Program : M.A./M.Sc. (Mathematics)
 M.A./M.Sc. (Previous)
 Paper Code:MT-01
 Advanced Algebra
 Section-B
 (Short Answers Questions)

1. Let G_{1} and G_{2} be groups, the prove that:

$$
G_{1} \times G_{2} \cong G_{2} \times G_{1}
$$

A Page 5
2. Let G_{1} and G_{2} be two groups. Let $G=G_{1} \times G_{2}$

$$
\begin{aligned}
& H_{1}=\left\{\left(a, e_{2}\right) / a \in G_{1}\right\}=G_{1} \times\left\{e_{2}\right\} \\
& H_{2}=\left\{\left(e_{1}, b\right) / b \in G_{2}\right\}=\left\{e_{2}\right\} \times G_{2}
\end{aligned}
$$

Then prove that G is an internal direct product of H_{1} and H_{2}
A Page 11
3. If HK is the internal direct product of H and K then prove that

$$
\frac{H K}{K} \cong H
$$

A Page 12
4. Prove that anu two conjygate classes of a group are either disjoint or identical.

A Page 23
5. Prove that the numbers of elements conjugate to ' a ' in G is equal to the index of the normalize of a in G.

A Page 24
6. Let G be a group and H be a subgroup of G . Then prove that $\mathrm{H} \Delta \mathrm{G}$ and G / H is abelian if and only if $[\mathrm{G}, \mathrm{G}] \subset \mathrm{H}$.
A Page 30
7. Let G be a group and $\mathrm{N} \Delta \mathrm{G}$. If N and G / N are solvable then prove that G is solvable.

A Page 33
8. Prove that every finite group G has a composition series.

A Page 36
9. Prove that an infinite abelain group does not have a composition seris.

A Page 37
10. Prove that every quotient group of a solvable group is sovable.

A Page 33
11. Show that S_{n} is non solvable for $\mathrm{n} \geq 5$.

A Page 32
12. Let D be an integral domain, x and y be two non zero elements of D . Then prove that x and y are associates if and only if $\mathrm{x}=\mathrm{ay}$ where a is a unit element in D.

A Page 41
13. Prove that every Euclidean ring is a principal ideal domain.

A Page 45
14. Prove that every ring of polynomials $f(x)$ over a field F is a Euclidean ring.

A Page 44
15. Let R be a Euclidean ring, a and b be two non zero elements in R. Then Prove that greatest common divisor of and b can be written as $(\mathrm{ma}+\mathrm{nb})$ for some $\mathrm{m}, n \in R$
A Page 46
16. Let R be a Euclidean ring and $p \in R$ be a prime element such that p / ab; a , $b \in R$. Then prove that either p / a or p / b
A Page 46
17. Let R be Euclidean ring, $a \in R$ be an nonzero element. Then prove that a is unit if and only if $\mathrm{d}(\mathrm{a} 0=\mathrm{d}(10$, where 1 is the unity element of R.

A Page 48
18. Let R be a Euclidean ring, then prove that every non zero element in R is either a unit or can be written as product of a finite number of prime elements of R.

A Page 48
19. Let R b a Eclidean ring and a be a non zero non unit element of R . Then prove that a can be expressed as finite product of prime elements and this product is unique upto associates.
A Page 49
20. Prove that every additive abelian group is a module over the ring Z of integers.

A Page 55
21. Let n be a positive ring and R be any ring. The prove that the set of n tuples $\left.R^{n}=\left\{r_{1}, r_{2}, \ldots \ldots r_{n}\right\}: r_{1} \in R, i \in n\right\}$ is an R-module under the termwise operations defined by

$$
\begin{gathered}
\left(r_{1}, r_{2}, \ldots \ldots r_{n}\right)+\left(s_{1}, s_{2}, \ldots \ldots s_{n}\right)=\left(r_{1}+s_{1}, r_{2}+s_{2}, \ldots \ldots r_{n}+s_{n}\right) \\
r\left(r_{1}, r_{2}, \ldots \ldots r_{n}\right)=\left(r r_{1}, r r_{2}, \ldots \ldots r r_{n}\right) \forall\left(r_{1}, r_{2}, \ldots r_{n}\right),\left(s_{1}, s_{2}, \ldots s_{n}\right) \in R^{n} \\
\text { and } \forall e \in R
\end{gathered}
$$

A Page 54
22. Prove that the necessary and sufficient condition for a nonvoid subset N of an R -module M over a ring R with unity to be a submodule of M is that $r x+s y \in N \quad \forall r, s \in R \quad \forall x, y \in N$
A Page 58
23. Let M be an R -module and N be a submodule of M . Then prove that the set $\frac{M}{N}=\{N+x / x \in M\}$ is an R-module for addition and scalar multiplication defined as follows.

$$
\begin{gathered}
\text { (a) }(N+x)+(N+y)=N 9 x+y)(b) r(N+x)=N+r x \\
\forall N+x, N+y \in \frac{M}{N}, r \in R
\end{gathered}
$$

A Page 60
24. If $f: M \rightarrow M^{*}$ as an R-module. Homomorphism. Then prove that f is a monomorphism if and only if $\operatorname{Ker}(f)=\{0\}$
A Page 63
25. Let M and M^{1} be two R-module. Then prove tat the set $\operatorname{Hom}_{R}\left(M, M^{1}\right)$ is an abelian group under point wise additional morphism.

A Page 64
26. Let M be a R -module and Let N be a submodule of M . Then prove that the natural projection map $P: M \rightarrow M / N$ defined by $p(x)=N+x \forall x \in$ M is an R-module with kernel N .

A Page 65
27. L.et R a ring with unity and M be an R -module. Let N be a finitely generated submodule of M generated by the sunset $A=\left\{a_{,}, a_{2}, \ldots \ldots a_{n}\right\}$ of M. Then prove that

$$
N=R A=R a_{1}+R a_{2}+\cdots \ldots . . R a_{n}
$$

A Page 70
28. Let $t: V \rightarrow V^{1}$ be a linear transformation. Then prove the following :
(a) $\operatorname{Ker}(\mathrm{t})$ is a vector subspace of V
(b) $\operatorname{Im}(t)$ is vector sub space of V^{1}

A Page 77
29. Let V and V^{1} be vector spaces over a field F and $B=\left\{b_{1}, b_{2}, \ldots \ldots . b_{n}\right\}$ be a basis for V . Then prove tat there exists unique linear transformation $t: V \rightarrow V^{1}$ for any list $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}, \ldots \ldots . b_{n}{ }^{\prime}$ of vectors in V^{\prime} such that

$$
t\left(b_{i}\right)=b_{i}^{\prime}, \quad i=1,2 \ldots \ldots n
$$

A Page 79
30. Let V be an n-dimensional vector space over a field F. Prove tat V is isomorphic to the vector space F^{n}

A Page 82
31. Let V be n-dimensional vector space over a field F and $B=\left\{b_{1}, b_{2}, \ldots \ldots b_{n}\right\}$ be a basis for V . Then prove that for any n scalars $\lambda_{1}, \lambda_{2}, \ldots \ldots \lambda_{n} \in F$ then exists a unique linear functional $f \in V^{*}$ such that

$$
f\left(b_{i}\right)=\lambda_{i} \quad ; \quad i=1,2, \ldots . n
$$

A Page 85
32. Let V be a finite dimensional vector space over a field F . Then Prove that for each non zero vector $v \in V$ then exists a linear functional $f \in V^{*}$ such that $f(v) \neq 0$

A Page 88
33. Let $t: V \rightarrow V^{*}$ be a linear transformation of rank r and $\operatorname{dim} \mathrm{v}=\mathrm{m}, \operatorname{dim} \mathrm{v}^{\prime}=$ m then prove that $\mathrm{r} \leq \min \{\mathrm{m}, \mathrm{n}\}$ and there exists a basis $\left\{b_{1}, b_{2}, \ldots . . b_{n}\right\}$ of V and $\left\{b_{1}, b_{2}^{\prime}, \ldots . b_{n}\right\}$ of V^{\prime} such that $t\left(b_{1}\right)=b_{i}, t\left(b_{2}\right)=b_{2}^{\prime}, ., t\left(b_{r}\right)=b_{r}^{\prime}, \prime \quad t\left(b_{r+1}\right)=o, \quad t\left(b_{m}\right)=0$,
A Page 97
34. If K is a finite field extension of a field F and L is a finite field extension of K, then prove that L is a finite field extension of F and $[L: F]=[L: K][K$: F]

A Page 103
35. Prove that every finite extension of a field as an algebraic extension but the converse is not necessarily true.

A Page 107
36. Let K be a field extension of a field F and let $\alpha_{1}, \alpha_{2}, \ldots \ldots . \alpha_{n}$ be elements in K which are algebraic over F then prove that $F\left(\alpha_{1}, \alpha_{2}, \ldots \ldots . \alpha_{n}\right)$ is a finite extension of F and hence and algebraic extension of F.
A Page 110
37. Let $\mathrm{f}(\mathrm{x} 0$ be a polynomial of degree $\mathrm{n} \geq 1$ over a field F . Then prove that there exists a finite extension K of F in which $f(x)$ has n rots such that $[k$: $\mathrm{F}] \leq 1 n$

A Page 113
38. Let K be an extension of a field F . Then prove that the elements in K which are algebraic over f form a subfield of K.
A Page 113
39. Let F be a field. Then prove that every polynomial of positive degree in $f(x)$ has a splitting field.
A Page 118
40. Let F be a field and let $f(x)$ be an irreducible polynomial in $f(x)$. The prove that $f(x)$ has a multiple root in some field extension if and only if $f^{\prime}(x)=0$
A Page 121
41. Let F be finite field of characteristic P . Then prove that $a \rightarrow a^{p}$ is an automorphism of F .
A Page 123
42. If K is a field and $d_{1}, d_{2}, \ldots . d_{n}$ are distinct automorphisms of K. Then prove that it is impossible to find elements $b_{1}, b_{2}, \ldots . b_{n}$ not all zero in K such that $b_{1} \phi_{1}(a)+b_{2} \phi_{2}(a)+\ldots \ldots .+b_{n} \phi_{n}(a)=0 \forall a \in K$
A Page 127
43. Let K be the field of complex numbers and F be the field of real numbers. Find $G(K / F)$ and fixed field of $G(K / F)$
A Page 130
44. Let K be a Galois extension of afield F. Then prove that the set of all F automorphisms of K is a group with respect to operation comoposition of functions.
A Page 133
45. Let K be a Galoiz extension of a field F and Characteristic of F be zero. Then prove that the fixed field under the Galois group $G(K / F)$ if F itself.
A Page 136
46. Show that the Galois group of $x^{4}+1 \in Q(x)$ is the klein four group.

A Page 140
47. Let $\mathrm{V}, \mathrm{W}<\mathrm{U}$ be vector spaces over the same field F . Let $\left\{v_{j}\right\}_{j=1}^{n}\left\{W_{i}\right\}_{i=1}^{m}$ and $\left\{U_{r}\right\}_{r=1}{ }^{k}$ be the bases of V, W and U respectively. If $t: V \rightarrow W, S: W \rightarrow U$ are linear transformations and A
nad B are matrix relative to t and s respectively. Then prove that the matrix relative to set is BA .

A Page 152
48. Let $t_{A} \in \operatorname{Hom}\left(F^{n}, F^{m}\right)$ be the linear transformation corresponding to an m x n ,matrix $\mathrm{A}=[\mathrm{aij}]$ over the field F . Then prove that the rank of t_{A} equals to the rank of A.

A Page 159
49. Let V be a vector space over a field F and B be its basis. Then prove that a linear transformation $t: V \rightarrow V$ is invertible iff matrix iof t relative to basis B is invertible.
A Page 161
50. Prove that an $n x n$ square matrix A over a field F is invertible iff rank (A) = n

A Page 161
51. Let V be a finite dimensional vector space over a field F. Prove that the set of all eigen vectors corresponding to an eigen value λ of a linear transformation $t: V \rightarrow V^{\prime}$ by adjoining zro vector to it, is a subspace of V .
A Page 166
52. Let V be a finite dimensional vector space over a field F and $t: V \rightarrow V$ be a linear transformation. Suppose that $V_{1}, V_{2}, \ldots . V n$ are distinct eigen vectors of t corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{1}, \ldots \ldots \ldots . \lambda_{n}$. Then prove that $\left\{V_{1}, V_{2}, \ldots . V n\right\}$ is a linearly independent set.
A Page 167
53. Let A be a matrix of order n x n and A^{T} is the transpose of A . Then prove that $\left|A^{T}\right|=A$ where (A) denotes the determinant of A
A Page 177
54. Let A and B be any two matrices of order $\mathrm{n} \times \mathrm{n}$ then prove that:

$$
|A B|=|A| \cdot|B|
$$

A Page 178
55. Let A and B be any two matrices of order $n \times n$. If matrix B is obtained by:
(a) Interchanging two columns (rows) of A then prove that $\operatorname{det}(B)=-\operatorname{det} A$
(b) Adding to a column (row) of A by a scalar multiplier of another column (row) of A then prove that $\operatorname{det}(B)-\operatorname{det}(A)$.

A Page 181
56. State and prove Cramer's rule.

A Page 182
57. Let A be $n \times n$ matrix of order $n \times n$. Then prove the following:
(a) If B is similar to A then $\mathrm{A} \& \mathrm{~B}$ have some eigenvalues.
(b) A and A^{T} have same eigen values.

A Page 184
58. If $u=\left(a_{1}, a_{2}\right), v=\left(b_{1}, b_{2}\right) \in R^{2}$, then prove that $\langle u, v\rangle=a_{1} b_{1}-$ $a_{2} b_{1}-a_{1} b_{2}+4 a_{2} b_{2}$ defines an inner product.
A Page 190
59. Define norm of a vector. Let $\mathrm{V}(\mathrm{R})$ is an inner product space and $v \in V, \alpha \in$ R; then prove that
(a) $\|v\| \geq 0$; and $\|v\|=0$ if and only if $v=0$
(b) $\|\alpha v\|=|\alpha|\|v\|$

A Page 191
60. Define orthogonal complement of a set. If S is a subspace of an inner product space v . Then prove that orthogonal complement S^{\perp} is subspace of V.

A Page 196
61. If $S=\left\{v_{1}, v_{2}, \ldots \ldots . v_{n}\right\}$ is an orthonormal set in an nner product space V . Then prove that for any vector $v \in V$, vector $u=v-\sum_{i=1}^{n} v_{1}<v, v_{i}>$ is orthogonal te each of the vector $v_{1}, v_{2}, \ldots \ldots v_{n}$ and consequently to the subspace spanned by S.
A Page 199
62. For any two vector u and v in an inner product space V prove that:
(a) $\|u+v\| \leq\|u\|\|v\|$
(b) $|\|u\|-\|v\|| \leq\|u-v\|$

A Page 193
63. If $B=\left\{u_{1} . u_{2}, \ldots \ldots . . u_{n}\right\}$ an orthonormal basis of an inner product space V and $v \in V$ be any arbitrary vector. Then prove that the coordinates of v relative to the basis B of v are $<v, u_{i}>, i=1,2, \ldots \ldots n$ and

$$
\|v\|^{2}=\sum_{i=1}^{n}\left|v, v_{i}\right|^{2}
$$

A Page 199
64. If V be a finite dimensional inner product d space and W be its sub space. Then prove that V is direct sum of W and W^{\perp}.
A Page 210
65. If W is any subspace of a finite dimensional inner product space V , the prove that $\left(W^{\perp}\right)^{\perp}=W$
A Page 211
66. Let V be a finite dimensional inner product space. If $A=\left\{u_{1}, u_{2}, \ldots \ldots u_{n}\right\}$ is an orthonormal basis of a sub space W of V and $B=\left\{v_{1}, v_{2}, \ldots \ldots v_{n}\right\}$ is an orthonormal basis of W^{\perp}. Then prove that $\left\{u_{1}, u_{2}, \ldots \ldots u_{n}\right.$, $\left.v_{1}, v_{2}, \ldots \ldots v_{n}\right\}$ is an orthonormal basis of V .
A Page 212
67. If t_{1} and t_{2} are linear transformations of finite dimensional inner product spaces V to V^{\prime} then prove that :
(a) $\left(t_{1}+t_{2}\right)^{*}=t_{1}{ }^{*}+t_{2}{ }^{*}$
(b) $\left(t_{1} t_{2}\right)^{*}=t_{2}{ }^{*} t_{1}{ }^{*}$

A Page 213
68. If both t and s are self adjoint linear transformation or an inner product space V . Then prove that $t s+s t$ is self adjoint. If both t and s are skew adjoint then prove that $t s-s t$ is skew adjoint.
A Page 221
69. Let V and V^{\prime} be inner product spaces. Then prove that a linear transformation $t: V \rightarrow V^{\prime}$ is orthogonal is and only if

$$
\|t(u)\|=\|u\| \quad P \forall u \in V
$$

A Page 225
70. Let V be a finite dimensional inner product space. Then prove that the set of all orthogonal transformation on V is a group.

A Page 226
71. Let V be a finite dimensional inner product space. Then prove that a linear transformation $t: V \rightarrow V$ is orthogonal if and only if its matrix relative to an orthonormal basis is orthogonal.
A Page 229
72. Let V and V^{\prime} be inner product space and $t: V \rightarrow V^{\prime}$ be an orthogonal linear transformation. Then prove the following :
(a) t is monomorphism.
(b) If $\left\{u_{1}, u_{2}, \ldots \ldots u_{n}\right\}$ is orthonormal then $\left\{t\left(u_{1}\right), t\left(u_{2}\right), \ldots \ldots t\left(u_{n}\right)\right\}$ is orthonormal in V^{\prime}.
A Page 224

