the additive group of real number and (R^+, \cdot) be a multiplicative group of positive real numbers. Show that a mapping $\emptyset: R \to R^+$ defined by $\emptyset(x) = e^x$ is an isomorphism. Ans.P.17
- 3. Conjugacy on a group G is an equivalence relation. P.30
- 4. Let G be a group. Then prove that G is an abelian if and only if $G^{(1)}=\{e\}$, e being the identity of G. P.30
- 5. Prove that every subgroup of a solvable group is solvable. P.33
- 6. Prove that every finite group G has a composition series. P.36
- 7. Let R be a Euclidean ring. Let a and b be two nonzero elements of R such that b is unit in R. Then prove that d(ab)=d(a). P.47
- 8. If M_1 and M_2 are submodules of an R-module M, then prove that :

- (i) $M_1 \cap M_2$ is a submodule of M and
- (ii) $M_1 + M_2 = \{m_1 + m_2 \mid m_1 \in M_1, m_2 \in M_2\}$ is a submodule of M. P.58
- 9. Show that the following map is a linear transformation:

$$t:R^3 \rightarrow R^2$$
 given by $t(x,y,z)=(z,x+y) + (x,y,z) \in R^3$. P.76

- 10. If B= $\{e_1=(1,0), e_2=(0,1)\}$ is the usual basis of \mathbb{R}^2 . Determine its dual basis. P.91
 - 11. Let K be a field extension of a field F and let $\alpha \in K$ be algebraic over F. Then show that any two minimal monic polynomial for α over F are equal. P.108
 - 12. Let Q be the field of rational numbers, then show that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$. P.115
 - 13. Prove that an irreducible polynomial f(x) over a field of characteristic p>0 is inseparable if and only if $f(x) \in F[x^p]$.

 P.123
 - 14. Prove that the order of the Galois group G(K|F) is equal to the degree of K over F. P.135
 - Prove that for any matrix A over field F rank(A) = rank(A^T). P.160
 - 16. Let A be a matrix of order nxn over a field F. Then prove that a scalar $\lambda \in F$ is an eigen value of A iff $\det(A-\lambda I)=0$. P.183
 - 17. Let V be an inner product space. Then for arbitrary vectors u, $v \in V$, prove that $|\langle u, v \rangle| \leq |IIuII |IIvII|$ P.192
 - 18. Prove that a linear transformation t from a finite dimensional space V to itself is skew symmetric iff they commute. P.217

Section-C

- 1. Show that any two subnormal series for the group G have equivalent refinements. P.34
- 2. Let V and V' be vector spaces over a field F and B = $\{b_1,b_2, \ldots, b_n\}$ be a basis for V. Then prove that there exists a unique linear transformation $t:V \rightarrow V'$ for any list b_1',b_2', \ldots, b_n' of

vectors in V' such that $t(b_i) = b_i$ '; $i=1, 2, \ldots, n$. P.79

- 3. Let V be n dimensional vector space over a field F and B = $\{b_1,b_2,\ldots,b_n\}$ be a basis for V, then prove that for any scalars $\lambda_1, \lambda_2,\ldots,\lambda_n\epsilon$ F there exists a unique functional $f\epsilon V^*$ such that $f(b_i)=\lambda_i$; $i=1,2,\ldots,n$.
- 4. Let V, V' and V'' be finite dimensional vector spaces over a field F and let B, B' and B'' be there respectively bases. Then show that for linear transformations $t:V \rightarrow V'$ and $s:V' \rightarrow V''$; $M_{B''}^{B}(sot) = M_{B''}^{B'}(s)M_{B'}^{B}(t)$. P.155
- 5. If B = $\{b_1=(-1,1,1); b_2=(1,-1,1); b_3=(1,1,-1)\}$ is a basis of $V_3(R)$, then find the dual basis to B. P.91