Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Previous)
 Paper Code:MT-01
 Advanced Algebra
 Section - C
 (Long Answers Questions)

1. Let $G_{i}(1 \leq i \leq n)$ be n groups an G is the external direct product of these groups. Lete e^{i} be the identity of the group G_{i} for each $(1 \leq i \leq n)$. Then prove following:
(i) For each i, $H_{i}=\left\{\left(e_{1}, e_{2}, e_{i-1}, x_{i}, e_{i+1}, e_{n}\right) / x_{1} \in G_{i}\right\}$ is a normal subgroup of G.
(ii) $\quad H_{i}$ is isomorphic to $G_{1} \quad \forall_{i}$
(iii) Each $g \in G$ can be written uniquely as product of elements from $H_{1}, H_{2}, \ldots \ldots H_{n}$
A Page 3
2. Let G_{1} and G_{2} be two groups. Let H_{1} and H_{2} be normal subgroup of G_{1} and G_{2} respectively then prove that:
(i) $H_{1} \times H_{2}$ is normal subgroup of $G_{1} \times G_{2}$
(ii) $\frac{G_{1} \times G_{2}}{H_{1} \times H_{2}} \cong \frac{G_{1}}{H_{1}} \times \frac{G_{2}}{H_{2}}$

A Page 7
3. Let G be a group and let $H_{1}, H_{2}, \ldots \ldots H_{n}$ be the subgroup of G. Then prove that G is an internal direct product of $H_{1}, H_{2}, \ldots \ldots H_{n}$ if and only if the following conditions are satisfied:
(i) $\quad H_{i}$ is normal in G $\quad \forall i=1,2, \ldots n$
(ii) $H_{i} \cap\left(\pi_{j+1} H_{j}\right)=\{e\}$
(iii) $G=H_{1}, H_{2}, \ldots \ldots H_{n}$

A Page 9
4. Let H and N be two subgroups of G and let H^{\prime} and N^{\prime} be two normal subgroups of H and N respectively. Then prove following :
(i) $\quad\left(H \cap N^{\prime}\right) H^{\prime}$ is normal subgroup of $(H \cap N) H^{\prime}$
(ii) $\quad\left(H^{\prime} \cap N\right)$ is normal subgroup of $(H \cap N) N^{\prime}$
(iii) $\frac{\left(H \cap N^{\prime}\right) H^{\prime}}{(H \cap N) H^{\prime}} \cong \frac{(H \cap N) N^{\prime}}{\left(H^{\prime} \cap N\right) N^{\prime}}$

A Page 19
5. State and prove the class equation for finite group.

A Page 25
6. Let H and N be two subgroups of G such that N is normal in G . Then prove that $H \cap N$ is normal subgroup of H and

$$
\frac{H}{H \cap N} \cong \frac{H N}{N}
$$

A Page 18
7. Prove that a group G is solvable if and only if $G^{(n)}=\{e\}$ for some $n \in N$

A Page 32
8. State and prove Jordan Holder theorem.

A Page 37
9. Prove the following :
(a) Every subgroup of a solvable group is solvable.
(b) Every homomorphic image of a solvable group is solvable.

A Page 33
10. Prove that the ring of Gaussian integers is a Euclidean ring.

A Page 43

11. Let R be a Euclidean ring, a and b be two non zero elements of R . Then prove the following :
(a) If b is unit then $d(a b)=d(a)$
(b) If b is not a unit then $d(a)>d(a)$

A Page 47
12. Define unique factorization domain. Prove that every Euclidean ring R is a unique factorization domain.

A Page 49
13. If M_{1} and M_{2} are submodules of an R-module M , then prove the following:
(a) $M_{1} \cap M_{2}$ is a submodule of M .
(b) $M_{1}+M_{2}=\left\{m_{1}+m_{2} / m_{1} \in M_{1}, m_{2} \in M_{2}\right\}$ is a submodule of M.

A Page 58
14. Let M be an R-module and $N_{1}, N_{2}, \ldots \ldots . N_{k}$ be submodules of M. Then prove that following statements are equivalent:
(a) $M=N_{1} \boxplus N_{2} \boxplus$ \qquad田 N_{k}
(b) If $n_{1}+n_{2}+\cdots+n_{k}=0$ then $n_{1}=n_{2}=\cdots . .=n_{k}=0$ for $n_{i} \in N_{i}$
(c) $N_{i} \cap\left(N_{1}+N_{i-1}+N_{i+1}+\cdots . . N_{k}=\{0\}\right.$

A Page 59
15. Define module homomorphism. If $f: M \rightarrow M^{\prime}$ be an R -module homomorphism then prove that following :
(a) $\operatorname{ker}(f)=\left\{x \in M / f(x)=0 \in M^{\prime}\right\}$ is a sub module of M
(b) $\operatorname{Im}(f)=\{f(x) / x \in M\}$ is a sub module of M^{\prime}

A Page 62
16. Let R be a commutative ring; M, M^{\prime} are modules ; and $f, g \in$ $\operatorname{Hom}_{R}\left(M, M^{\prime}\right)$. Then prove that $\operatorname{Hom}_{R}\left(M, M^{\prime}\right)$ is an R -module for following operation:

$$
\begin{array}{cc}
(g+g)(x)=f(x)+g(x) \\
(r f)(x) \stackrel{g}{=} r f(x), \quad r \in R, \quad x \in M
\end{array}
$$

A Page 65
17. State and prove fundamental theorem on module homomorphism.

A Page 66
18. Let M_{1} and M_{2} are submodule of an R-module M. Then prove that:

$$
\frac{M_{1}+M_{2}}{M_{2}} \cong \frac{M_{1}}{M_{1} \cap M_{2}}
$$

A Page 67
19. Let R be a Euclidean ring. Then prove that any finitely generated R-module N is the direct sum of a finite number of cyclic sub modules.

A Page 70
20. Let $t: V \rightarrow V^{\prime}$ be a linear transformation then prove following :
(a) t is monomorphism iff (if and only if) $\operatorname{ker}(t)=\{0\}$
(b) If the set $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ is linearly dependent then the set $\left\{t\left(v_{1}\right), t\left(v_{2}\right), \ldots . . t\left(v_{n}\right)\right\}$ is also linearly dependent.
(c) If the set $\left\{t\left(v_{1}\right), t\left(v_{2}\right), \ldots . t\left(v_{n}\right)\right\}$ is linearly independent then the set $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ is linearly independent.
(d) If the set $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ spans V then the set $\left\{t\left(v_{1}\right), t\left(v_{2}\right), \ldots . . t\left(v_{n}\right)\right\}$ spans $\operatorname{Im}(t)$.
A Page 78
21. Let V and V^{\prime} be two vector spaces over the same field F and $B=$ $\left\{b_{1}, b_{2}, \ldots \ldots b_{n}\right\}$ be a basis for V and $B^{\prime}=\left\{B_{1}{ }^{\prime}, b_{2}{ }^{\prime}, \ldots \ldots . b_{n}{ }^{\prime}\right\}$ be a set of vectors in V^{\prime} if $t: V \rightarrow V^{\prime}$ be a linear transformation such that $t\left(b_{i}\right)=b_{i}^{\prime}$, $i=1,2, \ldots \ldots n$. Then prove that t is an isomorphism iff the set B^{\prime} is a basis for V^{\prime}.

A Page 80
22. Let V be a finite dimensional vector space over field F and $B=$ $\left(v_{1}, v_{2}, \ldots \ldots v_{n}\right)$ be set of vectors in V. map $t: F^{n} \rightarrow V$ such that $t\left(\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}\right)=\alpha_{1} v_{1}, \alpha_{2} v_{2}, \ldots \ldots \alpha_{n} v_{n} \quad \forall\left(\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}\right) \in F^{n}$
Then prove that t is a linear transformation and
(a) t is monomorphism iff B is linearly independent
(b) t is an epimorphism iff B spans V.
(c) t is an isomorphism iff B is a basis for V .

A Page 83
23. Let V be a vector space over a field F and $B=\left\{b_{1}, b_{2} \ldots \ldots . b_{n}\right\}$ be a basis for V , then prove that the dual space V^{*} has a basis $B^{*}=\left\{f_{1}, f_{2}, \ldots . . f_{n}\right\}$ such that:
$f_{i}\left(b_{j}\right)=\delta_{i j} ; i, j=1,2, \ldots \ldots n \delta_{i j} \in F$ is a kronecker delta
A Page 86
24. Define second dual of a vector space. Let V be a finite dimensional vector space over the field F . Then prove that there exists a natural isomorphism of V onto $V^{* *}$.
A Page 88
25. Let V and V^{\prime} be any two finite dimensional vector space over the same field F . Then prove that the vector space $\mathrm{Hom}\left(\mathrm{V}, V^{\prime}\right)$ of all linear transformation of V to V^{\prime} is also finite dimensional and dim $\operatorname{Hom}\left(\mathrm{V}, V^{\prime}\right)=\operatorname{dim} \mathrm{V} \times \operatorname{dim} V^{\prime}$

A Page 94
26. State and prove sylvescter's law of nullity.

A Page 96
27. Show that the map $t: V_{2} R \rightarrow V_{3} R$ defined by $t(a, b)=(a+b, a-b, b)$ is a linear transformation. Find range, rank, null space and nullity of t .
A Page 98
28. Let K be a field extension of a field F . Then prove that an element $a \in K$ is algebraic over F if and only if $F(a)$ is finite extension of F.
A Page 109
29. If Fs a field and $\mathrm{p}(\mathrm{x})$ be an irreducible polynomial of positive degree over a field F . Then prove that there is an extension $K=F(x) /<p(x)>$ of F such that $[K: F]=\operatorname{deg} p(x)$ and $p(x)$ has a root in K.
A Page 111
30. Let F be a field of characteristic $p \neq 0$. Then prove that the polynomial $f(x)=x^{p^{n}}-x \in F(x)$ fro $n \geq 1$ has distinct roots.

A Page 122
31. Prove the following :
(a) Every field of characteristic zero is perfect.
(b) A field F of characteristic $p \neq 0$ such that each element of the field is pth power of some member of the same field. The F is perfect.

A Page 124
32. Let K be a finite extension of a field F. Then prove that the group $G(K / F)$ of F automorphisms of k is finite and

$$
0[G(K / F)] \leq[K: F]
$$

A Page 128
33. Let G be a finite group of automorphisms of a field K. Let F be the fixed field of G. Then prove that K is a Galois extension of F with $G(K / F)=G$

A Page 135
34. Let K be a Galoix extension of a field F . Then there exists a one to one correspondence between the set of all subfields of K containing F and the set of all sub groups of $G(K / F)$. Further if E is any sub field of K which contains F then prove following :
(a) $[K: E]=0[G(K / E)]$ and $[E: F]=$ index of $G(K / E)$ in $(G K / F)$
(b) E is normal extension of F if and only if $G(K / F)$ is a normal sub group of $G(K / F)$.
(c) If E is normal extension of F , then $G(K / E) \cong G(K / F) / G(K / E)$

A Page 137
35. Let F be the field of characteristic zero containing all nth roots of unity. If $f(x)$ is sovable by radicals over F, then prove that the Galois group of $f(x)$ over F is solvable.

A Page 142
36. Show that the general polynomial equation of degree n is not solvable by radicals for $n \geq 5$.
A Page 144
37. Let $t: R^{3} \rightarrow R^{3}$ be a linear transformation such that $t(a, b, c)=(3 a+$ $c,-2 a+b,-a+2 b+4 c)$. What is the matrix of t in the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ where $\alpha_{1}(1,0,1) \alpha_{2}=(-1,2,1) \alpha_{3}=(2,1,1)$
A Page 150
38. Let V and V^{\prime} be n and m dimensional vector space over a field F . Then prove that for given bases B and B^{\prime} of V and V^{\prime} respectively, the function assigning to each linear transformation t : $V \rightarrow V^{\prime}$ its matrix $M_{B}{ }^{B},(t)$ relative to bases B, B^{\prime} is an isomorphism
between the vector space $\operatorname{Hom}\left(\mathrm{V}, V^{\prime}\right)$ and the space $F^{m \times n}$ of all matrices over F.

A Page 153
39. Let V and V^{\prime} be finite dimensional vector spaces over a field F with bases B and B^{\prime} respectively. If $t: V \rightarrow V^{\prime}$ be a linear transformation, then prove that $M_{B^{*}}{ }^{B^{\prime *}}\left(t^{*}\right)=\left[M_{B^{\prime}}{ }^{B}(t)\right]^{T}$, where t^{*} is the dual map of t and B^{*} and $B^{\prime *}$ are the bases dual to B and B^{\prime} respectively.
A Page 154
40. Let $B=\left\{b_{1}=(1,0), b_{2}=(0,1)\right\}$ and $B^{\prime}=\left\{b_{1}{ }^{\prime}=(1,3), b_{2}{ }^{\prime}=(2,5)\right\}$ be any two bases of R^{2} then:
(a) Determine the transition matrix P from the basis B to the basis B^{\prime}.
(b) Determine the transition matrix Q from the basis B^{\prime} to the basis B .
© Find relation between P and Q.
A Page 163
41. Prove that two matrices over a field F are similar iff they correspond to the same linear transformation of a vector space V over F to itself with respect to two different bases.
A Page 165
42. Let V be a finite dimensional vector space over a field F and $t: V \rightarrow V$ be a linear transformation. Then prove following :
(a) The matrix A of t is a diagonal matrix having the eigen values of t as diagonal entries off A is corresponding to a basis of V consisting of eigen vectors of linear transformation t.
(b) The eigen values t are exactly the diagonal entries of A and each appearing on the diagonal as many times as the dimension of its eigen space.
A Page 168
43. Define determinant function. Prove that there exists a multilinear function $\operatorname{det}:\left(F^{n}\right)^{n} \rightarrow F$ such that

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{1}, A_{2}, \ldots \ldots . A_{n}\right)=\sum_{P \in S_{n}} \in(P) a_{f(1) 1}, a_{f(2) 2}, \ldots . a_{f(n) n} \forall A_{i} \in F^{n}
$$

Satisfy the axions of determinant function
A Page 173
44. Let det and $\operatorname{det}^{\prime}$ be two determinant functions. Then prove that for all column vectors $\left(A_{1}, A_{2}, \ldots \ldots . A_{n} \in F^{n}\right.$

$$
\operatorname{det}\left(\left(A_{1}, A_{2}, \ldots \ldots . A_{n}\right)=\operatorname{det}^{\prime}\right)\left(A_{1}, A_{2}, \ldots \ldots . A_{n}\right)
$$

Also define determinant of a matrix
A Page 175
45. Let A be a matrix of order $n \times n$ and let $\phi: n \rightarrow n$ then prove :
(a) $\sum_{P \in S_{n}} \in(P) a_{p(1) \phi(1)}, a_{p(2) \phi(2)} \ldots \ldots \ldots a_{p f(n) \phi(n)}=\in(d)|A|$
(b) $\sum_{P \in S_{n}} \in(P) a_{\phi(1) p(1)}, a_{\phi(2) p(2)} \ldots \ldots \ldots a_{\phi(n) p(n)}=\in(d)|A|$

A Page 176
46. Let $A=\left(A_{1}, A_{2}, \ldots \ldots . A_{n}\right)$ be an $n \times n$ square matrix over a field F , where F is the ith column of A . Then prove the following :
(a) $\operatorname{det}\left(A_{1}, A_{2}, \ldots, A_{i}, \ldots . A_{j}, \ldots . A_{n}\right)=0$ if $A_{i}=0$ for some i.
(b) $\operatorname{det}\left(\left(A_{1}, A_{2}, \ldots \ldots . A_{n}\right)=0\right.$ if the $\left(A_{1}, A_{2}, \ldots \ldots . A_{n}\right)$ is linearly dependent.
(c) $\operatorname{det}\left(A_{1}, \ldots A_{i-1}, A_{i+\lambda}, A_{j}, . A_{j}, . A_{n}\right)=\operatorname{det}\left(A_{1}, A_{2}, \ldots, A_{i}, \ldots . . A_{j}, \ldots . A_{n}\right)$
(d) $\operatorname{det}(A \alpha)=\alpha^{n} \operatorname{det}(A)$ for $\alpha \in F$
(e) Multiplying one column of A by a scalar $\alpha, \operatorname{det}(A)$ multiplies by α.

A Page 180
47. State and prove cayley-Hamilton theorem.

A Page 185
48. Stat and prove Schwartz inequality.

A Page 192

49. Let $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ be a set of vector in an inner product space V such that they are pairwise orthogonal. Then prove that :

$$
\left\|\sum_{i=1}^{n} v_{1}\right\|^{2}=\sum_{i=1}^{n}\left\|v_{i}\right\|
$$

A Page 197
50. Prove that every finite dimensional inner product space has an orthonormal basis.

A Page 200
51. Apply the Gram-schmidt process to the vectors $v_{1}=(1,0,1), v_{2}=$ $(10,-1), v_{3}=(0,3,4)$ to obtain an orthonormal basis for R^{3} with the standard inner product.
A Page 202
52. If $\left\{u_{1}, u_{2}, \ldots . . u_{n}\right\}$ is any finite orthonormal set in an inner product space V and v is any vector in V , then prove that:

$$
\sum_{i=1}^{n}\left|<v_{i} u_{i}>\right|^{2} \leq\|v\|^{2}
$$

And equality hold if and only if v is in the sub space generated by $\left\{u_{1}, u_{2}, \ldots . . u_{n}\right\}$
A Page 205
53. If $\mathrm{A}=\left\{u_{1}, u_{2}, \ldots . . u_{n}\right\}$ is any orthonormal set in any finite dimensional inner product space V , then prove that following are equivalent :
(a) orthonormal set A is complete.
(b) If $u \in V$ and $<u, u_{i} \geq 0$ for $1 \leq i \leq 0$, then $u=0$
(c) $<A \geq V$ that is A generates V .
(d) If $u \in V$ then $u=\sum_{i=1}^{n}<u, u_{i}>u_{i}$
(e) If $u, v \in V$ then $\left.\langle u, v\rangle=\sum_{i=1}^{n}<u, u_{i}\right\rangle\left\langle v, v_{i}\right\rangle$
(f) If $u \in V$ then $\|u\|^{2}=\sum_{i=1}^{n}\left|<u, u_{i}>\right|^{2}$

A Page 208
54. Let V be a finite dimensional inner product space. Let $t: V \rightarrow V$ be a linear transfor mation then prove that there exists a unique linear transformation $t^{*}: V \rightarrow V$ such that $\langle t(u), v\rangle=\left\langle u, t^{*}(v)\right\rangle \forall u, v \in V$
A Page 214
55. Prove that a linear transformation $t: V \rightarrow V(\mathrm{~V}$ is finite dimensional inner product space) is symmetric if and only if its matrix $\mathrm{A}=\left[a_{i j}\right]$ relative to some orthonormal basis B of V is symmetric.
A Page 181
56. If M and N are subspaces of a finite dimensional inner product space V then prove following:
(a) $(M+N)^{\perp}=M^{\perp} \cap N^{\perp}$
(b) $M^{\perp}+N^{\perp}=(M \cap N)^{\perp}$

A Page 218
57. If both a and s are linear transformation on an inner product space v. Then prove the following :
(a) If t is self adjoint then $s^{*} \mathrm{t} s$ is self adjoint.
(b) If t and s are self adjoint then $t s+s t$ is self adjoint.
(c) If s is invertible and $s^{*} t s$ is self adjoint then t is self adjoint.

A Page 220
58. Let $B=\left\{u_{1}, u_{2}, \ldots \ldots . u_{n}\right\}$ be an orthonormal basis of an inner product space V . Then prove that a linear transformation $t: V \rightarrow V^{\prime}$ is orthogonal if and only if the set $\left\{t\left(u_{1}\right), t\left(u_{2}\right), \ldots \ldots . t\left(u_{n}\right)\right\}$ is orthogonal in V^{\prime}.

A Page 226
59. If $t: V \rightarrow V^{\prime}$ is any map from an inner product space V to itself such that (a) $\mathrm{t}(0)=0 \quad$ (b) $\|t(u)-t(v)\|=\|u-v\|$. Then prove that t is an orthogonal linear transformation.

A Page 228
60. State and prove principal axis theorem.

A Page 231
61. Prove the following:
(a) The inverse of a orthogonal linear transformation when defined is an orthogonal transformation.
(b) The composite of two orthogonal transformation when defined, is an orthogonal transformation.
A Page 225
62. Let G be the external direct product of groups $G_{1}, G_{2}, \ldots \ldots G_{n}$ Let

$$
H_{i}=\left\{e_{1}, e_{2}, \ldots . e_{i-1}, x_{i}, e_{i+1}, \ldots \ldots e_{n} / x_{i} \in G_{i}\right\}
$$

Then prove that:
(a) $\frac{G}{G_{i}} \cong G_{1} \times G_{2} \times \ldots \ldots \times G_{i-1} \times G_{i+1} \times \ldots \ldots \times G_{n}$
(b) If $x \in H_{i}$ and $y \in H_{j}$ for some $i \neq j$ then $x y=y x$.
(a) $\|u+v\| \leq\|u\|\|v\|$
(b) $|\|u\|-\|v\|| \leq\|u-v\|$

A Page 6
63. Let G be a group, H and K are two sub groups of G such that H and K are normal in G and $H \cap K=\{e\}$. Then prove that:
(a) HK is the internal direct product of H and K .
(b) $H K \cong H \times K$

A Page 11
64. Let G be a group Then prove the following :
(a) G is abelian $\operatorname{iff} G^{(1)}=\{e\}$, ebidentity element of G.
(b) H be a sub group of G Then $H \Delta G$ and G / H is abelian iff $[G . G] \subset H$

A Page 30
65. Prove that any two subnormal series of a group G have equivalent refinements.

A Page 34
66. If $B=\left\{b_{1}=(-1,1,1) b_{2}=(1,-1,1) b_{3}=(1,1,-1)\right\}$ is a basis of $V_{3}(R)$, then find the dual basis to B.
A Page 91
67. If L is a finite extension of a field F and K is a subfield of L containing F . Then prove that $[\mathrm{K}: F]$ divides $[\mathrm{L}: F]$.
A Page 104
68. Let R be the field of rational numbers, then show that

$$
Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})
$$

A Page 115
69. Prove the following :
(a) An irreducible polynomial $\mathrm{f}(\mathrm{x})$ over a field of Charateristic $\mathrm{p}>0$ is separable if and only if $f(x) \in G\left[x^{p}\right]$
(b) A polynomial $\mathrm{f}(\mathrm{x})$ over a field F is separable if and only if it is relatively prime to its ervative.

A Page 123
70. Let K be an extension of the field of rational numbers Q. Show that any automorphism of K must leave every element of Q fixed.
A Page 130
71. Show that the group $\mathrm{G}(\mathrm{Q}(\alpha), \mathrm{Q})$, where $\alpha^{5}=1, \alpha \neq 1$ is isomorphic to the cyclic group of order 4 .
A Page 140
72. Let V, W, U be vector spaces over the same field F. Then prove the following :
(a) If $t: V \rightarrow W, s: W \rightarrow V$ are linear transformations and A and B are the matrix relative to t and s respectively. Then the matrix relative to set is B.A.
(b) A inear transformation $t: V \rightarrow V$ is invertible iff matrix of t relative to some bases B of V is invertible.

A Page 152

