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1. Let 𝐺𝑖(1 ≤ 𝑖 ≤ 𝑛)  be n groups an G is the external direct product of these 

groups. Let𝑒𝑖  be the identity of the group 𝐺𝑖  for each (1 ≤ 𝑖 ≤ 𝑛). Then 

prove following: 

(i) For each i, 𝐻𝑖 = {(𝑒1, 𝑒2, 𝑒𝑖−1 ,𝑥𝑖 , 𝑒𝑖+1, 𝑒𝑛)/ 𝑥1 ∈ 𝐺𝑖} is a normal 

subgroup of G.  

(ii) 𝐻𝑖  is isomorphic to 𝐺1       ∀𝑖  

(iii) Each 𝑔 ∈ 𝐺 can be written uniquely as product of elements from 

𝐻1, 𝐻2, …… 𝐻𝑛  
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2. Let 𝐺1 𝑎𝑛𝑑 𝐺2 be two groups. Let 𝐻1𝑎𝑛𝑑 𝐻2 be normal subgroup of  

𝐺1 𝑎𝑛𝑑 𝐺2respectively then prove that: 

(i) 𝐻1 × 𝐻2 is normal subgroup of 𝐺1  ×  𝐺2 

(ii) 
𝐺1  × 𝐺2

𝐻1×𝐻2
≅

𝐺1

𝐻1
×

𝐺2

𝐻2
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3. Let G be a group and let 𝐻1, 𝐻2, …… 𝐻𝑛  be the subgroup of G. Then prove 

that G is an internal direct product of 𝐻1, 𝐻2, …… 𝐻𝑛  if and only if the 

following conditions are satisfied: 

(i) 𝐻𝑖  is normal in G     ∀   𝑖 = 1, 2, … 𝑛 

(ii) 𝐻𝑖 ∩  𝜋𝑗 +1𝐻𝑗  = {𝑒} 

(iii) 𝐺 =  𝐻1, 𝐻2, …… 𝐻𝑛   
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4. Let H and N be two subgroups of G and let 𝐻′  𝑎𝑛𝑑 𝑁′  be two normal 

subgroups of H and N respectively. Then prove following : 

(i) (𝐻 ∩ 𝑁′)𝐻′  is normal subgroup of (𝐻 ∩ 𝑁)𝐻′  

(ii) (𝐻′ ∩ 𝑁) is normal subgroup of (𝐻 ∩ 𝑁)𝑁′  



 

 

(iii) 
(𝐻 ∩𝑁′ )𝐻 ′

(𝐻 ∩𝑁)𝐻 ′
≅

(𝐻∩𝑁)𝑁′

(𝐻 ′ ∩𝑁)𝑁′
 

A Page 19 

5. State and prove the class equation for finite group. 
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6. Let H and N be two subgroups of G such that N is normal in G. Then prove 

that 𝐻 ∩ 𝑁 is normal subgroup of H and  
𝐻

𝐻 ∩ 𝑁
≅

𝐻𝑁

𝑁
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7. Prove that a group G is solvable if and only if 𝐺(𝑛) = {𝑒} for some 𝑛 ∈ 𝑁 
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8. State and prove Jordan Holder theorem. 
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9. Prove the following : 
(a) Every subgroup of a solvable group is solvable. 

(b) Every homomorphic image of a solvable group is solvable. 
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10. Prove that the ring of Gaussian integers is a Euclidean ring. 
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11. Let R be a Euclidean ring, a and b be two non zero elements of R. Then 

prove the following : 
(a) If b is unit then d(ab) = d(a) 

(b) If b is not a unit then d(a) > d(a) 
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12. Define unique factorization domain. Prove that every Euclidean ring R is a 

unique factorization domain. 
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13. If 𝑀1 𝑎𝑛𝑑 𝑀2 are submodules of an R-module M, then prove the following: 
(a) 𝑀1  ∩  𝑀2 is a submodule of M. 

(b) 𝑀1 + 𝑀2 = {𝑚1 + 𝑚2 / 𝑚1  ∈ 𝑀1, 𝑚2 ∈ 𝑀2} is a submodule of M. 
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14. Let M be an R-module and 𝑁1, 𝑁2, …… . 𝑁𝑘  be submodules of M. Then 

prove that following statements are equivalent: 
(a) 𝑀 =  𝑁1 ⊞ 𝑁2 ⊞ ………⊞ 𝑁𝑘  



 

 

(b) If 𝑛1 + 𝑛2 + ⋯ +𝑛𝑘 = 0 then 𝑛1 = 𝑛2 = ⋯ . . = 𝑛𝑘 = 0  for 𝑛𝑖 ∈ 𝑁𝑖  

(c) 𝑁𝑖 ∩ (𝑁1 + 𝑁𝑖−1 + 𝑁𝑖+1 + ⋯ . . 𝑁𝑘 = {0} 
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15. Define module homomorphism. If 𝑓: 𝑀 → 𝑀′  be an R-module 

homomorphism then prove that following : 

(a) ker 𝑓 = {𝑥 ∈ 𝑀 /𝑓 𝑥 = 0 ∈ 𝑀′} is a sub module of M 

(b) 𝐼𝑚 𝑓 = {𝑓 𝑥  / 𝑥 ∈ 𝑀} is a sub module of 𝑀′  
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16. Let R be a commutative ring; 𝑀, 𝑀′  are modules ; and 𝑓, 𝑔 ∈
 𝐻𝑜𝑚𝑅 𝑀, 𝑀′ . Then prove that 𝐻𝑜𝑚𝑅 𝑀, 𝑀′ is an R-module for 

following operation: 

 𝑔 + 𝑔  𝑥 =  𝑓 𝑥 +  𝑔(𝑥) 

 𝑟𝑓  𝑥 =  𝑟 𝑓 𝑥 ,                 𝑟 ∈ 𝑅 , 𝑥 ∈ 𝑀 
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17. State and prove fundamental theorem on module homomorphism. 
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18. Let 𝑀1𝑎𝑛𝑑 𝑀2 are submodule of an R-module M. Then prove that: 
𝑀1 + 𝑀2

𝑀2
≅

𝑀1

𝑀1 ∩ 𝑀2
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19. Let R be a Euclidean ring. Then prove that any finitely generated R-module 

N is the direct sum of a finite number of cyclic sub modules. 
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20. Let 𝑡 ∶ 𝑉 → 𝑉 ′  be a linear transformation then prove following : 
(a) t is monomorphism iff (if and only if) ker 𝑡 = {0} 
(b) If the set {𝑣1, 𝑣2 , … . . 𝑣𝑛} is linearly dependent then the set 

{𝑡(𝑣1), 𝑡(𝑣2), … . . 𝑡(𝑣𝑛)} is also linearly dependent. 

(c) If the set {𝑡(𝑣1), 𝑡(𝑣2), … . . 𝑡(𝑣𝑛)}is linearly independent then the set 

{𝑣1, 𝑣2 , … . . 𝑣𝑛} is linearly independent.  

(d) If the set {𝑣1, 𝑣2 , … . . 𝑣𝑛} spans V then the set 

{𝑡(𝑣1), 𝑡(𝑣2), … . . 𝑡(𝑣𝑛)}spans 𝐼𝑚(𝑡). 
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21. Let V and 𝑉 ′  be two vector spaces over the same field F and 𝐵 =
{𝑏1, 𝑏2, ……𝑏𝑛} be a basis for V and 𝐵′ = {𝐵1

′ , 𝑏2
′ , …… . 𝑏𝑛

′} be a set of 

vectors in 𝑉 ′  if 𝑡 ∶ 𝑉 → 𝑉 ′  be a linear transformation such that 𝑡 𝑏𝑖 = 𝑏𝑖
′ ,

𝑖 = 1, 2, ……𝑛. Then prove that t is an isomorphism iff the set 𝐵′  is a basis 

for 𝑉 ′ . 
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22. Let V be a finite dimensional vector space over field F and 𝐵 =
 (𝑣1, 𝑣2 , ……𝑣𝑛) be set of vectors in V. map 𝑡 ∶  𝐹𝑛 → 𝑉 such that 

𝑡 𝛼1, 𝛼2 , … . . 𝛼𝑛 =  𝛼1𝑣1, 𝛼2𝑣2 , ……𝛼𝑛𝑣𝑛         ∀ 𝛼1, 𝛼2, … . . 𝛼𝑛 ∈ 𝐹𝑛  
Then prove that t is a linear transformation and  
(a) t is monomorphism iff B is linearly independent 

(b) t is an epimorphism iff B spans V. 

(c) t is an isomorphism iff B is a basis for V.  
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23. Let V be a vector space over a field F and 𝐵 = {𝑏1, 𝑏2 …… . 𝑏𝑛} be a basis 

for V, then prove that the dual space 𝑉∗ has a basis 𝐵∗ = {𝑓1, 𝑓2 , … . . 𝑓𝑛} 

such that: 
𝑓𝑖(𝑏𝑗 ) =  𝛿𝑖𝑗    ;   𝑖, 𝑗 = 1, 2, . . . . . 𝑛   𝛿𝑖𝑗  ∈ 𝐹 is a kronecker delta 
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24. Define second dual of a vector space. Let V be a finite dimensional vector 

space over the field F. Then prove that there exists a natural isomorphism 

of V onto 𝑉∗∗. 
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25. Let V and 𝑉 ′  be any two finite dimensional vector space over the same 

field F. Then prove that the vector space Hom (V, 𝑉 ′ ) of all linear 

transformation of V to 𝑉 ′  is also finite dimensional and dim  
Hom (V, 𝑉 ′ ) = dim V × dim 𝑉 ′  
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26. State and prove sylvescter’s law of nullity. 
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27. Show that the map 𝑡 ∶  𝑉2𝑅 → 𝑉3𝑅 defined by 𝑡 𝑎, 𝑏 = (𝑎 + 𝑏, 𝑎 − 𝑏, 𝑏) 

is a linear transformation. Find range,rank, null space and nullity of t. 
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28. Let K be a field extension of a field F. Then prove that an element 𝑎 ∈ 𝐾 is 

algebraic over F if and only if F(a) is finite extension of F. 
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29. If F s a field and p(x) be an irreducible polynomial of positive degree over a 

field F. Then prove that there is an extension 𝐾 = 𝐹 𝑥  / < 𝑝(𝑥) > of F 

such that [K : F] = deg p(x) and p(x) has a root in K. 
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30. Let F be a field of characteristic 𝑝 ≠ 0. Then prove that the polynomial 

𝑓 𝑥 =  𝑥𝑝𝑛
− 𝑥   ∈   𝐹 𝑥 𝑓𝑟𝑜 𝑛 ≥ 1 has distinct roots. 
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31. Prove the following : 
(a) Every field of characteristic zero is perfect. 
(b) A field F of characteristic 𝑝 ≠ 0 such that each element of the field is 

pth power of some member of the same field. The F is perfect. 
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32. Let K be a finite extension of a field F. Then prove that the group G (K / F) 

of F automorphisms of k is finite and  

0 𝐺(𝐾 / 𝐹) ≤ [𝐾 ∶ 𝐹] 
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33. Let G be a finite group of automorphisms of a  field K. Let F be the fixed 

field of G. Then prove that K is a Galois extension of F with G (K / F) = G 
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34. Let K be a Galoix extension of a field F. Then there exists a one to one 

correspondence between the set of all subfields of K containing F and the 

set of all sub groups of G (K/F). Further if E is any sub field of K which 

contains F then prove following : 
(a)  𝐾 ∶ 𝐸 = 0  𝐺  𝐾/𝐸  𝑎𝑛𝑑  𝐸 ∶ 𝐹 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝐺 𝐾/𝐸 𝑖𝑛 (𝐺 𝐾/𝐹) 
(b) E is normal extension of F if and only if G (K / F) is a normal sub 

group of G (K / F). 

(c) If E is normal extension of F, then 𝐺  𝐾/𝐸 ≅ 𝐺(𝐾/𝐹) /𝐺 (𝐾/𝐸) 
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35. Let F be the field of characteristic zero containing all nth roots of unity. If 

f(x) is sovable by radicals over F, then prove that the Galois group of f(x) 

over F is solvable. 
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36. Show that the general polynomial equation of degree n is not solvable by 

radicals for 𝑛 ≥ 5. 
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37. Let 𝑡 ∶  𝑅3 → 𝑅3 be a linear transformation such that 𝑡 𝑎, 𝑏, 𝑐 = (3𝑎 +
𝑐, −2𝑎 + 𝑏, −𝑎 + 2𝑏 + 4𝑐). What is the matrix of t in the ordered basis 

{𝛼1, 𝛼2, 𝛼3} where 𝛼1 1,0,1  𝛼2 =  −1,2,1  𝛼3 = (2, 1, 1) 
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38. Let V and 𝑉 ′  be n and m dimensional vector space over a field F. Then 

prove that for given bases B and 𝐵′  of V and 

𝑉 ′ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑡𝑕𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑡𝑜 𝑒𝑎𝑐𝑕 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑡 ∶
𝑉 → 𝑉 ′  its matrix 𝑀𝐵

𝐵 ,  𝑡  relative to bases B, 𝐵′  is an isomorphism 



 

 

between the vector space Hom (V, 𝑉 ′ ) and the space 𝐹𝑚 ×𝑛of all matrices 

over F. 
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39. Let V and 𝑉 ′ 𝑏𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑝𝑎𝑐𝑒𝑠 𝑜𝑣𝑒𝑟 𝑎 𝑓𝑖𝑒𝑙𝑑 𝐹  
𝑤𝑖𝑡𝑕 𝑏𝑎𝑠𝑒𝑠 𝐵 𝑎𝑛𝑑 𝐵′ respectively. If 𝑡 ∶ 𝑉 → 𝑉 ′  be a linear 

transformation, then prove that 𝑀𝐵∗
𝐵′ ∗

 𝑡∗ =   𝑀𝐵′
𝐵(𝑡) 

𝑇
, where 𝑡∗ is the 

dual map of t and 𝐵∗𝑎𝑛𝑑 𝐵′∗ are the bases dual to B and 𝐵′  respectively.  
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40. Let 𝐵 = {𝑏1 =  1,0 , 𝑏2 = (0, 1)} and 𝐵′ =  𝑏1
′ =  1, 3 , 𝑏2

′ = (2, 5)  be 

any two bases of 𝑅2 then: 
(a) Determine the transition matrix P from the basis B to the basis 𝐵′ . 

(b) Determine the transition matrix Q from the basis 𝐵′ to the basis B. 

© Find relation between P and Q. 
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41. Prove that two matrices over a field F are similar iff they correspond to the 

same linear transformation of a vector space V over F to itself with respect 

to two different bases. 
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42. Let V be a finite dimensional vector space over a field F and 𝑡 ∶ 𝑉 → 𝑉 be 

a linear transformation. Then prove following : 
(a) The matrix A of t is a diagonal matrix having the eigen values of t as 

diagonal entries off A is corresponding to a basis of V consisting of 

eigen vectors of linear transformation t. 

(b) The eigen values t are exactly the diagonal entries of A and each 

appearing on the diagonal as many times as the dimension of its eigen 

space. 
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43. Define determinant function. Prove that there exists a multilinear function 

det: (𝐹𝑛)𝑛 → 𝐹 such that  

det 𝐴 = det(𝐴1 , 𝐴2 , …… . 𝐴𝑛) =  ∈  𝑃  𝑎𝑓(1)1 , 𝑎𝑓 2 2, … . . 𝑎𝑓 𝑛 𝑛∀𝐴𝑖 ∈ 𝐹𝑛

𝑃∈𝑆𝑛

 

 Satisfy the axions of determinant function 
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44. Let det and 𝑑𝑒𝑡′  be two determinant functions. Then prove that for all 

column vectors (𝐴1 , 𝐴2 , …… . 𝐴𝑛 ∈ 𝐹𝑛  

det (𝐴
1

, 𝐴2, … … . 𝐴𝑛 =  𝑑𝑒𝑡′)(𝐴
1

, 𝐴2, … … . 𝐴𝑛) 

 Also define determinant of a matrix 
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45. Let A be a matrix of order 𝑛 × 𝑛 and let  ∶ 𝑛 → 𝑛 then prove : 
(a)  ∈  𝑃 𝑎𝑝 1 (1), 𝑎𝑝 2 (2) ………𝑎𝑝𝑓 𝑛  𝑛 =∈  𝑑  𝐴 𝑃∈𝑆𝑛

 

(b)  ∈  𝑃 𝑎 1 𝑝(1), 𝑎 2 𝑝(2) ………𝑎 𝑛 𝑝 𝑛 =∈  𝑑  𝐴 𝑃∈𝑆𝑛
 

A Page 176 

46. Let 𝐴 = (𝐴1 , 𝐴2 , …… . 𝐴𝑛 ) be an 𝑛 × 𝑛 square matrix over a field F, where F 

is the ith column of A. Then prove the following : 
(a) det 𝐴1, 𝐴2 , … . , 𝐴𝑖 , … . . 𝐴𝑗 , … . 𝐴𝑛 = 0 if 𝐴𝑖 = 0 for some i. 

(b) det((𝐴
1
, 𝐴2, … … . 𝐴𝑛) = 0 if the (𝐴1 , 𝐴2 , …… . 𝐴𝑛) is linearly dependent. 

(c) det 𝐴1, … 𝐴𝑖−1, 𝐴𝑖+𝜆 , 𝐴𝑗 , . 𝐴𝑗 , . 𝐴𝑛 = det 𝐴1, 𝐴2, … . , 𝐴𝑖 , … . . 𝐴𝑗 , … . 𝐴𝑛   

(d) det 𝐴𝛼 =  𝛼𝑛 det 𝐴 𝑓𝑜𝑟  𝛼 ∈ 𝐹 

(e) Multiplying one column of A by a scalar 𝛼, det(𝐴) multiplies by 𝛼. 
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47. State and prove cayley-Hamilton theorem. 
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48. Stat and prove Schwartz inequality. 
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49. Let {𝑣1 , 𝑣2, … . . 𝑣𝑛} be a set of vector in an inner product space V such that 

they are pairwise orthogonal. Then prove that : 

  𝑣1

𝑛

𝑖=1

 

2

=   𝑣𝑖 

𝑛

𝑖=1
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50. Prove that every finite dimensional inner product space has an orthonormal 

basis. 
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51. Apply the Gram-schmidt process to the vectors 𝑣1 =  1,0,1 , 𝑣2 =
 1 0, −1 , 𝑣3 = (0,3,4) to obtain an orthonormal basis for 𝑅3with the 

standard inner product. 
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52. If {𝑢1, 𝑢2 , … . . 𝑢𝑛} is any finite orthonormal set in an inner product space V 

and v is any vector in V, then prove that: 

  < 𝑣𝑖𝑢𝑖 > 2 ≤
𝑛

𝑖=1
 𝑣 2 

And equality hold if and only if v is in the sub space generated by 

{𝑢1, 𝑢2 , … . . 𝑢𝑛}   
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53. If A = {𝑢1, 𝑢2, … . . 𝑢𝑛} is any orthonormal set in any finite dimensional 

inner product space V, then prove that following are equivalent : 
(a) orthonormal set A is complete. 

(b) If 𝑢 ∈ 𝑉 𝑎𝑛𝑑 < 𝑢, 𝑢𝑖 ≥ 0 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 0, 𝑡𝑕𝑒𝑛 𝑢 = 0 

(c) < 𝐴 ≥ 𝑉 that is A generates V. 

(d) If 𝑢 ∈ 𝑉 then 𝑢 =   < 𝑢, 𝑢𝑖 > 𝑢𝑖
𝑛
𝑖=1  

(e) If 𝑢, 𝑣 ∈ 𝑉 then < 𝑢, 𝑣 > =   < 𝑢, 𝑢𝑖 > < 𝑣, 𝑣𝑖 >𝑛
𝑖=1  

(f) If 𝑢 ∈ 𝑉 then  𝑢 2 =   < 𝑢, 𝑢𝑖 > 2𝑛
𝑖=1  
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54. Let V be a finite dimensional inner product space. Let 𝑡: 𝑉 → 𝑉 be a linear 

transfor mation then prove that there exists a unique linear transformation 

𝑡∗: 𝑉 → 𝑉 such that < 𝑡 𝑢 , 𝑣 > = < 𝑢, 𝑡∗ 𝑣 >  ∀ 𝑢, 𝑣 ∈ 𝑉 
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55. Prove that a linear transformation 𝑡 ∶  𝑉 → 𝑉 (V is finite dimensional inner 

product space) is symmetric if and only if its matrix A=[𝑎𝑖𝑗 ] relative to 

some orthonormal basis B of V is symmetric. 
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56. If M and N are subspaces of a finite dimensional inner product space V 

then prove following: 
(a) (𝑀 + 𝑁)⊥ = 𝑀⊥  ⋂𝑁⊥ (b) 𝑀⊥+𝑁⊥ = (𝑀⋂𝑁)⊥ 
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57. If both a and s are linear transformation on an inner product space v. Then 

prove the following : 
(a) If t is self adjoint then 𝑠∗ t s is self adjoint. 

(b) If t and s are self adjoint then 𝑡𝑠 +  𝑠𝑡 is self adjoint. 

(c) If s is invertible and 𝑠∗ 𝑡 𝑠 is self adjoint then t is self adjoint. 
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58. Let 𝐵 = {𝑢1, 𝑢2, …… . 𝑢𝑛} be an orthonormal basis of an inner product 

space V. Then prove that a linear transformation 𝑡 ∶ 𝑉 → 𝑉 ′  is orthogonal 

if and only if the set {𝑡(𝑢1), 𝑡(𝑢2), …… . 𝑡(𝑢𝑛)} is orthogonal in 𝑉 ′ . 
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59. If 𝑡 ∶ 𝑉 → 𝑉 ′  is any map from an inner product space V to itself such that 

(𝑎) t(0) = 0     (b)  𝑡 𝑢 −  𝑡(𝑣) =   𝑢 − 𝑣 . Then prove that t is an 

orthogonal linear transformation. 
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60. State and prove principal axis theorem. 
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61. Prove the following: 



 

 

(a) The inverse of a orthogonal linear transformation when defined is an 

orthogonal transformation. 

(b) The composite of two orthogonal transformation when defined, is an 

orthogonal transformation. 
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62. Let G be the external direct product of groups 𝐺1, 𝐺2, ……𝐺𝑛  Let  
𝐻𝑖 = {𝑒1, 𝑒2, … . 𝑒𝑖−1, 𝑥𝑖 , 𝑒𝑖+1, …… 𝑒𝑛  / 𝑥𝑖  ∈ 𝐺𝑖} 

Then prove that : 

(a) 
𝐺

𝐺𝑖
≅ 𝐺1 × 𝐺2 × …… × 𝐺𝑖−1 × 𝐺𝑖+1 × …… .× 𝐺𝑛  

(b) If 𝑥 ∈ 𝐻𝑖 𝑎𝑛𝑑 𝑦 ∈ 𝐻𝑗  for some 𝑖 ≠ 𝑗 𝑡𝑕𝑒𝑛 𝑥𝑦 = 𝑦𝑥. 

(a)  𝑢 + 𝑣 ≤  𝑢   𝑣  

 (b)   𝑢 −  𝑣   ≤   𝑢 − 𝑣  
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63. Let G be a group, H and K are two sub groups of G such that H and K are 

normal in G and 𝐻 ∩ 𝐾 =  𝑒 . Then prove that : 
(a) HK is the internal direct product of H and K. 

(b) 𝐻𝐾 ≅ 𝐻 × 𝐾 
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64. Let G be a group Then prove the following : 
(a) G is abelian iff 𝐺(1) = {𝑒}, ebidentity element of G. 

(b) H be a sub group of G Then 𝐻∆𝐺 𝑎𝑛𝑑 𝐺/𝐻 is abelian iff  𝐺 . 𝐺   𝐻 
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65. Prove that any two subnormal series of a group G have equivalent 

refinements. 
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66. If 𝐵 = {𝑏1 =  −1,1, 1 𝑏2 =  1, −1, 1 𝑏3 = (1, 1, −1)} is a basis of 𝑉3 𝑅 , 

then find the dual basis to B. 
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67. If L is a finite extension of a field F and K is a subfield of L containing F. 

Then prove that [K : F] divides [L : F]. 
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68. Let R be the field of rational numbers, then show that  

𝑄  2,  3 =  𝑄( 2 +   3) 
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69. Prove the following : 



 

 

(a) An irreducible polynomial f(x) over a field of Charateristic p > 0 is 

separable if and only if 𝑓 𝑥 ∈ 𝐺[𝑥𝑝 ] 
(b) A polynomial f(x) over a field F is separable if and only if it is 

relatively prime to its ervative. 
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70. Let K be an extension of the field of rational numbers Q. Show that any 

automorphism of K must leave every element of Q fixed. 
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71. Show that the group G (Q (𝛼), Q), where 𝛼5 = 1, 𝛼 ≠ 1 is isomorphic to 

the cyclic group of order 4. 
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72. Let V, W, U be vector spaces over the same field F. Then prove the 

following : 
(a) If 𝑡 ∶ 𝑉 → 𝑊, 𝑠 ∶ 𝑊 → 𝑉 are linear transformations and A and B are 

the matrix relative to t and s respectively. Then the matrix relative to set 

is B.A. 
(b) A inear transformation 𝑡 ∶ 𝑉 → 𝑉 is invertible iff matrix of t relative to 

some bases B of V is invertible. 
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